1
|
Cell-Free Fetal DNA Increases Prior to Labor at Term and in a Subset of Preterm Births. Reprod Sci 2020; 27:218-232. [PMID: 32046392 DOI: 10.1007/s43032-019-00023-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023]
Abstract
Cell-free fetal DNA in the maternal circulation has been associated with the onset of labor at term. Moreover, clinical studies have suggested that cell-free fetal DNA has value to predict pregnancy complications such as spontaneous preterm labor leading to preterm birth. However, a mechanistic link between cell-free fetal DNA and preterm labor and birth has not been established. Herein, using an allogeneic mouse model in which a paternal green fluorescent protein (GFP) can be tracked in the fetuses, we established that cell-free fetal DNA (Egfp) concentrations were higher in late gestation compared to mid-pregnancy and were maintained at increased levels during the onset of labor at term, followed by a rapid decrease after birth. A positive correlation between cell-free fetal DNA concentrations and the number of GFP-positive pups was also observed. The increase in cell-free fetal DNA concentrations prior to labor at term was not linked to a surge in any specific cytokine/chemokine; yet, specific chemokines (i.e., CCL2, CCL7, and CXCL2) increased as gestation progressed and maintained elevated levels in the postpartum period. In addition, cell-free fetal DNA concentrations increased prior to systemic inflammation-induced preterm birth, which was associated with a strong cytokine response in the maternal circulation. However, cell-free fetal DNA concentrations were not increased prior to intra-amniotic inflammation-induced preterm birth, but in this model, a mild inflammatory response was observed in the maternal circulation. Collectively, these findings suggest that an elevation in cell-free fetal DNA concentrations in the maternal circulation precedes the physiological process of labor at term and the pathological process of preterm labor linked with systemic inflammation, but not that associated with intra-amniotic inflammation.
Collapse
|
2
|
Lim R, Barker G, Lappas M. Inhibition of PIM1 kinase attenuates inflammation-induced pro-labour mediators in human foetal membranes in vitro. Mol Hum Reprod 2018; 23:428-440. [PMID: 28333279 DOI: 10.1093/molehr/gax013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2016] [Accepted: 03/06/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Does proviral integration site for Moloney murine leukaemic virus (PIM)1 kinase play a role in regulating the inflammatory processes of human labour and delivery? SUMMARY ANSWER PIM1 kinase plays a critical role in foetal membranes in regulating pro-inflammatory and pro-labour mediators. WHAT IS KNOWN ALREADY Infection and inflammation have strong causal links to preterm delivery by stimulating pro-inflammatory cytokines and collagen degrading enzymes, which can lead to rupture of membranes. PIM1 has been shown to have a role in immune regulation and inflammation in non-gestational tissues; however, its role has not been explored in the field of human labour. STUDY DESIGN, SIZE, DURATION PIM1 expression was analysed in myometrium and/or foetal membranes obtained at term and preterm (n = 8-9 patients per group). Foetal membranes, freshly isolated amnion cells and primary myometrial cells were used to investigate the effect of PIM1 inhibition on pro-labour mediators (n = 5 patients per treatment group). PARTICIPANTS/MATERIALS, SETTING AND METHODS Foetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and from preterm pre-labour rupture of membranes (PPROM) (n = 9 per group). Amnion was collected from women with and without preterm chorioamnionitis (n = 8 per group). Expression of PIM1 kinase was determined by qRT-PCR and western blotting. To determine the effect of PIM1 kinase inhibition on the expression of pro-inflammatory and pro-labour mediators induced by bacterial products lipopolysaccharide (LPS) (10 μg/ml) and flagellin (1 μg/ml) and pro-inflammatory cytokine tumour necrosis factor (TNF) (10 ng/ml), chemical inhibitors SMI-4a (20 μM) and AZD1208 (50 μM) were used in foetal membrane explants and siRNA against PIM1 was used in primary amnion cells. Statistical significance was set at P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE PIM1 expression was significantly increased in foetal membranes after spontaneous term labour compared to no labour at term and in amnion with preterm chorioamnionitis compared to preterm with no chorioamnionitis. There was no change in PIM1 expression with preterm labour or PPROM compared to preterm with no labour or PPROM. In human foetal membranes, PIM1 inhibitors SMI-4a and AZD1208 significantly decreased the expression of pro-inflammatory cytokine interleukin-6 (IL6) and chemokines CXCL8 and CCL2 mRNA and release, prostaglandin prostaglandin F2α (PGF2α) release, adhesion molecule intercellular adhesion molecule 1 mRNA expression and release, and oxidative stress marker 8-isoprostane release after stimulation with either LPS or flagellin. Primary amnion cells transfected with PIM1 siRNA also showed decreased expression of IL6, CXCL8 and CCL2, PTGS2 mRNA and PGF2α release, and matrix metalloproteinase-9 (MMP9) expression, when stimulated with TNF. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION The conclusions were drawn from in vitro experiments using foetal membrane explants and primary cells isolated from amnion. Animal models are necessary to determine whether PIM1 kinase inhibitors can prevent spontaneous preterm birth in vivo. WIDER IMPLICATIONS OF THE FINDINGS PIM1 kinase inhibitors may provide a novel therapeutic approach for preventing spontaneous preterm birth. STUDY FUNDING/COMPETING INTEREST(S) Associate Professor Martha Lappas is supported by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; grant no. 1047025). Funding for this study was provided by the NHMRC (grant no. 1058786), Norman Beischer Medical Research Foundation and the Mercy Research Foundation. The authors have no conflict of interest.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
3
|
Lim R, Barker G, Lappas M. TRADD, TRAF2, RIP1 and TAK1 are required for TNF-α-induced pro-labour mediators in human primary myometrial cells. Am J Reprod Immunol 2017; 78. [PMID: 28337828 DOI: 10.1111/aji.12664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2016] [Accepted: 02/16/2017] [Indexed: 12/16/2022] Open
Abstract
PROBLEM TNF-α plays a central role in the processes of human labour and delivery. This study sought to determine the role of the adaptor proteins TNFR1-associated death domain protein (TRADD), TNF receptor-associated factor 2 (TRAF2), receptor interacting protein 1 (RIP1) and transforming growth factor beta-activated kinase 1 (TAK1) in TNF-α-induced formation of pro-labour mediators. METHOD OF STUDY Human primary myometrial cells were transfected with siRNA against TRADD (siTRADD), TRAF2 (siTRAF2), RIP1 (siRIP1) or TAK1 (siTAK1), treated with TNF-α, and assayed for pro-inflammatory mediators expression. RESULTS siTRADD, siTRAF2, siRIP1 and siTAK1 significantly decreased TNF-α-induced IL-1α, IL-1β, IL-6, IL-8, MCP-1 mRNA expression and release of IL-6, IL-8 and MCP-1; and cyclooxygenase (COX)-2 expression and release of prostaglandin PGF2α . There was a significant attenuation of TNF-α-induced expression of adhesion molecules ICAM-1 and VCAM-1 mRNA with siTRADD, siTRAF2 or siRIP1. siTRADD and siRIP1 significantly attenuated TNF-α-induced MMP-9 mRNA expression and release and nuclear factor κB (NF-κB) transcriptional activity. There was a significant increase in TNF-α-induced sVCAM-1 release, MMP-9 mRNA expression and NF-κB activity with siTAK1. CONCLUSION TRADD, TRAF2, RIP1 and TAK1 are involved in TNF-α signalling in human myometrium. Further studies are required to determine whether inhibition of these proteins can prevent preterm birth.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
4
|
Gomez-Lopez N, Romero R, Arenas-Hernandez M, Ahn H, Panaitescu B, Vadillo-Ortega F, Sanchez-Torres C, Salisbury KS, Hassan SS. In vivo T-cell activation by a monoclonal αCD3ε antibody induces preterm labor and birth. Am J Reprod Immunol 2016; 76:386-390. [PMID: 27658719 DOI: 10.1111/aji.12562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2016] [Accepted: 08/15/2016] [Indexed: 01/17/2023] Open
Abstract
PROBLEM Activated/effector T cells seem to play a role in the pathological inflammation associated with preterm labor. The aim of this study was to determine whether in vivo T-cell activation by a monoclonal αCD3ε antibody induces preterm labor and birth. METHOD OF STUDY Pregnant B6 mice were intraperitoneally injected with a monoclonal αCD3ε antibody or its isotype control. The gestational age, the rates of preterm birth and pup mortality at birth as well as the fetal heart rate and umbilical artery pulsatility index were determined. RESULTS Injection of a monoclonal αCD3ε antibody led to preterm labor/birth (αCD3ε 83 ± 16.97% [10/12] vs isotype 0% [0/8]) and increased the rate of pup mortality at birth (αCD3ε 87.30 ± 8.95% [77/85] vs isotype 4.91 ± 4.34% [3/59]). In addition, injection of a monoclonal αCD3ε antibody decreased the fetal heart rate and increased the umbilical artery pulsatility index when compared to the isotype control. CONCLUSION In vivo T-cell activation by a monoclonal αCD3ε antibody in late gestation induces preterm labor and birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA. .,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Immunology & Microbiology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA. .,Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA. .,Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA. .,Center for Molecular Obstetrics & Genetics, Wayne State University, Detroit, MI, USA.
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Molecular Biomedicine, CINVESTAV, Mexico City, Mexico
| | - Hyunyoung Ahn
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Felipe Vadillo-Ortega
- Unit of Vinculation, Faculty of Medicine, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Katherine S Salisbury
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Lim R, Barker G, Menon R, Lappas M. A Novel Role for SIRT3 in Regulating Mediators Involved in the Terminal Pathways of Human Labor and Delivery. Biol Reprod 2016; 95:95. [PMID: 27628218 PMCID: PMC5333934 DOI: 10.1095/biolreprod.116.142372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022] Open
Abstract
Preterm birth remains the major cause of neonatal mortality and morbidity, mediated largely by an inflammatory process. The sirtuin (SIRT) family of cellular regulators has been implicated as key inhibitors of inflammation. We have previously reported a role for SIRT1, SIRT2, and SIRT6 in regulating inflammation-induced prolabor mediators. In this study, we determined the effect of term labor and pro-inflammatory cytokines on SIRT3, SIRT4, SIRT5, and SIRT7 expression in human myometrium. Functional studies were also used to investigate the effect of small interfering RNA (siRNA) knockdown of SIRTs in regulating inflammation-induced prolabor mediators. Western blot analysis and qRT-PCR were used to determine SIRT3, SIRT4, SIRT5, and SIRT7 mRNA and protein expression in human myometrium. Small interfering RNA knockdown of SIRT3 in myometrial primary cells determined its role in response to inflammatory stimuli IL1B and TNF. SIRT3 mRNA and protein expression levels were significantly lower in term laboring myometrium compared with term nonlaboring myometrium. There was no effect of labor on SIRT4, SIRT5 or SIRT7 protein expression. The pro-inflammatory cytokines IL1B and TNF significantly decreased levels of SIRT3 mRNA and protein expression. SIRT3 knockdown by siRNA significantly augmented IL1B- and TNF-stimulated IL6, CXCL8, and CCL2 mRNA expression and release; PTGS2 mRNA expression and subsequent PGF2alpha release; the mRNA expression and secretion of the adhesion molecule ICAM1 and the extracellular matrix remodeling enzyme MMP9; and nuclear factor kappa B1 (NFkappaB1) transcriptional activity. In human myometrium, SIRT3 expression decreases with term labor and regulates the mediators involved in the terminal effector pathways of human labor and delivery through the NFkappaB1 pathway.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas.,Department of Clinical Medicine and Obstetrics and Gynecology, Aarhus University, Aarhus, Denmark
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia .,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
6
|
The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta 2016; 42:59-73. [PMID: 27238715 DOI: 10.1016/j.placenta.2016.03.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/19/2016] [Revised: 03/05/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023]
Abstract
Rupture of the fetal membranes (FM) is precipitated by stretch forces acting upon biochemically mediated, pre-weakened tissue. Term FM develop a para-cervical weak zone, characterized by collagen remodeling and apoptosis, within which FM rupture is thought to initiate. Preterm FM also have a weak region but are stronger overall than term FM. Inflammation/infection and decidual bleeding/abruption are strongly associated with preterm premature FM rupture (pPROM), but the specific mechanisms causing FM weakening-rupture in pPROM are unknown. There are no animal models for study of FM weakening and rupture. Over a decade ago we developed equipment and methodology to test human FM strength and incorporated it into a FM explant system to create an in-vitro human FM weakening model system. Within this model TNF (modeling inflammation) and Thrombin (modeling bleeding) both weaken human FM with concomitant up regulation of MMP9 and cellular apoptosis, mimicking the characteristics of the spontaneous FM rupture site. The model has been enhanced so that test agents can be applied directionally to the choriodecidual side of the FM explant consistent with the in-vivo situation. With this enhanced system we have demonstrated that the pathways involving inflammation/TNF and bleeding/Thrombin induced FM weakening overlap. Furthermore GM-CSF production was demonstrated to be a critical common intermediate step in both the TNF and the Thrombin induced FM weakening pathways. This model system has also been used to test potential inhibitors of FM weakening and therefore pPROM. The dietary supplement α-lipoic acid and progestogens (P4, MPA and 17α-hydroxyprogesterone) have been shown to inhibit both TNF and Thrombin induced FM weakening. The progestogens act at multiple points by inhibiting both GM-CSF production and GM-CSF action. The use of a combined biomechanical/biochemical in-vitro human FM weakening model system has allowed the pathways of fetal membrane weakening to be delineated, and agents that may be of clinical use in inhibiting these pathways to be tested.
Collapse
|
7
|
Lim R, Tran HT, Liong S, Barker G, Lappas M. The Transcription Factor Interferon Regulatory Factor-1 (IRF1) Plays a Key Role in the Terminal Effector Pathways of Human Preterm Labor1. Biol Reprod 2016; 94:32. [DOI: 10.1095/biolreprod.115.134726] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
|
8
|
Lim R, Barker G, Lappas M. Human cathelicidin antimicrobial protein 18 (hCAP18/LL-37) is increased in foetal membranes and myometrium after spontaneous labour and delivery. J Reprod Immunol 2014; 107:31-42. [PMID: 25435436 DOI: 10.1016/j.jri.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Infection and/or inflammation are most commonly associated with preterm birth. Studies have shown that antimicrobial peptides can modulate the inflammatory response in non-gestational tissues; the human cathelicidin hCAP18 (and its active component LL-37) has such anti-microbial and immunomodulatory properties. The aim of this study was to determine the effect of human labour on hCAP18 expression in foetal membranes and myometrium, and to determine the effect of the synthetic LL-37 peptide on pro-inflammatory and pro-labour mediators in foetal membranes and myometrium. The localisation and expression of hCAP18 in non-labouring and labouring tissues was determined by immunohistochemistry and Western blot, respectively. Tissue explants were used to determine the effect of LL-37 on pro-labour mediators. hCAP18 was localised to the amnion epithelium, cytotrophoblasts and decidua in the foetal membranes, and in the longitudinal and transverse muscle fibres of the myometrium. Additional hCAP18 staining was present in leukocytes. In foetal membranes and myometrium, human labour was associated with significantly higher hCAP18 protein expression. Treatment of foetal membranes and myometrium with LL-37 significantly induced the expression and secretion of the pro-inflammatory cytokines IL-6 and TNF-α, and the chemokines IL-8 and MCP-1. LL-37 also induced expression of MMP-9 mRNA and pro MMP-9 expression in foetal membranes. Co-treatment with BAY 11-7082 was associated with a decrease in LL-37-induced pro-inflammatory cytokine expression. Moreover, inhibition of MyD88 in myometrial cells decreased LL-37-induced pro-inflammatory cytokine expression and release. LL-37 also significantly increased NF-κB transcriptional activity. In conclusion, hCAP18/LL-37 induces pro-inflammatory and pro-labour mediators, via the MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Ratana Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Gillian Barker
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Martha Lappas
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.
| |
Collapse
|