1
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
2
|
Alqawasmeh OAM, Jiang XT, Cong L, Wu W, Leung MBW, Chung JPW, Yim HCH, Fok EKL, Chan DYL. Vertical transmission of microbiomes into embryo culture media and its association with assisted reproductive outcomes. Reprod Biomed Online 2024; 49:103977. [PMID: 38824761 DOI: 10.1016/j.rbmo.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 06/04/2024]
Abstract
RESEARCH QUESTION Can microbes vertically transmit from semen and follicular fluid to embryo culture media during assisted reproductive technology (ART) treatment? DESIGN Spent embryo culture media (SECM), seminal fluid and follicular fluid samples were collected from 61 couples with infertility undergoing ART treatment at the Prince of Wales Hospital, Hong Kong SAR, China. Metagenomic analysis was conducted using 16s rRNA sequencing to identify the source of microbes in SECM, correlation between the semen microbiome and male infertility, and correlation between the follicular fluid microbiome and female infertility. RESULTS Microbial vertical transmission into SECM was reported in 82.5% of cases, and semen was the main source of contamination in conventional IVF cases. The increased abundances of Staphylococcus spp. and Streptococcus anginosus in semen had negative impacts on total motility and sperm count, respectively (P < 0.001). Significant increases in abundance of the genera Prophyromonas, Neisseria and Facklamia were observed in follicular fluid in women with anovulation, uterine factor infertility and unexplained infertility, respectively (P < 0.01). No significant correlation was found between the bacteria identified in all sample types and ART outcomes, including fertilization rate, embryo development, number of available embryos, and clinical pregnancy rate. CONCLUSION Embryo culture media can be contaminated during ART treatment, not only by seminal microbes but also by follicular fluid and other sources of microbes. Strong correlations were found between specific microbial taxa in semen and sperm quality, and between the follicular fluid microbiome and the aetiology of female infertility. However, no significant association was found between the microbiomes of SECM, semen and follicular fluid and ART outcomes.
Collapse
Affiliation(s)
- Odai A M Alqawasmeh
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Medicine, University of Dundee, Dundee, UK
| | - Xiao-Tao Jiang
- Microbiome Research Centre, St George and Sutherland Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Luping Cong
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Biomedical Science, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Maran B W Leung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline P W Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Howard Chi Ho Yim
- Microbiome Research Centre, St George and Sutherland Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Ellis K L Fok
- Department of Biomedical Science, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
| | - David Y L Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Jiang X, Zhang B, Gou Q, Cai R, Sun C, Li J, Yang N, Wen C. Variations in seminal microbiota and their functional implications in chickens adapted to high-altitude environments. Poult Sci 2024; 103:103932. [PMID: 38972291 PMCID: PMC11263954 DOI: 10.1016/j.psj.2024.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Seminal fluid, once believed to be sterile, is now recognized as constituting a complex and dynamic environment inhabited by a diverse community of micro-organisms. However, research on the seminal microbiota in chickens is limited, and microbiota variations among different chicken breeds remain largely unexplored. In this study, we collected semen samples from Beijing You Chicken (BYC) and Tibetan Chicken (TC) and explored the characteristics of the microbiota using 16S rRNA gene sequencing. Additionally, we collected cloacal samples from the TC to control for environmental contamination. The results revealed that the microbial communities in the semen were significantly different from those in the cloaca. Firmicutes and Actinobacteriota were the predominant phyla in BYC and TC semen, respectively, with Lactobacillus and Phyllobacterium being the dominant genera in each group. Additionally, the seminal microbiota of BYC exhibited greater richness and evenness than that of TC. Principal coordinate analysis (PCoA) indicated significant intergroup differences between the seminal microbiotas of BYC and TC. Subsequently, by combining linear discriminant analysis effect size and random forest analyses, we identified Lactobacillus as the predominant microorganism in BYC semen, whereas Phyllobacterium dominated in TC semen. Furthermore, co-occurrence network analysis revealed a more intricate network in the BYC group than in the TC group. Additionally, unique microbial functional characteristics were observed in each breed, with TC exhibiting metabolic features potentially associated with their ability to adapt to high-altitude environments. The results of this study emphasized the unique microbiota present in chicken semen, which may be influenced by genetics and evolutionary history. Significant variations were observed between low-altitude and high-altitude breeds, highlighting the breed-specific implications of the seminal microbiota for reproduction and high-altitude adaptation.
Collapse
Affiliation(s)
- Xinwei Jiang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Boxuan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Qinli Gou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ronglang Cai
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
4
|
Al-Madhagi H, Tarabishi AA. Nutritional aphrodisiacs: Biochemistry and Pharmacology. Curr Res Food Sci 2024; 9:100783. [PMID: 38974844 PMCID: PMC11225857 DOI: 10.1016/j.crfs.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
In 2022, the global prevalence of erectile dysfunction (ED) was estimated to be at least 150 million cases. This number is greatly suspected to be underestimate as most men withhold information about ED. Also, about 15% of world population have infertility troubles, and male factors are responsible for almost half of these cases. Studies have shown that the quality of semen has decreased in the past several decades owing to various health factors and environmental toxicants. The current medical interventions involve the inhibition of phosphodiesterase 5 which suffer from serious side effects and costly. One of the popular and most sought interventions are the natural and nutritional remedies as they are foods in essence and potentially with no harm to the body. Therefore, the goal of this paper is to provide a review of the most common nutritional aphrodisiacs with increasing libido and fertility highlighting the potential active constituents as well as the underlying mechanisms.
Collapse
|
5
|
Banchi P, Spanoghe L, Maes D, Morrell J, Van Soom A. The reproductive microbiome in dogs: Friend or foe? Vet J 2024; 304:106100. [PMID: 38484870 DOI: 10.1016/j.tvjl.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The microbiome of the reproductive tract is an area of research in full development. Specifically, the microbiome may be involved in reproductive health, disease, and pregnancy outcomes, as has been shown in humans and animals, including dogs. The aim of the present review was to summarize current knowledge on the microbiome of the canine reproductive tract, to expose the controversial role that some bacterial agents may play in canine subfertility, and to highlight future research perspectives. This review discussed whether the use of antimicrobials in dogs is appropriate to increase reproductive performance and to treat subfertility without proper diagnosis, and the possible use of probiotics to modulate the reproductive canine microbiome. Finally, we indicate areas in which scientific knowledge is currently lacking, and could be promising directions for future research.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium; Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| | - Lotte Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Jane Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
6
|
Han B, Wang Y, Ge W, Wang J, Yu S, Yan J, Hua L, Zhang X, Yan Z, Wang L, Zhao J, Huang C, Yang B, Wang Y, Ma Q, Zhao Y, Jiang H, Zhang Y, Liang S, Zhao J, Sun Z, Shen W, Gui Y. Changes in seminal plasma microecological dynamics and the mechanistic impact of core metabolite hexadecanamide in asthenozoospermia patients. IMETA 2024; 3:e166. [PMID: 38882497 PMCID: PMC11170967 DOI: 10.1002/imt2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 06/18/2024]
Abstract
Asthenozoospermia (AZS) is a prevalent contributor to male infertility, characterized by a substantial decline in sperm motility. In recent years, large-scale studies have explored the interplay between the male reproductive system's microecology and its implications for reproductive health. Nevertheless, the direct association between seminal microecology and male infertility pathogenesis remains inconclusive. This study used 16S rDNA sequencing and multi-omics analysis to conduct a comprehensive investigation of the seminal microbial community and metabolites in AZS patients. Patients were categorized into four distinct groups: Normal, mild AZS (AZS-I), moderate AZS (AZS-II), and severe AZS (AZS-III). Microbiome differential abundance analysis revealed significant differences in microbial composition and metabolite profiles within the seminal plasma of these groups. Subsequently, patients were classified into a control group (Normal and AZS-I) and an AZS group (AZS-II and AZS-III). Correlation and cross-reference analyses identified distinct microbial genera and metabolites. Notably, the AZS group exhibited a reduced abundance of bacterial genera such as Pseudomonas, Serratia, and Methylobacterium-Methylorubrum in seminal plasma, positively correlating with core differential metabolite (hexadecanamide). Conversely, the AZS group displayed an increased abundance of bacterial genera such as Uruburuella, Vibrio, and Pseudoalteromonas, with a negative correlation with core differential metabolite (hexadecanamide). In vitro and in vivo experiments validated that hexadecanamide significantly enhanced sperm motility. Using predictive metabolite-targeting gene analysis and single-cell transcriptome sequencing, we profiled the gene expression of candidate target genes PAOX and CA2. Protein immunoblotting techniques validated the upregulation protein levels of PAOX and CA2 in sperm samples after hexadecanamide treatment, enhancing sperm motility. In conclusion, this study uncovered a significant correlation between six microbial genera in seminal plasma and the content of the metabolite hexadecanamide, which is related to AZS. Hexadecanamide notably enhances sperm motility, suggesting its potential integration into clinical strategies for managing AZS, providing a foundational framework for diagnostic and therapeutic advancements.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology Shenzhen University General Hospital Shenzhen China
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Yongyong Wang
- Department of Reproductive Medicine, Qingdao Hospital University of Healthy and Rehabilitation Sciences (Qingdao Municipal Hospital) Qingdao China
| | - Wei Ge
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Junjie Wang
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Shuai Yu
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Jiamao Yan
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Lei Hua
- Department of Urology Shenzhen University General Hospital Shenzhen China
| | - Xiaoyuan Zhang
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Zihui Yan
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Lu Wang
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Jinxin Zhao
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Bo Yang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Yan Wang
- Department of Urology Peking University Shenzhen Hospital Shenzhen China
| | - Qian Ma
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Hui Jiang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen China
| | - Yunqi Zhang
- STI-Zhilian Research Institute for Innovation and Digital Health Beijing China
| | - Shaolin Liang
- STI-Zhilian Research Institute for Innovation and Digital Health Beijing China
- Institute for Six-sector Economy Fudan University Shanghai China
| | - Jianjuan Zhao
- STI-Zhilian Research Institute for Innovation and Digital Health Beijing China
| | - Zhongyi Sun
- Department of Urology Shenzhen University General Hospital Shenzhen China
| | - Wei Shen
- College of Life Sciences Qingdao Agricultural University Qingdao China
| | - Yaoting Gui
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen China
| |
Collapse
|
7
|
Jendraszak M, Skibińska I, Kotwicka M, Andrusiewicz M. The elusive male microbiome: revealing the link between the genital microbiota and fertility. Critical review and future perspectives. Crit Rev Clin Lab Sci 2024:1-29. [PMID: 38523477 DOI: 10.1080/10408363.2024.2331489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
There is a growing focus on understanding the role of the male microbiome in fertility issues. Although research on the bacterial communities within the male reproductive system is in its initial phases, recent discoveries highlight notable variations in the microbiome's composition and abundance across distinct anatomical regions like the skin, foreskin, urethra, and coronary sulcus. To assess the relationship between male genitourinary microbiome and reproduction, we queried various databases, including MEDLINE (available via PubMed), SCOPUS, and Web of Science to obtain evidence-based data. The literature search was conducted using the following terms "gut/intestines microbiome," "genitourinary system microbiome," "microbiome and female/male infertility," "external genital tract microbiome," "internal genital tract microbiome," and "semen microbiome." Fifty-one relevant papers were analyzed, and eleven were strictly semen quality or male fertility related. The male microbiome, especially in the accessory glands like the prostate, seminal vesicles, and bulbourethral glands, has garnered significant interest because of its potential link to male fertility and reproduction. Studies have also found differences in bacterial diversity present in the testicular tissue of normozoospermic men compared to azoospermic suggesting a possible role of bacterial dysbiosis and reproduction. Correlation between the bacterial taxa in the genital microbiota of sexual partners has also been found, and sexual activity can influence the composition of the urogenital microbiota. Exploring the microbial world within the male reproductive system and its influence on fertility opens doors to developing ways to prevent, diagnose, and treat infertility. The present work emphasizes the importance of using consistent methods, conducting long-term studies, and deepening our understanding of how the reproductive tract microbiome works. This helps make research comparable, pinpoint potential interventions, and smoothly apply microbiome insights to real-world clinical practices.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Izabela Skibińska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
8
|
Baud D, Zuber A, Peric A, Pluchino N, Vulliemoz N, Stojanov M. Impact of semen microbiota on the composition of seminal plasma. Microbiol Spectr 2024; 12:e0291123. [PMID: 38349179 PMCID: PMC10913749 DOI: 10.1128/spectrum.02911-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/20/2024] [Indexed: 03/06/2024] Open
Abstract
Several studies have found associations between specific bacterial genera and semen parameters. Bacteria are known to influence the composition of their niche and, consequently, could affect the composition of the seminal plasma. This study integrated microbiota profiling and metabolomics to explore the influence of seminal bacteria on semen metabolite composition in infertile couples, revealing associations between specific bacterial genera and metabolite profiles. Amino acids and acylcarnitines were the predominant metabolite groups identified in seminal plasma. Different microbiota profiles did not result in globally diverse metabolite compositions in seminal plasma. Nevertheless, levels of specific metabolites increased in the presence of a dysbiotic microbiota. Urocanate was significantly increased in abnormal semen samples (adjusted P-value < 0.001) and enriched in samples dominated by Prevotella spp. (P-value < 0.05), which was previously linked to a negative impact on semen. Therefore, varying microbiota profiles can influence the abundance of certain metabolites, potentially having an immunomodulatory effect, as seen with urocanate.IMPORTANCEMale infertility is often considered idiopathic since the specific cause of infertility often remains unidentified. Recently, variations in the seminal microbiota composition have been associated with normal and abnormal semen parameters and may, therefore, influence male infertility. Bacteria are known to alter the metabolite composition of their ecological niches, and thus, seminal bacteria might affect the composition of the seminal fluid, crucial in the fertilization process. Our research indicates that distinct seminal microbiota profiles are not associated with widespread changes in the metabolite composition of the seminal fluid. Instead, the presence of particular metabolites with immunomodulatory functions, such as urocanate, could shed light on the interplay between seminal microbiota and variations in semen parameters.
Collapse
Affiliation(s)
- D. Baud
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - A. Zuber
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
| | - A. Peric
- 360° Fertility Center Zurich, Zollikon, Switzerland
| | - N. Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | | | - M. Stojanov
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Banchi P, Bertolotti L, Spanoghe L, Ali Hassan H, Lannoo J, Domain G, Henzel KS, Gaillard V, Rota A, Van Soom A. Characterization of the semen microbiota of healthy stud dogs using 16S RNA sequencing. Theriogenology 2024; 216:1-7. [PMID: 38141548 DOI: 10.1016/j.theriogenology.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The reproductive microbiota of male dogs has never been investigated using culture-independent sequencing techniques. The purpose of the present study was to get seminal knowledge on the microbiota of the ejaculate. Specifically, factors as the fraction of the ejaculate, the sperm quality (normospermia, teratozoospermia), and the living environment were evaluated. The sperm-rich and the prostatic fractions of the ejaculate were collected from healthy stud dogs. Following the sperm analysis, samples from twenty animals (normospermic n = 10 and teratozoospermic n = 10) were stored at - 80 °C until further processing including DNA extraction and 16S rRNA sequencing. Alpha- (Shannon index) and beta- (Bray-Curtis, Unweighted UniFrac) diversities were assessed and compared (PERMANOVA) based on the group of samples (biological samples from the ejaculate and controls), the fraction of the ejaculate (sperm-rich and prostatic fractions), the animal group (normospermia and teratozoospermia), and the living environment of the animal (kennel or pet living in-house). The most abundant bacterial phyla in canine semen samples were Proteobacteria, Firmicutes, and Actinobacteria. Overall, the dominant bacterial family was that of Pasteurellaceae The genus Mycoplasma was never detected. No differences in terms of bacterial composition were found based on the fraction of the ejaculate and based on the animal group (P > 0.05). On the other hand, differences in alpha and beta diversities were highlighted based on the living environment (P = 0.001). Overall, the results of the present study provide preliminary insights on dog semen microbiota, opening a new chapter in the field of canine andrology. Our results suggest that the environment may play a role in influencing the reproductive microbiota of male dogs and that the prostatic fraction of the ejaculate can be used for further research as a representative of the semen microbiota.
Collapse
Affiliation(s)
- P Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium; Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy.
| | - L Bertolotti
- Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy
| | - L Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - H Ali Hassan
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - J Lannoo
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - G Domain
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - K S Henzel
- Royal Canin Research Center, 30470, Aimargues, France
| | - V Gaillard
- Royal Canin Research Center, 30470, Aimargues, France
| | - A Rota
- Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy
| | - A Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
10
|
Corral-Vazquez C, Blanco J, Sarrate Z, Anton E. Unraveling the Intricacies of the Seminal Microbiome and Its Impact on Human Fertility. BIOLOGY 2024; 13:150. [PMID: 38534419 PMCID: PMC10967773 DOI: 10.3390/biology13030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Although the microbial communities from seminal fluid were an unexplored field some decades ago, their characteristics and potential roles are gradually coming to light. Therefore, a complex and specific microbiome population with commensal niches and fluctuating species has started to be revealed. In fact, certain clusters of bacteria have been associated with fertility and health, while the outgrowth of several species is potentially correlated with infertility indicators. This constitutes a compelling reason for outlining the external elements that may induce changes in the seminal microbiome composition, like lifestyle factors, gut microbiota, pathologies, prebiotics, and probiotics. In this review, we summarize the main findings about seminal microbiome, its origins and composition, its relationship with fertility, health, and influence factors, while reminding readers of the limitations and advantages introduced from technical variabilities during the experimental procedures.
Collapse
Affiliation(s)
| | | | | | - Ester Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (C.C.-V.); (J.B.); (Z.S.)
| |
Collapse
|
11
|
Neto FTL, Viana MC, Cariati F, Conforti A, Alviggi C, Esteves SC. Effect of environmental factors on seminal microbiome and impact on sperm quality. Front Endocrinol (Lausanne) 2024; 15:1348186. [PMID: 38455659 PMCID: PMC10918436 DOI: 10.3389/fendo.2024.1348186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Objective This review provides a comprehensive overview of the existing research on the seminal microbiome and its association with male infertility, while also highlighting areas that warrant further investigation. Methods A narrative review was conducted, encompassing all relevant studies published between 1980-2023 on the male reproductive tract microbiome in humans. This review considered studies utilizing culture-based, polymerase chain reaction (PCR)-based, and next-generation sequencing (NGS)-based methodologies to analyze the microbiome. Data extraction encompassed sample types (semen or testicular tissue), study designs, participant characteristics, employed techniques, and critical findings. Results We included 37 studies comprising 9,310 participants. Among these, 16 studies used culture-based methods, 16 utilized NGS, and five employed a combination of methods for microorganism identification. Notably, none of the studies assessed fungi or viruses. All NGS-based studies identified the presence of bacteria in all semen samples. Two notable characteristics of the seminal microbiome were observed: substantial variability in species composition among individuals and the formation of microbial communities with a dominant species. Studies examining the testicular microbiome revealed that the testicular compartment is not sterile. Interestingly, sexually active couples shared 56% of predominant genera, and among couples with positive cultures in both partners, 61% of them shared at least one genital pathogen. In couples with infertility of known causes, there was an overlap in bacterial composition between the seminal and vaginal microbiomes, featuring an increased prevalence of Staphylococcus and Streptococcus genera. Furthermore, the seminal microbiome had discernible effects on reproductive outcomes. However, bacteria in IVF culture media did not seem to impact pregnancy rates. Conclusion Existing literature underscores that various genera of bacteria colonize the male reproductive tract. These organisms do not exist independently; instead, they play a pivotal role in regulating functions and maintaining hemostasis. Future research should prioritize longitudinal and prospective studies and investigations into the influence of infertility causes and commonly prescribed medication to enhance our understanding of the seminal microbiota's role in reproductive health.
Collapse
Affiliation(s)
| | - Marina C. Viana
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
| | - Federica Cariati
- Department of Public Health, University of Naples Federico II, Napoli, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples, Federico II, Naples, Italy
| | - Carlo Alviggi
- Department of Public Health, University of Naples Federico II, Napoli, Italy
| | - Sandro C. Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
- Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Samarra A, Flores E, Bernabeu M, Cabrera-Rubio R, Bäuerl C, Selma-Royo M, Collado MC. Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:1-28. [PMID: 39060728 DOI: 10.1007/978-3-031-58572-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning human reproductive microbiota, and also, the microbial colonization during early life, focusing on the potential impact on infant development and health outcomes. Furthermore, we conclude that some dietary strategies including specific probiotics and other-biotics could become potentially valuable tools to modulate the maternal-neonatal microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Eduard Flores
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain.
| |
Collapse
|
13
|
Zhou Y, Zhong X, Chen L, Gong L, Luo L, He Q, Zhu L, Tian K. Gut microbiota combined with metabolome dissects long-term nanoplastics exposure-induced disturbed spermatogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115626. [PMID: 37890247 DOI: 10.1016/j.ecoenv.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
As the concerned emerging pollutants, several lines of evidence have indicated that nanoplastics (NPs) lead to reproductive toxicity. However, the biological mechanism underlying NPs disturbed spermatogenesis remains largely unknown. Therefore, we aimed to reveal the potential mechanism of impaired spermatogenesis caused by long-term NPs exposure from the perspective of integrated metabolome and microbiome analysis. After 12 weeks of gavage of polystyrene nanoplastics (PS-NPs) and animo-modified polystyrene nanoplastics (Amino-NPs), a well-designed two-exposure stages experimental condition. We found that NPs exposure induced apparent abnormal spermatogenesis, which appeared more severe in the Amino-NPs group. Mechanistically, 14 floras associated with glucose and lipid metabolism were significantly altered, as evidenced by 16 S rRNA sequencing. Testicular metabolome revealed that the Top 50 changed metabolites were also enriched in lipid metabolism. Subsequently, the combined gut microbiome and metabolome analysis uncovered the strong correlations between Klebsiella, Blautia, Parabacteroides, and lipid metabolites (e.g., PC, LysoPC and GPCho). We speculate that the dysbiosis of gut microbiota-related disturbed lipid metabolism may be responsible for long-term NPs-induced damaged spermatogenesis, which provides new insights into NPs-induced dysregulated spermatogenesis.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zunyi Medical University, Zunyi 563000, PR China
| | - Xiang Zhong
- Department of Gastroenterology, Affiliated Hang Tian Hospital, Zunyi Medical University, Zunyi 563000, PR China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Liming Gong
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Lei Luo
- Department of Occupational and Environmental Health, School of Public Health, Zunyi Medical University, Zunyi 563000, PR China
| | - Qian He
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China
| | - Lin Zhu
- Affiliated Hospital of Shijiazhuang Medical College, Shijiazhuang 050000, PR China
| | - Kunming Tian
- Department of Occupational and Environmental Health, School of Public Health, Zunyi Medical University, Zunyi 563000, PR China; Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Maternal& Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi 563000, PR China.
| |
Collapse
|
14
|
Stenberg H, Malmberg M, Hayer J. Screening for atypical porcine pestivirus in Swedish boar semen used for artificial insemination and a characterisation of the seminal RNA microbiome including the virome. BMC Vet Res 2023; 19:219. [PMID: 37864222 PMCID: PMC10588136 DOI: 10.1186/s12917-023-03762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND This study aimed to characterise the RNA microbiome, including the virome of extended semen from Swedish breeding boars, with particular focus on Atypical porcine pestivirus (APPV). This neurotropic virus, associated with congenital tremor type A-II in piglets, was recently demonstrated to induce the disease through insemination with semen from infected boars. RESULTS From 124 Artificial Insemination (AI) doses from Swedish breeding boars, APPV was detected in one dose in addition to a sparse seminal RNA virome, characterised by retroviruses, phages, and some fecal-associated contaminants. The detected seminal microbiome was large and characterized by Gram-negative bacteria from the phylum Proteobacteria, mainly consisting of apathogenic or opportunistic bacteria. The proportion of bacteria with a pathogenic potential was low, and no antimicrobial resistance genes (ARGs) were detected in the datasets. CONCLUSION Overall, the results indicate a good health status among Swedish breeding boars. The detection of APPV in semen raises the question of whether routine screening for APPV in breeding boars should be instigated.
Collapse
Affiliation(s)
- Hedvig Stenberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden.
| | - Maja Malmberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Juliette Hayer
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
15
|
Campbell K, Suarez Arbelaez MC, Ghomeshi A, Ibrahim E, Roy S, Singh P, Khodamoradi K, Miller A, Lundy SD, Ramasamy R. Next-generation sequencing analysis of semen microbiome taxonomy in men with nonobstructive azoospermia vs. fertile controls: a pilot study. F&S SCIENCE 2023; 4:257-264. [PMID: 37321541 PMCID: PMC10527663 DOI: 10.1016/j.xfss.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVES To study how the semen microbiome profile in men with nonobstructive azoospermia (NOA) differs from that of fertile controls (FCs). DESIGN Using quantitative polymerase chain reaction and 16S ribosomal RNA, we sequenced semen samples from men with NOA (follicle-stimulating hormone >10 IU/mL, testis volume <10 mL) and FCs and performed a comprehensive taxonomic microbiome analysis. SETTING All patients were identified during evaluation at the outpatient male andrology clinic at the University of Miami. PATIENTS In total, 33 adult men, including 14 diagnosed with NOA and 19 with proven paternity undergoing vasectomy, were enrolled. MAIN OUTCOME MEASURES Bacterial species in the semen microbiome were identified. RESULTS Alpha-diversity was similar between the groups, suggesting similar diversity within samples, whereas beta-diversity was different, suggesting differences in taxa between samples. In the NOA men, the phyla Proteobacteria and Firmicutes were underrepresented, and Actinobacteriota were overrepresented compared with FC men. At the genus level, Enterococcus was the most common amplicon sequence variant in both groups, whereas 5 genera differed significantly between the groups, including Escherichia and Shigella, Sneathia, and Raoutella. CONCLUSION Our study showed significant differences in the seminal microbiome between men with NOA and fertile men. These results suggest a loss of functional symbiosis may be associated with NOA. Further research into the characterization and clinical utility of the semen microbiome and its causal role in male infertility is necessary.
Collapse
Affiliation(s)
- Katherine Campbell
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Armin Ghomeshi
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Emad Ibrahim
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Praveen Singh
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Kajal Khodamoradi
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Aaron Miller
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Scott D Lundy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
16
|
Alqawasmeh O, Fok E, Yim H, Li T, Chung J, Chan D. The microbiome and male infertility: looking into the past to move forward. HUM FERTIL 2023; 26:450-462. [PMID: 36039770 DOI: 10.1080/14647273.2022.2098540] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/12/2022] [Indexed: 11/04/2022]
Abstract
The human body harbours trillions of microbes, and their influence on human health has been explored in many parts of the human body, including the male reproductive system. From routine culturing to polymerise chain reaction (PCR) and high throughput DNA sequencing, several studies have identified bacteria in the male reproductive system. In this review, we discuss the past and current literature surrounding the testicular and semen microbiome in correlation with male infertility. We further highlight the potential benefits of probiotics as an alternative therapeutic option for male infertility. Although not conclusive, emerging data are indicating potential implications of certain bacterial members on male fertility. There is a general agreement on the negative impact of some pathogenic bacterial species on semen parameters, including sperm counts, motility, morphology, and DNA integrity. On the other hand, Lactobacillus, known as a human-friendly bacteria, has shown protective effects on semen parameters, which makes it a potentially good probiotic. In order to confirm the findings of previous studies, more clinical studies with larger sample sizes and the right controls are needed.
Collapse
Affiliation(s)
- Odai Alqawasmeh
- Assisted Reproductive Technology, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ellis Fok
- Department of Biomedical Science, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Howard Yim
- Microbiome Research Centre, Department of Medicine, St George & Sutherland Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Tin Li
- Assisted Reproductive Technology, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline Chung
- Assisted Reproductive Technology, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Chan
- Assisted Reproductive Technology, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Magill RG, MacDonald SM. Male infertility and the human microbiome. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1166201. [PMID: 37361341 PMCID: PMC10289028 DOI: 10.3389/frph.2023.1166201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The historical belief in urology was that the genitourinary system should be sterile in a normal, healthy, asymptomatic adult. This idea was perpetuated for decades until research revealed a diverse microbiota existing in human anatomical niches that contributed to both human health and disease processes. In recent years, the search for an etiology and modifiable risk factors in infertility has turned to the human microbiome as well. Changes in the human gut microbiome have been associated with changes in systemic sex hormones and spermatogenesis. Certain microbial species are associated with higher levels of oxidative stress, which may contribute to an environment higher in oxidative reactive potential. Studies have demonstrated a link between increased oxidative reactive potential and abnormal semen parameters in infertile men. It has also been hypothesized that antioxidant probiotics may be able to correct an imbalance in the oxidative environment and improve male fertility, with promising results in small studies. Further, the sexual partner's microbiome may play a role as well; studies have demonstrated an overlap in the genitourinary microbiomes in sexually active couples that become more similar after intercourse. While the potential applications of the microbiome to male fertility is exciting, there is a need for larger studies with uniform microbial sequencing procedures to further expand this topic.
Collapse
Affiliation(s)
- Resa G. Magill
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Susan M. MacDonald
- Department of Urology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
Veneruso I, Cariati F, Alviggi C, Pastore L, Tomaiuolo R, D'Argenio V. Metagenomics Reveals Specific Microbial Features in Males with Semen Alterations. Genes (Basel) 2023; 14:1228. [PMID: 37372408 DOI: 10.3390/genes14061228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility incidence is rising worldwide, with male infertility accounting for about 50% of cases. To date, several factors have been associated with male infertility; in particular, it has been suggested that semen microbiota may play a role. Here, we report the NGS-based analyses of 20 semen samples collected from men with (Case) and without (Control) semen alterations. Genomic DNA was extracted from each collected sample, and a specific PCR was carried out to amplify the V4-V6 regions of the 16S rRNA. Sequence reactions were carried out on the MiSeq and analyzed by specific bioinformatic tools. We found a reduced richness and evenness in the Case versus the Control group. Moreover, specific genera, the Mannheimia, the Escherichia_Shigella, and the Varibaculum, were significantly increased in the Case compared to the Control group. Finally, we highlighted a correlation between the microbial profile and semen hyperviscosity. Even if further studies are required on larger groups of subjects to confirm these findings and explore mechanistic hypotheses, our results confirm the correlation between semen features and seminal microbiota. These data, in turn, may open the way to the possible use of semen microbiota as an attractive target for developing novel strategies for infertility management.
Collapse
Affiliation(s)
- Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Federica Cariati
- Department of Public Health, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
19
|
Cao T, Wang S, Pan Y, Guo F, Wu B, Zhang Y, Wang Y, Tian J, Xing Q, Liu X. Characterization of the semen, gut, and urine microbiota in patients with different semen abnormalities. Front Microbiol 2023; 14:1182320. [PMID: 37293215 PMCID: PMC10244769 DOI: 10.3389/fmicb.2023.1182320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Semen quality is decreasing worldwide, leading to increased male infertility. This study analyzed the microbiota of the gut, semen, and urine in individuals with semen abnormalities to identify potential probiotics and pathogenic bacteria that affect semen parameters and help develop new methods for the diagnosis and treatment of patients with semen abnormalities. Methods We recruited 12 individuals with normal semen parameters (control group), 12 with asthenospermia but no semen hyperviscosity (Group_1), 6 with oligospermia (Group_2), 9 with severe oligospermia or azoospermia (Group_3), and 14 with semen hyperviscosity only (Group_4). The semen, gut, and urine microbiota were examined by analyzing the 16S ribosomal RNA gene sequence using next-generation sequencing. Results The gut microbes were clustered into the highest number of operational taxonomic units, followed by urine and semen. Furthermore, the α-diversity of gut microbes was highest and significantly different from that of urine and semen microbiota. The microbiota of the gut, urine, and semen were all significantly different from each other in terms of β-diversity. The gut abundance of Collinsella was significantly reduced in groups 1, 3, and 4. Furthermore, the gut abundance of Bifidobacterium and Blautia was significantly decreased in Group_1, while that of Bacteroides was significantly increased in Group_3. The abundance of Staphylococcus was significantly increased in the semen of groups 1 and 4. Finally, Lactobacillus abundance was significantly reduced in the urine of groups 2 and 4. Discussion This study comprehensively describes the differences in intestinal and genitourinary tract microbiota between healthy individuals and those with abnormal semen parameters. Furthermore, our study identified Collinsella, Bifidobacterium, Blautia, and Lactobacillus as potential probiotics. Finally, the study identified Bacteroides in the gut and Staphylococcus in semen as potential pathogenic bacteria. Our study lays the foundation of a new approach to the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Tingshuai Cao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Guo
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Wang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqing Tian
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingfei Xing
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Garcia-Segura S, Del Rey J, Closa L, Garcia-Martínez I, Hobeich C, Castel AB, Vidal F, Benet J, Oliver-Bonet M. Characterization of Seminal Microbiome of Infertile Idiopathic Patients Using Third-Generation Sequencing Platform. Int J Mol Sci 2023; 24:ijms24097867. [PMID: 37175573 PMCID: PMC10178615 DOI: 10.3390/ijms24097867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Since the first description of a commensal seminal microbiome using sequencing, less than a decade ago, interest in the composition of this microbiome and its relationship with fertility has been growing. Articles using next-generation sequencing techniques agree on the identification of the most abundant bacterial phyla. However, at the genus level, there is still no consensus on which bacteria are most abundant in human seminal plasma. This discrepancy may be due to methodological variability such as sample collection, bacterial DNA extraction methodology, which hypervariable regions of 16S rRNA gene have been amplified, or bioinformatic analysis. In the present work, seminal microbiota of 14 control samples and 42 samples of idiopathic infertile patients were characterized based on full-length sequencing of the 16S rRNA gene using MinION platform from Oxford Nanopore. These same samples had been analyzed previously using Illumina's MiSeq sequencing platform. Comparison between the results obtained with the two platforms has been used to analyze the impact of sequencing method on the study of the seminal microbiome's composition. Seminal microbiota observed with MinION were mainly composed of the phyla Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria, with the most abundant genera being Peptoniphilus, Finegoldia, Staphylococcus, Anaerococcus, Campylobacter, Prevotella, Streptococcus, Lactobacillus, Ezakiella and Enterococcus. This composition was similar to that found by the Illumina platform, since these 10 most abundant genera were also among the most abundant genera detected by the Nanopore platform. In both cases, the top 10 genera represented more than 70% of the classified reads. However, relative abundance of each bacterium did not correlate between these two platforms, with intraindividual variations of up to 50 percentage points in some cases. Results suggest that the effect of the sequencing platform on the characterization of seminal microbiota is not very large at the phylum level, with slightly variances in Firmicutes and Actinobacteria, but presents differences at the genus level. These differences could alter the composition and diversity of bacterial profiles or posterior analyses. This indicates the importance of conducting multi-platform studies to better characterize seminal microbioma.
Collapse
Affiliation(s)
- Sergio Garcia-Segura
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Javier Del Rey
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Laia Closa
- Histocompatibility and Immunogenetics Laboratory, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Iris Garcia-Martínez
- Medicina Transfusional, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain
| | - Carlos Hobeich
- Medicina Transfusional, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain
| | - Ana Belén Castel
- Instituto de Fertilidad, C. Calçat 6, 07011 Palma de Mallorca, Spain
| | - Francisco Vidal
- Medicina Transfusional, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), 08005 Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jordi Benet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Maria Oliver-Bonet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| |
Collapse
|
21
|
Zuber A, Peric A, Pluchino N, Baud D, Stojanov M. Human Male Genital Tract Microbiota. Int J Mol Sci 2023; 24:ijms24086939. [PMID: 37108103 PMCID: PMC10139050 DOI: 10.3390/ijms24086939] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The human body is vastly colonised by microorganisms, whose impact on health is increasingly recognised. The human genital tract hosts a diverse microbiota, and an increasing number of studies on the male genital tract microbiota suggest that bacteria have a role in male infertility and pathological conditions, such as prostate cancer. Nevertheless, this research field remains understudied. The study of bacterial colonisation of the male genital tract is highly impacted by the invasive nature of sampling and the low abundance of the microbiota. Therefore, most studies relied on the analysis of semen microbiota to describe the colonisation of the male genital tract (MGT), which was thought to be sterile. The aim of this narrative review is to present the results of studies that used next-generation sequencing (NGS) to profile the bacterial colonisation patterns of different male genital tract anatomical compartments and critically highlight their findings and their weaknesses. Moreover, we identified potential research axes that may be crucial for our understanding of the male genital tract microbiota and its impact on male infertility and pathophysiology.
Collapse
Affiliation(s)
- Arnaud Zuber
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Adriana Peric
- 360° Fertility Center Zurich, 8702 Zollikon, Switzerland
| | - Nicola Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Milos Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
22
|
Doroftei B, Ilie OD, Maftei R, Scripcariu IS, Armeanu T, Stoian IL, Ilea C. A Narrative Review Discussing Vasectomy-Related Impact upon the Status of Oxidative Stress and Inflammation Biomarkers and Semen Microbiota. J Clin Med 2023; 12:jcm12072671. [PMID: 37048754 PMCID: PMC10095584 DOI: 10.3390/jcm12072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Male contraceptive approaches besides tubal sterilization involve vasectomy and represent the method of choice among midlife men in developing countries thanks to many advantages. However, the subsidiary consequences of this intervention are insufficiently explored since the involved mechanisms may offer insight into a much more complex picture. Methods: Thus, in this manuscript, we aimed to reunite all available data by searching three separate academic database(s) (PubMed, Web of Knowledge, and Scopus) published in the past two decades by covering the interval 2000–2023 and using a predefined set of keywords and strings involving “oxidative stress” (OS), “inflammation”, and “semen microbiota” in combination with “humans”, “rats”, and “mice”. Results: By following all evidence that fits in the pre-, post-, and vasectomy reversal (VR) stages, we identified a total of n = 210 studies from which only n = 21 were finally included following two procedures of eligibility evaluation. Conclusions: The topic surrounding this intricate landscape has created debate since the current evidence is contradictory, limited, or does not exist. Starting from this consideration, we argue that further research is mandatory to decipher how a vasectomy might disturb homeostasis.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue no 20A, 700505 Iasi, Romania
| | - Radu Maftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ioana-Sadyie Scripcariu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| |
Collapse
|
23
|
Contreras MJ, Núñez-Montero K, Bruna P, Zárate A, Pezo F, García M, Leal K, Barrientos L. Mammals' sperm microbiome: current knowledge, challenges, and perspectives on metagenomics of seminal samples. Front Microbiol 2023; 14:1167763. [PMID: 37138598 PMCID: PMC10149849 DOI: 10.3389/fmicb.2023.1167763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Bacterial growth is highly detrimental to sperm quality and functionality. However, during the last few years, using sequencing techniques with a metagenomic approach, it has been possible to deepen the study of bacteria-sperm relationships and describe non-culturable species and synergistic and antagonistic relationships between the different species in mammalian animals. We compile the recent metagenomics studies performed on mammalian semen samples and provide updated evidence to understand the importance of the microbial communities in the results of sperm quality and sperm functionality of males, looking for future perspectives on how these technologies can collaborate in the development of andrological knowledge.
Collapse
Affiliation(s)
- María José Contreras
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Temuco, Chile
| | - Pablo Bruna
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Ana Zárate
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Felipe Pezo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago, Chile
| | - Matías García
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Karla Leal
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Leticia Barrientos
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- *Correspondence: Leticia Barrientos,
| |
Collapse
|
24
|
Morawiec E, Czerwiński M, Czerwińska AB, Wiczkowski A. Semen dysbiosis—just a male problem? Front Cell Infect Microbiol 2022; 12:815786. [PMID: 36176582 PMCID: PMC9514095 DOI: 10.3389/fcimb.2022.815786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal microflora is crucial to male fertility. Dysbiosis—disturbance of quantitative ratios of individual bacteria or appearance of pathogenic species—rarely results in symptomatic disease. Inflammation results in decreased sperm production, lower motility, or morphological changes and, in the long term, can cause ejaculatory duct obstruction, leading to infertility. Moreover, it may cause infection of the partner’s female genital tract. Dysbiosis in both partners results in fertility problems, disorders in embryo implantation, or miscarriages. In addition, chronic inflammation of the male genitourinary system may accelerate the appearance of antisperm antibodies. A comprehensive examination of seminal microflora can clarify the causes of infertility or prevent pathological conditions that affect seminal parameters. Seminal microflora as a direct impact on fertility problems as well as a decrease in the effectiveness of assisted reproduction methods, insemination, or in vitro procedures.
Collapse
Affiliation(s)
- Emilia Morawiec
- Department of Microbiology, Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
- Gyncentrum Sp. z o.o. Laboratory of Molecular Biology and Virology, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
- *Correspondence: Emilia Morawiec,
| | - Michał Czerwiński
- Gyncentrum Sp. z o.o. Laboratory of Molecular Biology and Virology, Katowice, Poland
- American Medical Clinic, Katowice, Poland
| | - Anna Bednarska- Czerwińska
- Gyncentrum Sp. z o.o. Laboratory of Molecular Biology and Virology, Katowice, Poland
- Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
| | - Andrzej Wiczkowski
- Department of Microbiology, Faculty of Medicine, University of Technology in Katowice, Katowice, Poland
| |
Collapse
|
25
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
26
|
Santacroce L, Imbimbo C, Ballini A, Crocetto F, Scacco S, Cantore S, Di Zazzo E, Colella M, Jirillo E. Testicular Immunity and Its Connection with the Microbiota. Physiological and Clinical Implications in the Light of Personalized Medicine. J Pers Med 2022; 12:1335. [PMID: 36013286 PMCID: PMC9409709 DOI: 10.3390/jpm12081335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Reproduction is a complex process, which is based on the cooperation between the endocrine-immune system and the microbiota. Testicular immunity is characterized by the so-called immune privilege, a mechanism that avoids autoimmune attacks against proteins expressed by spermatozoa. Testicular microbiota is connected with the gut microbiota, the most prevalent site of commensals inthe body. Both microbiotas take part inthe development of the immune system and protection againstpathogen invasion. Dysbiosis is caused by concurrent pathologies, such as obesity, diabetes, infections and trauma. The substitution of beneficial bacteria with pathogens may lead to destruction of spermatozoa directly or indirectly and, ultimately, to male infertility. Novel therapeutic interventions, i.e., nutritional interventions and supplementation of natural products, such as, probiotics, prebiotics, antioxidants and polyphenols, may lead to the restoration of the otherwise-impaired male reproductive potential, even if experimental and clinical results are not always concordant. In this review, the structure and immune function of the testis will be described with special reference to the blood-testisbarrier. The regulatory role of both the gut and testicular microbiota will be illustrated in health and disease, also emphasizing therapeutic attempts with natural products for the correction of male infertility, in the era of personalized medicine.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131Naples, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131Naples, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefania Cantore
- Independent Researcher, Sorriso & Benessere—Ricerca e Clinica, 70129 Bari, Italy
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
27
|
Doroftei B, Ilie OD, Dabuleanu AM, Hutanu D, Vaduva CC. A Retrospective Narrative Mini-Review Regarding the Seminal Microbiota in Infertile Male. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1067. [PMID: 36013533 PMCID: PMC9414835 DOI: 10.3390/medicina58081067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Background: Infertility is a global burden that affects both sexes with the male component remaining as an explored yet crucial research field that might offer novel evidence. Material and Methods: The present narrative mini-review aims to summarize all existing literature regarding the composition of the seminal microflora in infertile men. We performed searches in PubMed/Medline, ISI Web of Knowledge, Scopus, and ScienceDirect between 2018 and 2022 using a combination of keywords. Results: A total of n = 33 studies met the eligibility criteria and were further considered. From this, n = 14 were conducted on human patients, n = 3 on zebrafish (Danio rerio), n = 5 on rats, and n = 11 on mice. In twenty-five out of thirty-three papers, the authors sequenced the 16S rRNA; situations occurred where researchers focused on standard laboratory protocols. Lactobacillus and Bifidobacterium are widely recognized as putative beneficial lactic bacteria. These two entities are capable of restoring the host's eubiosis to some extent, blocking pathogens' proliferation and endotoxins, and even alleviating specific patterns encountered in disease(s) (e.g., obesity, type 1 diabetes) due to prolonged exposure to toxicants in adults or from a developmental stage. Over the years, distinct approaches have been perfected, such as the transfer of feces between two species or conventional rudimentary products with proven efficiency. Conclusions: The seminal microflora is decisive and able to modulate psychological and physiological responses. Each individual possesses a personalized microbial profile further shaped by exogenous factors, regardless of sex and species.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", University Street, No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology "Cuza Voda", Cuza Voda Street, No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
| | - Ana-Maria Dabuleanu
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", University Street, No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology "Cuza Voda", Cuza Voda Street, No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Parvan Avenue, No. 4, 300115 Timisoara, Romania
| | - Constantin-Cristian Vaduva
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy, Petru Rares Street, No. 2, 200349 Craiova, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital Filantropia, Filantropia Street, No. 1, 200143 Craiova, Romania
- Department of Infertility and IVF, HitMed Medical Center, Stefan cel Mare Street, No. 23-23A, 200130 Craiova, Romania
| |
Collapse
|
28
|
Garcia-Segura S, del Rey J, Closa L, Garcia-Martínez I, Hobeich C, Castel AB, Vidal F, Benet J, Ribas-Maynou J, Oliver-Bonet M. Seminal Microbiota of Idiopathic Infertile Patients and Its Relationship With Sperm DNA Integrity. Front Cell Dev Biol 2022; 10:937157. [PMID: 35837328 PMCID: PMC9275566 DOI: 10.3389/fcell.2022.937157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new biomarkers for human male infertility is crucial to improve the diagnosis and the prognosis of this disease. Recently, seminal microbiota was shown to be related to sperm quality parameters, suggesting an effect in human fertility and postulating it as a biomarker candidate. However, its relationship to sperm DNA integrity has not been studied yet. The aim of the present study is to characterize the seminal microbiota of a western Mediterranean population and to evaluate its relationship to sperm chromatin integrity parameters, and oxidative stress. For that purpose, 14 samples from sperm donors and 42 samples from infertile idiopathic patients were obtained and were analyzed to assess the composition of the microbiota through full-length 16S rRNA gene sequencing (Illumina MiSeq platform). Microbial diversity and relative abundances were compared to classic sperm quality parameters (macroscopic semen parameters, motility, morphology and concentration), chromatin integrity (global DNA damage, double-stranded DNA breaks and DNA protamination status) and oxidative stress levels (oxidation-reduction potential). The seminal microbiota observed of these samples belonged to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. The most abundant genera were Finegoldia, Peptoniphilus, Anaerococcus, Campylobacter, Streptococcus, Staphylococcus, Moraxella, Prevotella, Ezakiella, Corynebacterium and Lactobacillus. To our knowledge, this is the first detection of Ezakiella genus in seminal samples. Two clusters of microbial profiles were built based on a clustering analysis, and specific genera were found with different frequencies in relation to seminal quality defects. The abundances of several bacteria negatively correlate with the sperm global DNA fragmentation, most notably Moraxella, Brevundimonas and Flavobacterium. The latter two were also associated with higher sperm motility and Brevundimonas additionally with lower oxidative-reduction potential. Actinomycetaceae, Ralstonia and Paenibacillus correlated with reduced chromatin protamination status and increased double-stranded DNA fragmentation. These effects on DNA integrity coincide in many cases with the metabolism or enzymatic activities of these genera. Significant differences between fertile and infertile men were found in the relative presence of the Propionibacteriaceae family and the Cutibacterium, Rhodopseudomonas and Oligotropha genera, which supports its possible involvement in male fertility. Our findings sustain the hypothesis that the seminal microbiome has an effect on male fertility.
Collapse
Affiliation(s)
- Sergio Garcia-Segura
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Javier del Rey
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Laia Closa
- Histocompatibility and Immunogenetics Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iris Garcia-Martínez
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Carlos Hobeich
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | | | - Francisco Vidal
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
| | - Jordi Benet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, University of Girona, Girona, Spain
| | - Maria Oliver-Bonet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
29
|
Venneri MA, Franceschini E, Sciarra F, Rosato E, D'Ettorre G, Lenzi A. Human genital tracts microbiota: dysbiosis crucial for infertility. J Endocrinol Invest 2022; 45:1151-1160. [PMID: 35113404 PMCID: PMC9098539 DOI: 10.1007/s40618-022-01752-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 01/12/2023]
Abstract
Human body is colonized by trillions of microbes, influenced by several factors, both endogenous, as hormones and circadian regulation, and exogenous as, life-style habits and nutrition. The alteration of such factors can lead to microbial dysbiosis, a phenomenon which, in turn, represents a risk factor in many different pathologies including cancer, diabetes, autoimmune and cardiovascular disease, and infertility. Female microbiota dysbiosis (vaginal, endometrial, placental) and male microbiota dysbiosis (seminal fluid) can influence the fertility, determining a detrimental impact on various conditions, as pre-term birth, neonatal illnesses, and macroscopic sperm parameters impairments. Furthermore, unprotected sexual intercourse creates a bacterial exchange between partners, and, in addition, each partner can influence the microbiota composition of partner's reproductive tracts. This comprehensive overview of the effects of bacterial dysbiosis in both sexes and how partners might influence each other will allow for better personalization of infertility management.
Collapse
Affiliation(s)
- M A Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - E Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - F Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - G D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
30
|
Mocé ML, Esteve IC, Pérez-Fuentes S, Gómez EA, Mocé E. Microbiota in Goat Buck Ejaculates Differs Between Breeding and Non-breeding Seasons. Front Vet Sci 2022; 9:867671. [PMID: 35647092 PMCID: PMC9136232 DOI: 10.3389/fvets.2022.867671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Changes in semen microbiota are associated with alterations to sperm quality and fertility. However, the microbiota from most livestock species has not yet been studied. Goats are seasonal breeders, but semen microbiota has never been described in this species, and it is unknown how seasonality affects it. Our study objective is 2-fold: to describe the microbiota in goat buck ejaculates and to determine if it differs between breeding and non-breeding seasons. Semen from six males of the Murciano-Granadina breed was collected during both seasons. Two replicates were performed per male and season on different days. The microbiota was characterized by genomic sequencing technology. Sperm quality was also evaluated. Repetition was not significant for the studied variables. Sperm velocities were higher for the breeding than for the non-breeding season. The ejaculates from both seasons also differed in the proportion of apoptotic spermatozoa. The five dominant phyla were Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria, and Bacteroidetes during the breeding season and Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria during the non-breeding season. The dominant genus during both seasons was Ureaplasma. Differences in microbial community structure (the beta diversity) were found. A decrease in the relative abundance of the genus Faecalibacterium and an increase in the genera Sphingomonas and Halomonas were observed in the ejaculates collected during the breeding season. Sphingomonas and Faecalibacterium abundance favorably and unfavorably correlated with sperm quality, respectively. In conclusion, the semen microbiota from goat bucks varies between breeding and non-breeding seasons, and the microbiota remains stable for 7 days within a season. In addition, the genera Sphingomonas and Faecalibacterium could be possible biomarkers of semen quality in goat bucks. These results contribute to an in-depth understanding of the effects of reproductive seasonality on goat buck ejaculates.
Collapse
Affiliation(s)
- María Lorena Mocé
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
| | - Inés Carolina Esteve
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Sara Pérez-Fuentes
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Ernesto A. Gómez
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Eva Mocé
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Eva Mocé
| |
Collapse
|
31
|
Iniesta S, Esteban S, Armijo Ó, Lobo S, Manzano S, Espinosa I, Cárdenas N, Bartha JL, Jiménez E. Ligilactobacillus salivarius PS11610 exerts an effect on the microbial and immunological profile of couples suffering unknown infertility. Am J Reprod Immunol 2022; 88:e13552. [PMID: 35506742 DOI: 10.1111/aji.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Unknown or idiopathic infertility has been associated with urogenital tract dysbiosis, reducing pregnancy and delivery ratios during assisted reproductive treatments (ART). The Ligilactobacillus salivarius PS11610 strain has shown extraordinary antimicrobial activity in vitro against urogenital pathogens as well as other probiotic characteristics. Therefore, an intervention study was performed to evaluate the effect of L. salivarius PS11610 on the microbial composition of urogenital tract in infertile couples with bacterial dysbiosis. METHOD OF STUDY Seventeen couples undergoing ART diagnosed with unknown infertility were selected. After confirming urogenital dysbiosis, they started a 6-month treatment with L. salivarius PS11610 (1 dose/12 h for female and 1 dose/24 h for male). Vaginal, seminal, glans, uterine and plasma samples were collected for determination of the microbiome and immune profile at the beginning and the end of the treatment. RESULTS Supplementation with L. salivarius PS11610 significantly modified the urogenital microbiome composition in male and female samples, solving dysbiosis of 67% of the couples. Pathogens disappeared from the vaginal samples whereas Lactobacilli percentage increased after 3 and 6 months of treatment. Moreover, L. salivarius PS11610 changed the uterine microbiome that could be associated with a change of the uterine immune profile. Additionally, the probiotic intake could be associated with the observed change in the systemic immunological profile of couples. Finally, the pregnant and delivery ratio were improved. CONCLUSIONS Probiotic supplementation with L. salivarius PS11610 improved the male and female urogenital tract microbiome, modulating the immune system and increasing pregnancy success in couples undergoing ART.
Collapse
Affiliation(s)
- Silvia Iniesta
- Department of Gynecology and Obstetrics, Hospital Universitario La Paz, Madrid, Spain
| | - Sergio Esteban
- Probisearch, SLU. c/Santiago Grisolía, 2, Tres Cantos, Madrid, Spain
| | - Ónica Armijo
- Department of Gynecology and Obstetrics, Hospital Universitario La Paz, Madrid, Spain
| | - Sonia Lobo
- Department of Gynecology and Obstetrics, Hospital Universitario La Paz, Madrid, Spain
| | - Susana Manzano
- Probisearch, SLU. c/Santiago Grisolía, 2, Tres Cantos, Madrid, Spain
| | - Irene Espinosa
- Probisearch, SLU. c/Santiago Grisolía, 2, Tres Cantos, Madrid, Spain
| | - Nivia Cárdenas
- Probisearch, SLU. c/Santiago Grisolía, 2, Tres Cantos, Madrid, Spain
| | - José Luis Bartha
- Department of Gynecology and Obstetrics, Hospital Universitario La Paz, Madrid, Spain
| | - Esther Jiménez
- Probisearch, SLU. c/Santiago Grisolía, 2, Tres Cantos, Madrid, Spain
| |
Collapse
|
32
|
Werneburg GT, Lundy SD, Bajic P. The Microbiome and Sexual Health. J Sex Med 2022; 19:1600-1603. [DOI: 10.1016/j.jsxm.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
33
|
Hashem NM, Gonzalez-Bulnes A. Perspective on the relationship between reproductive tract microbiota eubiosis and dysbiosis and reproductive function. Reprod Fertil Dev 2022; 34:531-539. [PMID: 35287791 DOI: 10.1071/rd21252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
The role played by microbiota is attracting growing attention within the scientific and medical community, in both human and animal fields, in the last years. Most of the studies have been focused on the intestinal microbiome, whilst little attention has been paid to other systems, like the reproductive tract of both females and males. However, there is a growing body of information showing the interplay between reproductive tract dysbiosis, due to the action of pathogens and/or unhealthy lifestyle, and reproductive disease and disorders in many mammalian species. The present review aims to summarise current knowledge on the biodiversity of the microbiota of the reproductive tract, and the possible relationships between eubiosis or dysbiosis and reproductive health and function in both females and males.
Collapse
Affiliation(s)
- Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
34
|
Feng T, Liu Y. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput Struct Biotechnol J 2022; 20:1541-1553. [PMID: 35465162 PMCID: PMC9010680 DOI: 10.1016/j.csbj.2022.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The presence of microbial communities in the reproductive tract has been revealed, and this resident microbiota is involved in the maintenance of health. Intentional modulation via probiotics has been proposed as a possible strategy to enhance reproductive health and reduce the risk of diseases. The male seminal microbiota has been suggested as an important factor that influences a couple’s health, pregnancy outcomes, and offspring health. Probiotics have been reported to play a role in male fertility and to affect the health of mothers and offspring. While the female reproductive microbiota is more complicated and has been identified in both the upper and lower reproductive systems, they together contribute to health maintenance. Probiotics have shown regulatory effects on the female reproductive tract, thereby contributing to homeostasis of the tract and influencing the health of offspring. Further, through transmission of bacteria or through other indirect mechanisms, the parent’s reproductive microbiota and probiotic intervention influence infant gut colonization and immunity development, with potential health consequences. In vitro and in vivo studies have explored the mechanisms underlying the benefits of probiotic administration and intervention, and an array of positive results, such as modulation of microbiota composition, regulation of metabolism, promotion of the epithelial barrier, and improvement of immune function, have been observed. Herein, we review the state of the art in reproductive system microbiota and its role in health and reproduction, as well as the beneficial effects of probiotics on reproductive health and their contributions to the prevention of associated diseases.
Collapse
|
35
|
The Semen Microbiome and Semen Parameters in Healthy Stallions. Animals (Basel) 2022; 12:ani12050534. [PMID: 35268102 PMCID: PMC8908834 DOI: 10.3390/ani12050534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Stallion infertility is a major cause of concern in the horse industry. Despite zootechnics advances, sub- or infertile animals appear in stud farms without a toxic, genetic, or nutritional reason. Recent research in human andrology has opened the door for a new, plausible factor that affects sperm quality: seminal microflora. In recent years, there has been an increasing amount of evidence regarding the relationship between different seminal flora compositions and male fertility. However, little has been studied in veterinary science, including horses. Therefore, the objective of this study was to examine associations with the presence of bacteria families in horse semen with five sperm quality parameters: concentration, total number of spermatozoa, total and progressive sperm motility, and DNA fragmentation. Our study detected a correlation between the presence of the Peptoniphilaceae family and higher total motility and the presence of Clostridiales Incertae Sedis XI and lower progressive motility. These changes in seminal flora may contribute to the idiopathically poorer sperm quality in certain animals. Although further mechanisms behind bacteria–spermatozoa interactions are unknown, these associations are already leading to a new therapeutic approach to infertility: the use of prebiotics, which has already yielded promising results in human andrology. Abstract Despite the advances in reproductive technology, there is still a considerable number of low sperm quality cases in stallions. Recent studies in humans have detected several seminal microflora–spermatozoa associations behind some idiopathic infertility cases. However, no studies are available on horses, and there is limited information on the microflora present in stallion ejaculates. Accordingly, the objective of this study was to examine associations to the presence of bacteria families with five sperm quality parameters: concentration, total number of spermatozoa, total and progressive motility, and DNA fragmentation. Samples were cryopreserved after their extraction. High-speed homogenization using grinding media was performed for cell disruption. Family identification was performed via 16S rRNA sequencing. Bacterial families were only considered if the relative abundance was higher than 1%. Only two families appeared to have a correlation with two sperm quality parameters. Peptoniphilaceae correlated positively with total sperm motility, whereas Clostridiales Incertae Sedis XI correlated negatively with progressive motility. No significant differences were found for the rest of the parameters. In conclusion, the seminal microbiome may affect spermatozoa activity. Our findings are based on statistical associations; thus, further studies are needed to understand the internal interactions between seminal flora and cells.
Collapse
|
36
|
Hashem NM, Gonzalez-Bulnes A. The Use of Probiotics for Management and Improvement of Reproductive Eubiosis and Function. Nutrients 2022; 14:nu14040902. [PMID: 35215551 PMCID: PMC8878190 DOI: 10.3390/nu14040902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Reproductive tract dysbiosis, due to the action of pathogens and/or unhealthy lifestyle, has been related to many reproductive diseases and disorders in mammalian species. Classically, such a problem has been confronted by the administration of antibiotics. Despite their effectiveness for controlling disease, treatments with antibiotics may negatively affect the fertility of males and females and, mainly, may induce antibiotic resistance. Accordingly, safer alternatives for maintaining reproductive system eubiosis, such as probiotics, are required. The present review summarizes the current knowledge on the biodiversity of the microbiota at the reproductive tract, possible changes in the case of dysbiosis, and their relationships with adequate reproductive health and functioning in both females and males. Afterwards, mechanisms of action and benefits of different probiotics are weighed since the biological activities of probiotics may provide a promising alternative to antibiotics for maintaining and restoring reproductive eubiosis and function. However, at present, it is still necessary for further research to focus on: (a) identifying mechanisms by which probiotics can affect reproductive processes; (b) the safety of probiotics to the host, specifically when consumed during sensitive reproductive windows such as pregnancy; and (c) the hazards instructions and regulatory rules required for marketing these biological-based therapies with sufficient safety. Thus, in this review, to draw a comprehensive overview with a relatively low number of clinical studies in this field, we showed the findings of studies performed either on human or animal models. This review strategy may help provide concrete facts on the eligible probiotic strains, probiotics colonization and transfer route, and prophylactic and/or therapeutic effects of different probiotic strains.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Correspondence: (N.M.H.); (A.G.-B.)
| |
Collapse
|
37
|
Altmäe S, Kullisaar T. Genitourinary microbial screening for all infertile men? Nat Rev Urol 2022; 19:199-200. [PMID: 35149837 DOI: 10.1038/s41585-022-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain. .,Division of Obstetrics and Gynaecology, CLINTEC, Karolinska Institutet, Stockholm, Sweden.
| | - Tiiu Kullisaar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Mumtaz N, Akhtar MF, Saleem A, Riaz A. Harmful Consequences of Proton Pump Inhibitors on Male Fertility: An Evidence from Subchronic Toxicity Study of Esomeprazole and Lansoprazole in Wistar Rats. Int J Endocrinol 2022; 2022:4479261. [PMID: 35529080 PMCID: PMC9072022 DOI: 10.1155/2022/4479261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
Proton pump inhibitors (PPIs) are frequently prescribed as gastric acid-suppressing agents. Nevertheless, there is limited evidence supporting the risk of detrimental effects of PPIs on male fertility. The purpose of the current study was to evaluate the effect of subchronic use of proton pump inhibitors on male fertility. Seventy adult male Wistar rats were assigned into seven groups. The normal control group orally received solvent only. Groups 2, 3, and 4 were orally given esomeprazole while groups 5, 6, and 7 received lansoprazole at 2.5, 5, and 10 mg/kg/day, respectively. After 45 days of treatment, blood samples, epididymis, and testis were collected. Sperm count, motility, and morphology were determined. The level of hormones such as testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) and oxidative status of testis tissue, such as superoxide dismutase, catalase, reduced glutathione, malondialdehyde (MDA), and nitric oxide (NO) were estimated. Results demonstrated a significant decline in sperm count, motility, morphology, testosterone, and catalase at 10 mg/kg/day and GSH at 2.5 mg/kg/day. A significant increase in FSH, LH, and MDA at 10 mg/kg/day and NO at 2.5 mg/kg/day was found as compared to the control group. The pathological alterations specifically dilation of Leydig cells, vacuolization, and degeneration of the seminiferous tubules were also evident. It is concluded that PPIs had caused male reproductive toxicity in Wistar rats due to altered levels of hormones such as testosterone, FSH, and LH, elevated levels of NO, and oxidative stress.
Collapse
Affiliation(s)
- Namra Mumtaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Riaz
- Department of Thriogenology, University of Veterinary and Animal Science, Lahore, Pakistan
| |
Collapse
|
39
|
Seminal and testicular microbiome and male fertility: A systematic review. Porto Biomed J 2021; 6:e151. [PMID: 34881355 PMCID: PMC8647872 DOI: 10.1097/j.pbj.0000000000000151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/20/2021] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text Microbiome is of upmost importance for the well-being of the human body. Based on culture and PCR methods, seminal flora has been pointed as a potential cause for some of the unexplained male infertility. This is a systematic review about the effect of seminal microbiota studied by Next Generation Sequencing techniques on sperm quality and male fertility, performed according to PRISMA statement. Nine articles were included. Results of different studies are diverse. It seems that microbiota may a play a role in seminal quality and further male fertility, but the way this effect is modulated is still to be unknown. Lactobacillus spp seemed to play a beneficial role in semen quality, but the role of the remaining bacteria is unclear. Due to the lack of research and the incongruence of the results so far, the effect of microbiota on seminal quality is still unclear.
Collapse
|
40
|
Yao Y, Qiu XJ, Wang DS, Luo JK, Tang T, Li YH, Zhang CH, Liu H, Zhou L, Zhao LL. Semen microbiota in normal and leukocytospermic males. Asian J Androl 2021; 24:398-405. [PMID: 34916474 PMCID: PMC9295480 DOI: 10.4103/aja202172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Large numbers of microbes can be present in seminal fluid, and there are differences in the semen microbiota between normal and abnormal semen samples. To evaluate the semen microbiota in patients with leukocytospermia, 87 seminal fluid samples, including 33 samples with a normal seminal leukocyte count and 54 samples with leukocytospermia, were obtained for a cross-sectional analysis. Twenty samples with a normal seminal leukocyte count had normal sperm parameters (Control group), and 13 samples with a normal seminal leukocyte count were from asthenozoospermia patients (Ast group). However, 32 samples with leukocytospermia were from asthenozoospermia patients (LA group), and only 22 samples with leukocytospermia had normal sperm parameters (Leu group). The 16S ribosomal RNA (rRNA) gene sequencing method was used to sequence the microbiota in the seminal fluid, and multiple bioinformatics methods were utilized to analyze the data. Finally, the results showed that the worse sperm parameters were observed in the leukocytospermia-related groups. Semen microbiota analysis found that there was increased alpha diversity in the leukocytospermia-related groups. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the primary phyla in the seminal fluid. Two microbiota profiles, namely, Lactobacillus-enriched and Streptococcus-enriched groups, were identified in this study. The majority of the samples in the groups with a normal seminal leukocyte count could be categorized as Lactobacillus-enriched, whereas the majority of the leukocytospermia samples could be categorized as Streptococcus-enriched. Our study indicated that males with leukocytospermia have worse sperm parameters and a different semen microbiota composition compared to males with a normal seminal leukocyte count.
Collapse
Affiliation(s)
- Ye Yao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha 410013, China.,Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China.,Department of Nephrology, Integrated Hospital of Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510220, China
| | - Xin-Jian Qiu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Dong-Sheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jie-Kun Luo
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Tao Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yun-Hui Li
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Chun-Hu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Hao Liu
- Department of Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510220, China
| | - Lu Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Lin-Lin Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
41
|
Li P, Wei K, He X, Zhang L, Liu Z, Wei J, Chen X, Wei H, Chen T. Vaginal Probiotic Lactobacillus crispatus Seems to Inhibit Sperm Activity and Subsequently Reduces Pregnancies in Rat. Front Cell Dev Biol 2021; 9:705690. [PMID: 34485291 PMCID: PMC8414900 DOI: 10.3389/fcell.2021.705690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 01/12/2023] Open
Abstract
Background The vaginal microbiota is associated with the health of the female reproductive system and the offspring. Lactobacillus crispatus belongs to one of the most important vaginal probiotics, while its role in the agglutination and immobilization of human sperm, fertility, and offspring health is unclear. Methods Adherence assays, sperm motility assays, and Ca2+-detecting assays were used to analyze the adherence properties and sperm motility of L. crispatus Lcr-MH175, attenuated Salmonella typhimurium VNP20009, engineered S. typhimurium VNP20009 DNase I, and Escherichia coli O157:H7 in vitro. The rat reproductive model was further developed to study the role of L. crispatus on reproduction and offspring health, using high-throughput sequencing, real-time PCR, and molecular biology techniques. Results Our results indicated that L. crispatus, VNP20009, VNP20009 DNase I, and E. coli O157:H7 significantly inhibited the sperm motility in vitro via adversely affecting the sperm intracellular Ca2+ concentration and showed a high adhesion to sperms. The in vivo results indicated that L. crispatus and other tested bacteria greatly reduced the pregnancy rates, but L. crispatus had a positive effect on maternal health and offspring development. Moreover, the transplantation of L. crispatus could sustain a normal bacterial composition of the vaginal microbiota in healthy rats and markedly reduced the expression of uterine inflammatory factors (toll-like receptor-4/nuclear factor kappa-B, tumor necrosis factor-α, production of interleukin-1β, etc.) and apoptosis factors (Fas Ligand, Bcl-2-associated X protein/B cell lymphoma-2, etc.) compared with the other tested strains. Conclusion Our study demonstrated that the vaginal probiotic L. crispatus greatly affected the sperm activity and could also reduce pregnancies through its adhesion property, which might account for some unexplained infertility. Therefore, more caution should be paid when using L. crispatus as a vaginal viable preparation in women of child-bearing age, especially for women whose partners have abnormal sperms.
Collapse
Affiliation(s)
- Ping Li
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Kehong Wei
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xia He
- Department of Obstetrics and Gynecology, The Ninth Hospital of Nanchang, Nanchang, China
| | - Lu Zhang
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wei
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiaomei Chen
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong Wei
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingtao Chen
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Vajpeyee M, Yadav LB, Tiwari S, Tank P. To understand the reproductive tract microbiome associated with infertility through metagenomics analysis. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Knowledge of the microbiome is in its infancy in health and human illness, especially concerning human reproduction. We will be better able to treat dysbiosis of the reproductive tract clinically if it is better explained and understood. It has been shown that altered vaginal microbiota affects parturition, and its function is uncertain in assisted reproductive technologies. However, the effects of recognized microbes such as Mycoplasma tuberculosis, Chlamydia trachomatis, and Neisseria gonorrhoeae are well established, resulting in subclinical changes which are considered to be risk factors for infertility and poor reproductive outcomes.
Main body
Recent studies indicate that the vaginal tract comprises several different organisms of the microbiome. Some microbiota can play an important role not only in the reproductive tract but also in overall health. The microbiome of the female reproductive tract has been identified mainly based on studies that examine vaginal samples across many reproductive technologies, using a metagenomics approach.
Conclusion
Alteration of reproductive tract microbiota or presence of certain microbiota irrespective of the level of pathogenicity may interfere with fertilization, implantation, and subsequent embryo development. This may lead to failed fertility treatments and reduced live birth rate (LBR).
Collapse
|
43
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
44
|
Lundy SD, Sangwan N, Parekh NV, Selvam MKP, Gupta S, McCaffrey P, Bessoff K, Vala A, Agarwal A, Sabanegh ES, Vij SC, Eng C. Functional and Taxonomic Dysbiosis of the Gut, Urine, and Semen Microbiomes in Male Infertility. Eur Urol 2021; 79:826-836. [PMID: 33573862 DOI: 10.1016/j.eururo.2021.01.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Little is known about the role of the genitourinary and gastrointestinal microbiota in the pathogenesis of male infertility. OBJECTIVE To compare the taxonomic and functional profiles of the gut, semen, and urine microbiomes of infertile and fertile men. DESIGN, SETTING, AND PARTICIPANTS We prospectively enrolled 25 men with primary idiopathic infertility and 12 healthy men with proven paternity, and we collected rectal swabs, semen samples, midstream urine specimens, and experimental controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We performed comprehensive semen analysis, 16S rRNA sequencing for quantitative high-resolution taxonomy, and shotgun metagenomics with a median of 140 million reads per sample for functional metabolic pathway profiling. RESULTS AND LIMITATIONS We identified a diverse semen microbiome with modest similarity to the urinary microbiome. Infertile men harbored increased seminal α-diversity and distinct β-diversity, increased seminal Aerococcus, and decreased rectal Anaerococcus. Prevotella abundance was inversely associated with sperm concentration, and Pseudomonas was directly associated with total motile sperm count. Vasectomy appeared to alter the seminal microbiome, suggesting a testicular or epididymal contribution. Anaerobes were highly over-represented in the semen of infertile men with a varicocele, but oxidative stress and leukocytospermia were associated with only subtle differences. Metagenomics data identified significant alterations in the S-adenosyl-L-methionine cycle, which may play a multifaceted role in the pathogenesis of infertility via DNA methylation, oxidative stress, and/or polyamine synthesis. CONCLUSIONS This pilot study represents the first comprehensive investigation into the microbiome in male infertility. These findings provide the foundation for future investigations to explore causality and identify novel microbiome-based diagnostics and therapeutics for men with this complex and emotionally devastating disease. PATIENT SUMMARY We explored the resident populations of bacteria living in the gut, semen, and urine of infertile and fertile men. We found several important bacterial and metabolic pathway differences with the potential to aid in diagnosing and treating male infertility in the future.
Collapse
Affiliation(s)
- Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Naseer Sangwan
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Neel V Parekh
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sajal Gupta
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Ashok Agarwal
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Edmund S Sabanegh
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Genetics and Genome Sciences and Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
45
|
Zhang F, Dai J, Chen T. Role of Lactobacillus in Female Infertility Via Modulating Sperm Agglutination and Immobilization. Front Cell Infect Microbiol 2021; 10:620529. [PMID: 33569356 PMCID: PMC7868545 DOI: 10.3389/fcimb.2020.620529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Infertility has become a common problem in recent decades. The pathogenesis of infertility is variable, but microbiological factors account for a large proportion of it. Dysbiosis of vaginal microbiota is reportedly associated with female infertility, but the influence of normal vaginal microbiota on infertility is unclear. In this review, we summarize the physiological characteristics of the vaginal tract and vaginal microbiota communities. We mainly focus on the bacterial adherence of vaginal Lactobacillus species. Given that the adherent effect plays a crucial role in the colonization of bacteria, we hypothesize that the adherent effect of vaginal Lactobacillus may also influence the fertility of the host. We also analyze the agglutination and immobilization effects of other bacteria, especially Escherichia coli, on ejaculated spermatozoa, and speculate on the possible effects of normal vaginal microbiota on female fertility.
Collapse
Affiliation(s)
- Fenghao Zhang
- Institute of Translational Medicine & School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Tingtao Chen
- Institute of Translational Medicine & School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Campisciano G, Iebba V, Zito G, Luppi S, Martinelli M, Fischer L, De Seta F, Basile G, Ricci G, Comar M. Lactobacillus iners and gasseri, Prevotella bivia and HPV Belong to the Microbiological Signature Negatively Affecting Human Reproduction. Microorganisms 2020; 9:microorganisms9010039. [PMID: 33375526 PMCID: PMC7824525 DOI: 10.3390/microorganisms9010039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Infertile couples undergoing the use of assisted reproductive technology are a good study model to evaluate the microbiological signatures affecting reproductive health. We tested vaginal lavages, follicular fluids, embryo culture mediums, and seminal fluids from 47 couples for their microbiome composition and HPV infection. Twenty-five infertile couples were diagnosed with unexplained infertility, whereas 22 were diagnosed with explained infertility. Lactobacilli were dominant in the vaginal lavages of both patient groups, and the most abundant species was L. iners (CST III), which is linked to a decreased fertility rate. Besides this, L. gasseri—which is known to be associated with oocyte DNA fragmentation and decreased sperm mobility—was identified in the seminal fluids, follicular fluids, and embryo culture media of the unexplained infertility group. Prevotella was increased in the seminal fluids of the explained infertility group, along with HPV-positive seminal fluids: an infection commonly associated with infertility, especially male infertility. Prevotella has been described to negatively affect sperm motility. Taken together, these results suggest that the profiling of the reproductive tract microbiome can add new perspectives to human reproduction.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Advanced Laboratory of Translational Microbiology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy;
- Correspondence: ; Tel.: +39-040-3785209
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University Hospital of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (V.I.); (F.D.S.); (G.R.)
| | - Gabriella Zito
- Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (G.Z.); (S.L.); (M.M.); (L.F.)
| | - Stefania Luppi
- Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (G.Z.); (S.L.); (M.M.); (L.F.)
| | - Monica Martinelli
- Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (G.Z.); (S.L.); (M.M.); (L.F.)
| | - Leo Fischer
- Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (G.Z.); (S.L.); (M.M.); (L.F.)
| | - Francesco De Seta
- Department of Medical, Surgical and Health Sciences, University Hospital of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (V.I.); (F.D.S.); (G.R.)
- Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (G.Z.); (S.L.); (M.M.); (L.F.)
| | - Giuseppe Basile
- Orthopedic Department, Clinical Institute San Siro, Via Monreale 18, 20148 Milano, Italy;
| | - Giuseppe Ricci
- Department of Medical, Surgical and Health Sciences, University Hospital of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (V.I.); (F.D.S.); (G.R.)
- Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy; (G.Z.); (S.L.); (M.M.); (L.F.)
| | - Manola Comar
- Advanced Laboratory of Translational Microbiology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Via dell’Istria 65, 34137 Trieste, Italy;
- Department of Medical, Surgical and Health Sciences, University Hospital of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (V.I.); (F.D.S.); (G.R.)
| |
Collapse
|
47
|
Li H, Zang Y, Wang C, Li H, Fan A, Han C, Xue F. The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol 2020; 10:609488. [PMID: 33425785 PMCID: PMC7785791 DOI: 10.3389/fcimb.2020.609488] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The female reproductive tract microenvironment includes microorganisms, metabolites, and immune components, and the balance of the interactions among them plays an important role in maintaining female reproductive tract homeostasis and health. When any one of the reproductive tract microorganisms, metabolites, or immunity is out of balance, it will affect the other two, leading to the occurrence and development of diseases and the appearance of corresponding symptoms and signs, such as infertility, miscarriage, premature delivery, and gynecological tumors caused by infectious diseases of the reproductive tract. Nutrients in the female reproductive tract provide symbiotic and pathogenic microorganisms with a source of nutrients for their own reproduction and utilization. At the same time, this interaction with the host forms a variety of metabolites. Changes in metabolites in the host reproductive tract are related not only to the interaction between the host and microbiota under dysbiosis but also to changes in host immunity or the environment, all of which will participate in the pathogenesis of diseases and lead to disease-related phenotypes. Microorganisms and their metabolites can also interact with host immunity, activate host immunity, and change the host immune status and are closely related to persistent genital pathogen infections, aggravation of infectious diseases, severe pregnancy outcomes, and even gynecological cancers. Therefore, studying the interaction between microorganisms, metabolites, and immunity in the reproductive tract cannot only reveal the pathogenic mechanisms that lead to inflammation of the reproductive tract, adverse pregnancy outcomes and tumorigenesis but also provide a basis for further research on the diagnosis and treatment of targets.
Collapse
Affiliation(s)
- Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Contrary to historic dogma, many tissues and organs in the human body contain a resident population of bacteria, fungi, and viruses collectively known as the microbiome. The microbiome plays a role in both homeostatic symbiosis and also pathogenic dysbiosis in a wide array of diseases. Our understanding of the relationship between the microbiome and male factor infertility is in its infancy but is slowly evolving. RECENT FINDINGS Recent literature indicates that semen (and likely the testis) is not sterile and contains a distinct microbiome, and these changes in its composition are associated with alterations in semen quality and fertility status. Preliminary investigation indicates that manipulating the human microbiome may have implications in improving semen parameters and fertility. SUMMARY In this review, we describe relationships between the microbiome and the genitourinary system, discuss the prior work on the relationship among bacteriospermia, leukocytospermia and male factor infertility, and summarize the current literature utilizing 16s rRNA-based next-generation sequencing on the seminal and testicular microbiome. We explore the specific microbial taxa implicated in various aspects of spermatic dysfunction and introduce preliminary evidence for therapeutic approaches to alter the microbiome and improve fertility status.
Collapse
|
49
|
Tsonis O, Gkrozou F, Paschopoulos M. Microbiome affecting reproductive outcome in ARTs. J Gynecol Obstet Hum Reprod 2020; 50:102036. [PMID: 33307241 DOI: 10.1016/j.jogoh.2020.102036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/15/2022]
Abstract
Current scientific evidence reveals the importance of the human microbiome in health and disease. The presence of microbiota within the male and female reproductive tract has been well-documented and present theories imply that a possible disruption of their concentrations may have adverse effects on reproductive health and reproductive outcomes. Altered endometrial and vaginal microbiome could potential affect the reproductive outcome in infertile couples undergoing assisted reproductive techniques. Analysis of seminal fluids could also facilitate a prompt and appropriate approach in cases of abnormal male reproductive microflora. Essential knowledge on this subject could provide fertility experts better understanding with regards to unexplained fertility, increasing the success rates of ARTs. In this review, we summarise the current knowledge on the microbiota of the male and female reproductive tract and its impact on the success rates of ARTs in infertile couples.
Collapse
Affiliation(s)
- O Tsonis
- Department of Obstetrics and Gynaecology, University Hospital of Ioannina, Greece.
| | - F Gkrozou
- Department of Obstetrics and Gynaecology, University Hospitals of Birmingham, UK.
| | - M Paschopoulos
- Department of Obstetrics and Gynaecology, University Hospital of Ioannina, Greece.
| |
Collapse
|
50
|
Farahani L, Tharakan T, Yap T, Ramsay JW, Jayasena CN, Minhas S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology 2020; 9:115-144. [PMID: 32794312 DOI: 10.1111/andr.12886] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Male factor is attributable in up to 50% of cases of infertility. In vitro studies demonstrate that bacteria can negatively impact sperm function. The use of next-generation sequencing techniques has provided a better understanding of the human microbiome, and dysbiosis has been reported to impact health. Evidence regarding the impact of the semen microbiome on sperm function and fertility remains conflicting. MATERIALS AND METHODS A systematic search was conducted in accordance with the Preferred Reporting Items for Reviews and Meta-analysis (PRISMA) statement. The databases MEDLINE, OVID and PubMed were searched to identify English language studies related to the identification of bacteria in the semen of infertile and fertile men, between 1992 and 2019. Fifty-five observational studies were included, with 51 299 subjects. We included studies identifying bacteria using next-generation sequencing, culture or polymerase chain reaction. RESULTS The semen microbiome was rich and diverse in both fertile and infertile men. Three NGS studies reported clustering of the seminal microbiome with a predominant species. Lactobacillus and Prevotella were dominant in respective clusters. Lactobacillus was associated with improvements in semen parameters. Prevotella appeared to exert a negative effect on sperm quality. Bacteriospermia negatively impacted sperm concentration and progressive motility, and DNA fragmentation index (DFI; MD: 3.518, 95% CI: 0.907 to 6.129, P = .008). There was an increased prevalence of ureaplasma urealyticum in infertile men (OR: 2.25, 95% CI: 1.47-3.46). Ureaplasma urealyticum negatively impacted concentration and morphology. There was no difference in the prevalence of chlamydia trachomatis between fertile and infertile men and no significant impact on semen parameters. Enterococcus faecalis negatively impacted total motility, and Mycoplasma hominis negatively impacted concentration, PM and morphology. DISCUSSION AND CONCLUSIONS Ureaplasma urealyticum, Enterococcus faecalis, Mycoplasma hominis and Prevotella negatively impact semen parameters, whereas Lactobacillus appears to protect sperm quality. These findings may facilitate the development of novel therapies (eg probiotics), although the evidence regarding the impact of the seminal microbiome on fertility is inconclusive and further studies are needed to investigate this association.
Collapse
Affiliation(s)
- Linda Farahani
- Department of Obstetrics and Gynaecology, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.,Section of Investigative Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Tharu Tharakan
- Section of Investigative Medicine, Faculty of Medicine, Imperial College London, London, UK.,Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Tet Yap
- Department of Urology, Guys and St, Thomas's NHS Foundation Trust, London, UK
| | - Jonathan W Ramsay
- Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.,Department of Andrology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Channa N Jayasena
- Section of Investigative Medicine, Faculty of Medicine, Imperial College London, London, UK.,Department of Andrology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|