1
|
Willis SK, Kuan KE, Hatch EE, Crowe HM, Wesselink AK, Rothman KJ, Mumford SL, Wise LA. Self-reported diagnoses of dietary allergens and fecundability in a North American cohort. Hum Reprod 2024:deae277. [PMID: 39719047 DOI: 10.1093/humrep/deae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/01/2024] [Indexed: 12/26/2024] Open
Abstract
STUDY QUESTION To what extent are self-reported diagnoses of food allergies associated with fecundability, the per-cycle probability of conception? SUMMARY ANSWER Fecundability was not appreciably associated with self-reported food allergy diagnoses, number of food allergies, age at first diagnosis, or time since last allergic reaction. WHAT IS KNOWN ALREADY Food allergies are atopic diseases that are characterized by an inappropriate immune response to a normally harmless dietary substance. While some studies have observed associations between atopic disorders and infertility, no study has examined the association between food allergies and fecundability, the per-cycle probability of conception. STUDY DESIGN, SIZE, DURATION A prospective cohort study including 7711 females trying to conceive without fertility treatment at enrollment (2018-2022) and followed for up to 12 months. PARTICIPANTS/MATERIALS, SETTING, METHODS We analyzed data from an internet-based prospective cohort of pregnancy planners in North America. At baseline, female participants completed an online questionnaire on demographic, medical, and lifestyle factors that included questions on food allergy diagnoses, age at diagnosis, and time since last reaction. Participants completed bimonthly follow-up questionnaires for up to 12 months to ascertain pregnancy status. The analysis included 7711 PRESTO participants with ≤6 menstrual cycles of pregnancy attempt time at enrollment (2018-2022). We used proportional probabilities regression models to estimate fecundability ratios (FRs) and 95% CIs, adjusted for demographic, lifestyle, and behavioral characteristics. MAIN RESULTS AND THE ROLE OF CHANCE A total of 1028 (13%) participants reported a history of diagnosed food allergy, with the most commonly reported allergy being dairy or shellfish. A history of diagnosed food allergy (vs none) was not appreciably associated with fecundability (FR = 0.93, 95% CI: 0.86-1.02), though specific allergens were associated with fecundability in opposing directions (e.g. inverse association with egg and positive association with soy). We observed non-monotonic associations between fecundability and number of food allergies, age at first allergy diagnosis, and time since last allergic reaction. Inverse associations between self-reported diagnosed food allergens (all types combined) and reduced fecundability were slightly stronger among those with BMI ≥25 (FR = 0.90, 95% CI: 0.80-1.01) than those with BMI <25 (FR = 0.97, 95% CI: 0.86-1.10) and among those born ≥1990 (FR = 0.91, 95% CI: 0.80-1.03) compared with those born <1990 (FR = 0.96, 95% CI: 0.86-1.08). LIMITATIONS, REASONS FOR CAUTION Non-differential misclassification of food allergies was likely given that we relied on self-reported diagnoses. Confounding by unmeasured dietary factors may have influenced associations between specific food allergens and fecundability, if participants were deficient in specific nutrients because they excluded or substituted selected foods due to the allergy. Generalizability may be reduced given our study population was restricted to North American pregnancy planners. WIDER IMPLICATIONS OF THE FINDINGS Diagnoses of food allergies have substantially increased over the past several decades. Our findings indicate that self-reported diagnoses of food allergies were not meaningfully associated with subfertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by NIH/NICHD grant R01-HD086742. S.L.M. was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD. In the last 3 years, PRESTO has received in-kind donations from Swiss Precision Diagnostics and Kindara.com for primary data collection. L.A.W. is a paid consultant for AbbVie, Inc. and the Gates Foundation. The other authors have no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sydney K Willis
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Krystal E Kuan
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Holly M Crowe
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Vomstein K, Krog MC, Wrønding T, Nielsen HS. The microbiome in recurrent pregnancy loss - A scoping review. J Reprod Immunol 2024; 163:104251. [PMID: 38718429 DOI: 10.1016/j.jri.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/23/2023] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.
Collapse
Affiliation(s)
- Kilian Vomstein
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark.
| | - Maria C Krog
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Tine Wrønding
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Zhao M, Wen X, Liu R, Xu K. Microbial dysbiosis in systemic lupus erythematosus: a scientometric study. Front Microbiol 2024; 15:1319654. [PMID: 38863759 PMCID: PMC11166128 DOI: 10.3389/fmicb.2024.1319654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis. Methods We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends. Results In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE. Conclusion This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoting Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiling Liu
- Department of Microbiology and Immunology, Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Rokhsartalab Azar P, Karimi S, Haghtalab A, Taram S, Hejazi M, Sadeghpour S, Pashaei MR, Ghasemnejad-Berenji H, Taheri-Anganeh M. The role of the endometrial microbiome in embryo implantation and recurrent implantation failure. J Reprod Immunol 2024; 162:104192. [PMID: 38215650 DOI: 10.1016/j.jri.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
There is a suggested pathophysiology associated with endometrial microbiota in cases where repeated implantation failure of high-quality embryos is observed. However, there is a suspected association between endometrial microbiota and the pathogenesis of implantation failure. However, there is still a lack of agreement on the fundamental composition of the physiological microbiome within the uterine cavity. This is primarily due to various limitations in the studies conducted, including small sample sizes and variations in experimental designs. As a result, the impact of bacterial communities in the endometrium on human reproduction is still a subject of debate. In this discourse, we undertake a comprehensive examination of the existing body of research pertaining to the uterine microbiota and its intricate interplay with the process of embryo implantation.
Collapse
Affiliation(s)
| | - Sarmad Karimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arian Haghtalab
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Saman Taram
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Milad Hejazi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Park JY, Yun H, Lee SB, Kim HJ, Jung YH, Choi CW, Shin JY, Park JS, Seo JS. Comprehensive characterization of maternal, fetal, and neonatal microbiomes supports prenatal colonization of the gastrointestinal tract. Sci Rep 2023; 13:4652. [PMID: 36944767 PMCID: PMC10030461 DOI: 10.1038/s41598-023-31049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
In this study, we aimed to comprehensively characterize the microbiomes of various samples from pregnant women and their neonates, and to explore the similarities and associations between mother-neonate pairs, sample collection sites, and obstetrical factors. We collected samples from vaginal discharge and amniotic fluid in pregnant women and umbilical cord blood, gastric liquid, and meconium from neonates. We identified 19,597,239 bacterial sequences from 641 samples of 141 pregnant women and 178 neonates. By applying rigorous filtering criteria to remove contaminants, we found evidence of microbial colonization in traditionally considered sterile intrauterine environments and the fetal gastrointestinal track. The microbiome distribution was strongly grouped by sample collection site, rather than the mother-neonate pairs. The distinct bacterial composition in meconium, the first stool passed by newborns, supports that microbial colonization occurs during normal pregnancy. The microbiome in neonatal gastric liquid was similar, but not identical, to that in maternal amnionic fluid, as expected since fetuses swallow amnionic fluid in utero and their urine returns to the fluid under normal physiological conditions. Establishing a microbiome library from various samples formed only during pregnancy is crucial for understanding human development and identifying microbiome modifications in obstetrical complications.
Collapse
Affiliation(s)
- Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Huiyoung Yun
- Precision Medicine Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Macrogen Inc, Seoul, Republic of Korea
| | - Seung-Been Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Macrogen Inc, Seoul, Republic of Korea
| | - Hyeon Ji Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Young Hwa Jung
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Chang Won Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Jong-Yeon Shin
- Precision Medicine Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Macrogen Inc, Seoul, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jeong-Sun Seo
- Precision Medicine Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea.
- Macrogen Inc, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Li Y, Yang F, Chen L, Duan S, Jin W, Liu Q, Xu H, Zhang W, Li Y, Wang J, He Z, Zhao Y. Intestinal microbial diversity in female rhesus ( Macaca mulatta) at different physiological periods. Front Microbiol 2022; 13:959315. [PMID: 36225360 PMCID: PMC9548999 DOI: 10.3389/fmicb.2022.959315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To explore the relationship between the changes in the physiological period and the fecal microbial population of female rhesus monkeys by measuring microbial composition of fecal samples and the serum hormones. Blood and fecal samples were collected from six female adult rhesus monkeys during the menstrual period (MP), ovulation period (OP), and Luteal period (LP). Serum estradiol (E2) and progesterone (P) levels were determined by the chemiluminescence method and the stool samples were subjected to high-throughput 16S rRNA sequencing. The highest level of E2 and P secretions were during the MP, and LP, respectively. Stool samples produced valid sequences and the number of operational taxonomic unit/OTU was: 810056/3756 (MP), 845242/4159 (OP), 881560/3970 (LP). At the phylum level, the three groups of Firmicutes and Bacteroides accounted for > 95%. The dominant flora at the LP was Bacteroides (53.85%), the dominant flora at the MP and OP was Firmicutes, 64.08 and 56.53%, respectively. At the genus level, the dominant genus at the LP was Prevotella, the dominant genera at the MP were Prevotella, Oncococcus, Streptococcus, and Kurtella. The dominant genera at OP were Prevotella and Nocococcus. At the phylum level, P levels were negatively correlated to Firmicutes, Actinomycetes Actinobacteria, and Fibrobacteres, but positively correlated to Bacteroidetes. Likewise, E2 was positively correlated to Proteobacteria but negatively correlated to Euryarchaeota. At the genus level, P hormone showed a significant correlation with 16 bacterial species, and E2 was significantly correlated to seven bacterial species. Function prediction analysis revealed a high similarity between the MP and OP with six differentially functional genes (DFGs) between them and 11 DFGs between OP and LP (P < 0.05). Fecal microbiota types of female rhesus monkeys varied with different stages of the menstrual cycle, possibly related to changes in hormone levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
7
|
Liu X, Zhang F, Wang Z, Zhang T, Teng C, Wang Z. Altered gut microbiome accompanying with placenta barrier dysfunction programs pregnant complications in mice caused by graphene oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111143. [PMID: 32942098 DOI: 10.1016/j.ecoenv.2020.111143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The wide use of graphene oxide (GO) has raised increasing concerns about the potential risks to environmental and human health. Recent studies have shown the vital role of gut microbiome in various pathological status or even exogenous exposure, but more detailed understanding about the effects of possible gut microbiome alterations under GO exposure on reproductive toxicology evaluations in pregnant mammals remained elusive. Here we found that orally administrated GO daily during gestational day (GD) 7-16 caused dose-dependent pregnant complications of mice on the endpoint (GD19), including decreased weight of dam and live fetus, high rate of resorbed embryos and dead fetus, and skeletal development retardation. Meanwhile in placenta tissues of pregnant mice exposed to GO at dose over 10 mg/kg, the expression levels of tight junctions (Claudin1 and Occludin) and vascular endothelial growth factor (VEGFA) decreased approximately by 30%-80%, meaning impaired placenta barrier. According to the data of fecal 16s RNA sequencing in 40 mg/kg dose group and the control group, gut microbiome showed dramatically decreased α- and β-diversity, and upregulated Firmicutes/Bacteroidetes ratio owing to GO exposure. What's more, significantly differentiated abundance of Euryarchaeota is expected to be a special biomarker for failed pregnancy caused by GO. Notably, the result of Spearman correlation analysis suggested that there was a strong link (correlation coefficient>0.6) between perturbed gut microbiome with both abnormally expressed factors of placenta barrier and adverse pregnant outcomes. In summary, the damages of GO exposure to placenta barrier and pregnancy were dose-dependent. And GO exposure was responsible for gut microbiome dysbiosis in mice with pregnant complications. These findings could provide referable evidence to evaluate reproductive risk of GO to mammals.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Tongchao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
8
|
Yao Y, Cai X, Fei W, Ren F, Wang F, Luan X, Chen F, Zheng C. Regulating Gut Microbiome: Therapeutic Strategy for Rheumatoid Arthritis During Pregnancy and Lactation. Front Pharmacol 2020; 11:594042. [PMID: 33343364 PMCID: PMC7748111 DOI: 10.3389/fphar.2020.594042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and bone destruction. Microbial infection is considered to be the most important inducement of RA. The pregnancy planning of women in childbearing age is seriously affected by the disease activity of RA. Gut microbiome, related to immunity and inflammatory response of the host. At present, emerging evidence suggested there are significant differences in the diversity and abundance of gut microbiome during pregnancy and lactation, which may be associated with the fluctuation of RA disease activity. Based on these research foundations, we pioneer the idea of regulating gut microbiome for the treatment of RA during pregnancy and lactation. In this review, we mainly introduce the potential treatment strategies for controlling the disease activity of RA based on gut microbiome during pregnancy and lactation. Besides, we also briefly generalize the effects of conventional anti-rheumatic drugs on gut microbiome, the effects of metabolic changes during pregnancy on gut microbiome, alteration of gut microbiome during pregnancy and lactation, and the effects of anti-rheumatic drugs commonly used during pregnancy and lactation on gut microbiome. These will provide a clear knowledge framework for researchers in immune-related diseases during pregnancy. Regulating gut microbiome may be a potential and effective treatment to control the disease activity of RA during pregnancy and lactation.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofei Luan
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To provide an update about the impact of infections in autoimmune rheumatic diseases (ARDs), from the analysis of the role of infections in pregnant women without ARDs, to the identification of maternal-fetal infections and their role in the maternal-fetal outcome of women with ARDs. RECENT FINDINGS Recent studies indicate that patients with ARDs and pregnancy are also susceptible to presenting infections of varying degrees, including serious infections, which contribute to the morbidity and mortality observed in pregnancy and postpartum of these patients.Any type of infectious agent will interact with a hormonal, immunological and metabolic environments modified by ARD, treatments, and by the changes inherent in pregnancy. Therefore, infections in the pregnancy of patients with ARDs should be considered as a risk factor for an unfavorable maternal-fetal outcome. SUMMARY The recognition of infections in the pregnancy of ARDs as a risk factor is the first step to prevent, identify, and treat them in a timely manner, and thus contribute to the favorable course of pregnancy in these patients. Patients with ARDs and major organ involvement, use of high doses of steroids, immunosuppressant and biological therapies, adolescence, and obesity are populations susceptible to developing infections.
Collapse
|
10
|
Al-Nasiry S, Ambrosino E, Schlaepfer M, Morré SA, Wieten L, Voncken JW, Spinelli M, Mueller M, Kramer BW. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front Immunol 2020; 11:378. [PMID: 32231664 PMCID: PMC7087453 DOI: 10.3389/fimmu.2020.00378] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the microbiota, i.e., combined populations of microorganisms living inside and on the surface of the human body, has increasingly attracted attention of researchers in the medical field. Indeed, since the completion of the Human Microbiome Project, insight and interest in the role of microbiota in health and disease, also through study of its combined genomes, the microbiome, has been steadily expanding. One less explored field of microbiome research has been the female reproductive tract. Research mainly from the past decade suggests that microbial communities residing in the reproductive tract represent a large proportion of the female microbial network and appear to be involved in reproductive failure and pregnancy complications. Microbiome research is facing technological and methodological challenges, as detection techniques and analysis methods are far from being standardized. A further hurdle is understanding the complex host-microbiota interaction and the confounding effect of a multitude of constitutional and environmental factors. A key regulator of this interaction is the maternal immune system that, during the peri-conceptional stage and even more so during pregnancy, undergoes considerable modulation. This review aims to summarize the current literature on reproductive tract microbiota describing the composition of microbiota in different anatomical locations (vagina, cervix, endometrium, and placenta). We also discuss putative mechanisms of interaction between such microbial communities and various aspects of the immune system, with a focus on the characteristic immunological changes during normal pregnancy. Furthermore, we discuss how abnormal microbiota composition, “dysbiosis,” is linked to a spectrum of clinical disorders related to the female reproductive system and how the maternal immune system is involved. Finally, based on the data presented in this review, the future perspectives in diagnostic approaches, research directions and therapeutic opportunities are explored.
Collapse
Affiliation(s)
- Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Elena Ambrosino
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| | - Melissa Schlaepfer
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Servaas A Morré
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands.,Laboratory of Immunogenetics, Department Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Lotte Wieten
- Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marialuigia Spinelli
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
11
|
Stable Colonization of Orally Administered Lactobacillus casei SY13 Alters the Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5281639. [PMID: 32104695 PMCID: PMC7040389 DOI: 10.1155/2020/5281639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/08/2020] [Indexed: 01/23/2023]
Abstract
The gut microbiota plays an important role in intestinal health. Probiotics such as Lactobacillus are known to regulate gut microbes and prevent diseases. However, most of them are unable to colonize their stability in hosts' intestinal tracts. In this study, we investigated the ability of Lactobacillus casei SY13 (SY13) to colonize the intestinal tract of BALB/c mice, after its oral administration for a short-term (once for a day) and long-term (once daily for 27 days) duration. Furthermore, we also evaluated the influence of its administration on the gut microbial structure and diversity in mice. Male BALB/c mice were gavaged with 108 colony-forming units (CFU) of SY13, and TaqMan-MGB probe and Illumina MiSeq sequencing were performed to assess the colonization ability and bacterial community structure in the cecum contents. The results showed that long-term treatment with SY13 enhanced its ability to form a colony in the intestine tract in contrast to the short-term treatment group, whose colony was retained for only 3 days. Oral administration of SY13 also significantly enhanced the gut microbial diversity. Short-term treatment with SY13 (SSY13) elevated Firmicutes and diminished Bacteroidetes phyla compared with long-term treatment (LSY13) and controls. The findings laid the foundation for the study of probiotic colonization ability and improvement of microbiota for the prevention of gut diseases.
Collapse
|
12
|
De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol 2019; 195:74-85. [PMID: 29920643 DOI: 10.1111/cei.13158] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
The microbiome is represented by microorganisms which live in a symbiotic way with the mammalian. Microorganisms have the ability to influence different physiological aspects such as the immune system, metabolism and behaviour. In recent years, several studies have highlighted the role of the microbiome in the pathogenesis of autoimmune diseases. Notably, in systemic lupus erythematosus an alteration of the intestinal flora (lower Firmicutes/Bacteroidetes ratio) has been described. Conversely, changes to the gut commensal and periodontal disease have been proposed as important factors in the pathogenesis of rheumatoid arthritis. At the same time, other autoimmune diseases (i.e. systemic sclerosis, Sjögren's syndrome and anti-phospholipid syndrome) also share modifications of the microbiome in the intestinal tract and oral flora. Herein, we describe the role of the microbiome in the maintenance homeostasis of the immune system and then the alterations of the microorganisms that occur in systemic autoimmune diseases. Finally, we will consider the use of probiotics and faecal transplantation as novel therapeutic targets.
Collapse
Affiliation(s)
- F De Luca
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Department of Allergology and Immunology, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| |
Collapse
|