1
|
Wong A, Duong A, Wilson G, Yeung J, MacParland S, Han H, Cypel M, Keshavjee S, Liu M. Ischemia-reperfusion responses in human lung transplants at the single-cell resolution. Am J Transplant 2024; 24:2199-2211. [PMID: 39197591 DOI: 10.1016/j.ajt.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Ischemia-reperfusion is an unavoidable step of organ transplantation. Development of therapeutics for lung injury during transplantation has proved challenging; understanding lung injury from human data at the single-cell resolution is required to accelerate the development of therapeutics. Donor lung biopsies from 6 human lung transplant cases were collected at the end of cold preservation and 2-hour reperfusion and underwent single-cell RNA sequencing. Donor and recipient origin of cells from the reperfusion timepoint were deconvolved. Gene expression profiles were: (1) compared between each donor cell type between timepoints and (2) compared between donor and recipient cells. Inflammatory responses from donor lung macrophages were found after reperfusion with upregulation of multiple cytokines and chemokines, especially IL-1β and IL-1α. Significant inflammatory responses were found in alveolar epithelial cells (featured by CXCL8) and lung endothelial cells (featured by IL-6 upregulation). Different inflammatory responses were noted between donor and recipient monocytes and CD8+ T cells. The inflammatory signals and differences between donor and recipient cells observed provide insight into the cellular and molecular mechanisms of ischemia-reperfusion induced lung injury. Further investigations may lead to the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Aaron Wong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Duong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Wilson
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Yeung
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonya MacParland
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hong Han
- Centre for Discovery in Cancer Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Custódio G, Massutti AM, da Igreja MR, Lemos NE, Crispim D, Visioli F, Palma VDM, Leitão CB, Rech TH. Does liraglutide alleviate inflammation in brain-dead donors? A randomized clinical trial. Liver Transpl 2024; 30:607-617. [PMID: 37938130 DOI: 10.1097/lvt.0000000000000298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023]
Abstract
Brain death triggers an inflammatory cascade that damages organs before procurement, adversely affecting the quality of grafts. This randomized clinical trial aimed to compare the efficacy of liraglutide compared to placebo in attenuating brain death-induced inflammation, endoplasmic reticulum stress, and oxidative stress. We conducted a double-blinded, placebo-controlled, randomized clinical trial with brain-dead donors. Fifty brain-dead donors were randomized to receive subcutaneous liraglutide or placebo. The primary outcome was the reduction in IL-6 plasma levels. Secondary outcomes were changes in other plasma pro-inflammatory (IL-1β, interferon-γ, TNF) and anti-inflammatory cytokines (IL-10), expression of antiapoptotic ( BCL2 ), endoplasmic reticulum stress markers ( DDIT3/CHOP , HSPA5/BIP ), and antioxidant ( superoxide dismutase 2 , uncoupling protein 2 ) genes, and expression TNF, DDIT3, and superoxide dismutase 2 proteins in liver biopsies. The liraglutide group showed lower cytokine levels compared to the placebo group during follow-up: Δ IL-6 (-28 [-182, 135] vs. 32 [-10.6, 70.7] pg/mL; p = 0.041) and Δ IL-10 (-0.01 [-2.2, 1.5] vs. 1.9 [-0.2, 6.1] pg/mL; p = 0.042), respectively. The administration of liraglutide did not significantly alter the expression of inflammatory, antiapoptotic, endoplasmic reticulum stress, or antioxidant genes in the liver tissue. Similar to gene expression, expressions of proteins in the liver were not affected by the administration of liraglutide. Treatment with liraglutide did not increase the organ recovery rate [OR = 1.2 (95% CI: 0.2-8.6), p = 0.82]. Liraglutide administration reduced IL-6 and prevented the increase of IL-10 plasma levels in brain-dead donors without affecting the expression of genes and proteins related to inflammation, apoptosis, endoplasmic reticulum stress, or oxidative stress.
Collapse
Affiliation(s)
- Geisiane Custódio
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital Santa Isabel, Blumenau, SC, Brazil
| | | | | | - Natália Emerim Lemos
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Department of Oral Pathology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Victor de Mello Palma
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cristiane Bauermann Leitão
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tatiana Helena Rech
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Chao BT, Sage AT, Yeung JC, Bai X, Ma J, Martinu T, Liu M, Cypel M, Van Raemdonck D, Ceulemans LJ, Neyrinck A, Verleden S, Keshavjee S. Identification of regional variation in gene expression and inflammatory proteins in donor lung tissue and ex vivo lung perfusate. J Thorac Cardiovasc Surg 2023; 166:1520-1528.e3. [PMID: 37482240 DOI: 10.1016/j.jtcvs.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Diagnosing lung injury is a challenge in lung transplantation. It has been unclear if a single biopsy specimen is truly representative of the entire organ. Our objective was to investigate lung inflammatory biomarkers using human lung tissue biopsies and ex vivo lung perfusion perfusate. METHODS Eight human donor lungs declined for transplantation were air inflated, flash frozen, and partitioned from apex to base. Biopsies were then sampled throughout the lung. Perfusate was sampled from 4 lung lobes in 8 additional donor lungs subjected to ex vivo lung perfusion. The levels of interleukin-6, interleukin-8, interleukin-10, and interleukin-1β were measured using quantitative reverse transcription polymerase chain reaction from lung biopsies and enzyme-linked immunosorbent assay from ex vivo lung perfusion perfusate. RESULTS The median intra-biopsy equal-variance P value was .50 for messenger RNA biomarkers in tissue biopsies. The median intra-biopsy coefficient of variance was 18%. In donors with no apparent focal injuries, the biopsies in each donor showed no difference in various lung slices, with a coefficient of variance of 20%. The exception was biopsies from the lingula and injured focal areas that demonstrated larger differences. Cytokines in ex vivo lung perfusion perfusate showed minimal variation among different lobes (coefficient of variance = 4.9%). CONCLUSIONS Cytokine gene expression in lung biopsies was consistent, and the biopsy analysis reflects the whole lung, except when specimens were collected from the lingula or an area of focal injury. Ex vivo lung perfusion perfusate also provides a representative measurement of lung inflammation from the draining lobe. These results will reassure clinicians that a lung biopsy or an ex vivo lung perfusion perfusate sample can be used to inform donor lung selection.
Collapse
Affiliation(s)
- Bonnie T Chao
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Sage
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C Yeung
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jin Ma
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Van Raemdonck
- BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Verleden
- BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium
| | - Shaf Keshavjee
- Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Lazzeri C, Bonizzoli M, Di Valvasone S, Peris A. Uncontrolled Donation after Circulatory Death Only Lung Program: An Urgent Opportunity. J Clin Med 2023; 12:6492. [PMID: 37892627 PMCID: PMC10607380 DOI: 10.3390/jcm12206492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Uncontrolled donation after circulatory death (uDCD) represents a potential source of lungs, and since Steen's 2001 landmark case in Sweden, lungs have been recovered from uDCD donors and transplanted to patients in other European countries (France, the Netherlands, Spain and Italy) with promising results. Disparities still exist among European countries and among regions in Italy due to logistical and organizational factors. The present manuscript focuses on the clinical experiences pertaining to uDCD lungs in North America and European countries and on different lung maintenance methods. Existing experiences (and protocols) are not uniform, especially with respect to the type of lung maintenance, the definition of warm ischemic time (WIT) and, finally, the use of ex vivo perfusion (available in the last several years in most centers). In situ lung cooling may be superior to protective ventilation, but this process may be difficult to perform in the uDCD setting and is also time-consuming. On the other hand, the "protective ventilation technique" is simpler and feasible in every hospital. It may lead to a broader use of uDCD lung donors. To date, the results of lung transplants performed after protective ventilation as a preservation technique are scarce but promising. All the protocols comprise, among the inclusion criteria, a witnessed cardiac arrest. The detectable differences included preservation time (240 vs. 180 min) and donor age (<55 years in Spanish protocols and <65 years in Toronto protocols). Overall, independently of the differences in protocols, lungs from uDCD donors show promising results, and the possibility of optimizing ex vivo lung perfusion may broaden the use of these organs.
Collapse
Affiliation(s)
- Chiara Lazzeri
- Intensive Care Unit and Regional ECMO Referral Center Emergency Department, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy (A.P.)
| | | | | | | |
Collapse
|
5
|
Noda K, Chan EG, Furukawa M, Ryan JP, Clifford S, Luketich JD, Sanchez PG. Single-center experience of ex vivo lung perfusion and subsequent lung transplantation. Clin Transplant 2023; 37:e14901. [PMID: 36588340 DOI: 10.1111/ctr.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The safety of lung transplantation using ex vivo lung perfusion (EVLP) has been confirmed in multiple clinical studies; however, limited evidence is currently available regarding the potential effects of EVLP on posttransplant graft complications and survival with mid- to long-term follow-up. In this study, we reviewed our institutional data to better understand the impact of EVLP. METHODS Lungs placed on EVLP from 2014 through 2020 and transplant outcomes were retrospectively analyzed. Data were compared between lungs transplanted and declined after EVLP, between patients with severe primary graft dysfunction (PGD3) and no PGD3 after EVLP, and between matched patients with lungs transplanted with and without EVLP. RESULTS In total, 98 EVLP cases were performed. Changes in metabolic indicators during EVLP were correlated with graft quality and transplantability, but not changes in physiological parameters. Among 58 transplanted lungs after EVLP, PGD3 at 72 h occurred in 36.9% and was associated with preservation time, mechanical support prior to transplant, and intraoperative transfusion volume. Compared with patients without EVLP, patients who received lungs screened with EVLP had a higher incidence of PGD3 and longer ICU and hospital stays. Lung grafts placed on EVLP exhibited a significantly higher chance of developing airway anastomotic ischemic injury by 30 days posttransplant. Acute and chronic graft rejection, pulmonary function, and posttransplant survival were not different between patients with lungs screened on EVLP versus lungs with no EVLP. CONCLUSION EVLP use is associated with an increase of early posttransplant adverse events, but graft functional outcomes and patient survival are preserved.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ernest G Chan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Masashi Furukawa
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John P Ryan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Clifford
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James D Luketich
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
6
|
Wang Q, Li Y, Wu C, Wang T, Wu M. Aquaporin-1 inhibition exacerbates ischemia-reperfusion-induced lung injury in mouse. Am J Med Sci 2023; 365:84-92. [PMID: 36075463 DOI: 10.1016/j.amjms.2022.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI), which involves severe inflammation and edema, is an inevitable feature of the lung transplantation process and leads to primary graft dysfunction (PGD). The activation of aquaporin 1 (AQP1) modulates fluid transport in the alveolar space. The current study investigated the role of AQP1 in ischemia-reperfusion (IR)-induced lung injury. METHODS A mouse model of lung IR was established by clamping the left lung hilar for 1 h and released for reperfusion for 24 h. The AQP1 inhibitor acetazolamide (AZA) was administered 3 days before lung ischemia with a dose of 100 mg/kg per day via gavage. Lung injury was evaluated using the ratio of wet-to-dry weight, peripheral bronchial epithelial thickness, degree of angioedema, acute lung injury score, neutrophil infiltration, and cytokine concentrations in bronchoalveolar lavage fluid. RESULTS Compared with sham treatment, ischemia with no reperfusion (IR 0h) and ischemia with reperfusion for 24 h (IR 24 h) significantly upregulated AQP1 expression, increased the wet/dry weight ratio, angioedema, neutrophil infiltration and cytokine production (interleukin -6 and tumor necrosis factor -α) and thickened the peripheral bronchial epithelium. AZA exacerbated inflammation and pulmonary edema. CONCLUSION AQP1 may exert a protective effect against IR-induced lung injury, which could be attributed to alleviating pulmonary edema and inflammation. AQP1 upregulation might be a potential application to alleviate lung IRI and decrease the incidence of PGD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yangfan Li
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chuanqiang Wu
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Tong Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming Wu
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
7
|
Assadiasl S, Nicknam MH. Cytokines in Lung Transplantation. Lung 2022; 200:793-806. [PMID: 36348053 DOI: 10.1007/s00408-022-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Lung transplantation has developed significantly in recent years, but post-transplant care and patients' survival still need to be improved. Moreover, organ shortage urges novel modalities to improve the quality of unsuitable lungs. Cytokines, the chemical mediators of the immune system, might be used for diagnostic and therapeutic purposes in lung transplantation. Cytokine monitoring pre- and post-transplant could be applied to the prevention and early diagnosis of injurious inflammatory events including primary graft dysfunction, acute cellular rejection, bronchiolitis obliterans syndrome, restrictive allograft syndrome, and infections. In addition, preoperative cytokine removal, specific inhibition of proinflammatory cytokines, and enhancement of anti-inflammatory cytokines gene expression could be considered therapeutic options to improve lung allograft survival. Therefore, it is essential to describe the cytokines alteration during inflammatory events to gain a better insight into their role in developing the abovementioned complications. Herein, cytokine fluctuations in lung tissue, bronchoalveolar fluid, peripheral blood, and exhaled breath condensate in different phases of lung transplantation have been reviewed; besides, cytokine gene polymorphisms with clinical significance have been summarized.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran.
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Clément AA, Lamarche D, Masse MH, Légaré C, Tai LH, Fleury Deland L, Battista MC, Bouchard L, D’Aragon F. Time-course full profiling of circulating miRNAs in neurologically deceased organ donors: a proof of concept study to understand the onset of the cytokine storm. Epigenetics 2022; 17:1546-1561. [DOI: 10.1080/15592294.2022.2076048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphnée Lamarche
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Hélène Masse
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Fleury Deland
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean-Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Frédérick D’Aragon
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Bos S, Filby AJ, Vos R, Fisher AJ. Effector immune cells in Chronic Lung Allograft Dysfunction: a Systematic Review. Immunology 2022; 166:17-37. [PMID: 35137398 PMCID: PMC9426626 DOI: 10.1111/imm.13458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major barrier to long‐term survival after lung transplantation and improved insight into its underlying immunological mechanisms is critical to better understand the disease and to identify treatment targets. We systematically searched the electronic databases of PubMed and EMBASE for original research publications, published between January 2000 and April 2021, to comprehensively assess current evidence on effector immune cells in lung tissue and bronchoalveolar lavage fluid from lung transplant recipients with CLAD. Literature search revealed 1351 articles, 76 of which met the criteria for inclusion in our analysis. Our results illustrate significant complexity in both innate and adaptive immune cell responses in CLAD, along with presence of numerous immune cell products, including cytokines, chemokines and proteases associated with tissue remodelling. A clear link between neutrophils and eosinophils and CLAD incidence has been seen, in which eosinophils more specifically predisposed to restrictive allograft syndrome. The presence of cytotoxic and T‐helper cells in CLAD pathogenesis is well‐documented, although it is challenging to draw conclusions about their role in tissue processes from predominantly bronchoalveolar lavage data. In restrictive allograft syndrome, a more prominent humoral immune involvement with increased B cells, immunoglobulins and complement deposition is seen. Our evaluation of published studies over the last 20 years summarizes the complex multifactorial immunopathology of CLAD onset and progression. It highlights the phenotype of several key effector immune cells involved in CLAD pathogenesis, as well as the paucity of single cell resolution spatial studies in lung tissue from patients with CLAD.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robin Vos
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept. of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
10
|
Nemska S, Daubeuf F, Obrecht A, Israel-Biet D, Stern M, Kessler R, Roux A, Tavakoli R, Villa P, Tissot A, Danger R, Reber L, Durand E, Foureau A, Brouard S, Magnan A, Frossard N. Overexpression of the MSK1 Kinase in Patients With Chronic Lung Allograft Dysfunction and Its Confirmed Role in a Murine Model. Transplantation 2021; 105:1212-1224. [PMID: 33560725 DOI: 10.1097/tp.0000000000003606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) and its obstructive form, the obliterative bronchiolitis (OB), are the main long-term complications related to high mortality rate postlung transplantation. CLAD treatment lacks a significant success in survival. Here, we investigated a new strategy through inhibition of the proinflammatory mitogen- and stress-activated kinase 1 (MSK1) kinase. METHODS MSK1 expression was assessed in a mouse OB model after heterotopic tracheal allotransplantation. Pharmacological inhibition of MSK1 (H89, fasudil, PHA767491) was evaluated in the murine model and in a translational model using human lung primary fibroblasts in proinflammatory conditions. MSK1 expression was graded over time in biopsies from a cohort of CLAD patients. RESULTS MSK1 mRNA progressively increased during OB (6.4-fold at D21 posttransplantation). Inhibition of MSK1 allowed to counteract the damage to the epithelium (56% restoration for H89), and abolished the recruitment of MHCII+ (94%) and T cells (100%) at the early inflammatory phase of OB. In addition, it markedly decreased the late fibroproliferative obstruction in allografts (48%). MSK1 inhibitors decreased production of IL-6 (whose transcription is under the control of MSK1) released from human lung fibroblasts (96%). Finally, we confirmed occurrence of a 2.9-fold increased MSK1 mRNA expression in lung biopsies in patients at 6 months before CLAD diagnosis as compared to recipients with stable lung function. CONCLUSIONS These findings suggest the overall interest of the MSK1 kinase either as a marker or as a potential therapeutic target in lung dysfunction posttransplantation.
Collapse
Affiliation(s)
- Simona Nemska
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | - Adeline Obrecht
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | | | - Marc Stern
- Hôpital Foch, Suresnes, INRAe UMR 0892, Université de Versailles Saint-Quentin Paris-Saclay, Paris, France
| | - Romain Kessler
- Service de Pneumologie, CHU Strasbourg, Strasbourg, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, INRAe UMR 0892, Université de Versailles Saint-Quentin Paris-Saclay, Paris, France
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | - Adrien Tissot
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Richard Danger
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Laurent Reber
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eugénie Durand
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
| | - Aurore Foureau
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Antoine Magnan
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
11
|
Wong A, Liu M. Inflammatory responses in lungs from donation after brain death: Mechanisms and potential therapeutic targets. J Heart Lung Transplant 2021; 40:890-896. [PMID: 34167864 DOI: 10.1016/j.healun.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023] Open
Abstract
The vast majority of lungs used in clinical transplantation are donated after brain death (DBD). The utilization of DBD lungs is low due to brain death-induced lung injury. Moreover, inflammatory responses in DBD lungs used for transplantation contribute to ischemia-reperfusion injury and primary graft dysfunction. Work from human observational studies has demonstrated overexpression of cytokines, activation of endothelial cells, and cell death in DBD lungs, are associated with the activation of signaling pathways. Animal models have characterized the pulmonary injury induced by brain death and identified potential strategies to improve donor management. Interestingly, transcriptomic studies comparing DBD and donated after circulatory death (DCD) lungs have found that inflammatory responses are elevated in DBD lungs, while cell death pathways are elevated in DCD lungs. Development of the ex vivo lung perfusion technique, has made it possible to assess donor lungs using inflammation and cell death biomarkers. In the future, identification of potential therapeutic targets and development of novel treatments strategies may allow for lung repair during EVLP prior to transplantation.
Collapse
Affiliation(s)
- Aaron Wong
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada. https://twitter.com/aaronkkwong
| | - Mingyao Liu
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Latner Thoracic Surgical Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Departments of Surgery, Medicine and Physiology, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Riddell P, Moshkelgosha S, Levy L, Chang N, Pal P, Halloran K, Halloran P, Parkes M, Singer LG, Keshavjee S, Martinu T, Juvet SC. IL-6 receptor blockade for allograft dysfunction after lung transplantation in a patient with COPA syndrome. Clin Transl Immunology 2021; 10:e1243. [PMID: 33537146 PMCID: PMC7843402 DOI: 10.1002/cti2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Objective COPA syndrome is a genetic disorder of retrograde cis‐Golgi vesicle transport that leads to upregulation of pro‐inflammatory cytokines (mainly IL‐1β and IL‐6) and the development of interstitial lung disease (ILD). The impact of COPA syndrome on post‐lung transplant (LTx) outcome is unknown but potentially detrimental. In this case report, we describe progressive allograft dysfunction following LTx for COPA‐ILD. Following the failure of standard immunosuppressive approaches, detailed cytokine analysis was performed with the intention of personalising therapy. Methods Multiplexed cytokine analysis was performed on serum and bronchoalveolar lavage (BAL) fluid obtained pre‐ and post‐LTx. Peripheral blood mononuclear cells (PMBCs) obtained pre‐ and post‐LTx were stimulated with PMA, LPS and anti‐CD3/CD28 antibodies. Post‐LTx endobronchial biopsies underwent microarray‐based gene expression analysis. Results were compared to non‐COPA LTx recipients and non‐LTx healthy controls. Results Multiplexed cytokine analysis showed rising type I/II IFNs, and IL‐6 in BAL post‐LTx that decreased following treatment of acute rejection but rebounded with further clinical deterioration. In vitro stimulation of PMBCs suggested that myeloid cells were driving deterioration, through IL‐6 signalling pathways. Tocilizumab (IL‐6 receptor antibody) administration for 3 months (4 mg kg−1, monthly) effectively suppressed IL‐6 levels in BAL. Mucosal gene expression profile following tocilizumab suggested greater similarity to normal. Conclusion Clinical effectiveness of IL‐6 receptor blockade was not observed. However, we identified IL‐6 upregulation associated with graft injury, effective IL‐6 suppression with tocilizumab and evidence of beneficial effect on molecular transcripts. This mechanistic analysis suggests a role for IL‐6 blockade in post‐LTx care that should be investigated further.
Collapse
Affiliation(s)
- Peter Riddell
- Toronto Lung Transplant Program Toronto General Hospital Toronto ON Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Labs Toronto General Hospital Research Institute Toronto ON Canada
| | - Liran Levy
- Toronto Lung Transplant Program Toronto General Hospital Toronto ON Canada
| | - Nina Chang
- Department of Pathology Toronto General Hospital Toronto ON Canada
| | - Prodipto Pal
- Department of Pathology Toronto General Hospital Toronto ON Canada
| | - Kieran Halloran
- Department of Medicine University of Alberta Edmonton AB Canada
| | - Phil Halloran
- Department of Medicine University of Alberta Edmonton AB Canada
| | - Michael Parkes
- Transcriptome Sciences Inc. University of Alberta Edmonton AB Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program Toronto General Hospital Toronto ON Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program Toronto General Hospital Toronto ON Canada.,Latner Thoracic Research Labs Toronto General Hospital Research Institute Toronto ON Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program Toronto General Hospital Toronto ON Canada.,Latner Thoracic Research Labs Toronto General Hospital Research Institute Toronto ON Canada
| | - Stephen C Juvet
- Toronto Lung Transplant Program Toronto General Hospital Toronto ON Canada.,Latner Thoracic Research Labs Toronto General Hospital Research Institute Toronto ON Canada
| |
Collapse
|
13
|
Cyclosporin A Administration During Ex Vivo Lung Perfusion Preserves Lung Grafts in Rat Transplant Model. Transplantation 2020; 104:e252-e259. [PMID: 32217944 DOI: 10.1097/tp.0000000000003237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Despite the benefits of ex vivo lung perfusion (EVLP) such as lung reconditioning, preservation, and evaluation before transplantation, deleterious effects, including activation of proinflammatory cascades and alteration of metabolic profiles have been reported. Although patient outcomes have been favorable, further studies addressing optimal conditions are warranted. In this study, we investigated the role of the immunosuppressant drug cyclosporine A (CyA) in preserving mitochondrial function and subsequently preventing proinflammatory changes in lung grafts during EVLP. METHODS Using rat heart-lung blocks after 1-hour cold preservation, an acellular normothermic EVLP system was established for 4 hours. CyA was added into perfusate at a final concentration of 1 μM. The evaluation included lung graft function, lung compliance, and pulmonary vascular resistance as well as biochemical marker measurement in the perfusate at multiple time points. After EVLP, single orthotopic lung transplantation was performed, and the grafts were assessed 2 hours after reperfusion. RESULTS Lung grafts on EVLP with CyA exhibited significantly better functional and physiological parameters as compared with those without CyA treatment. CyA administration attenuated proinflammatory changes and prohibited glucose consumption during EVLP through mitigating mitochondrial dysfunction in lung grafts. CyA-preconditioned lungs showed better posttransplant lung early graft function and less inflammatory events compared with control. CONCLUSIONS During EVLP, CyA administration can have a preconditioning effect through both its anti-inflammatory and mitochondrial protective properties, leading to improved lung graft preservation, which may result in enhanced graft quality after transplantation.
Collapse
|
14
|
Leligdowicz A, Ross JT, Nesseler N, Matthay MA. The endogenous capacity to produce proinflammatory mediators by the ex vivo human perfused lung. Intensive Care Med Exp 2020; 8:56. [PMID: 32955627 PMCID: PMC7505905 DOI: 10.1186/s40635-020-00343-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background The ex vivo human perfused lung model has enabled optimizing donor lungs for transplantation and delineating mechanisms of lung injury. Perfusate and airspace biomarkers are a proxy of the lung response to experimental conditions. However, there is a lack of studies evaluating biomarker kinetics during perfusion and after exposure to stimuli. In this study, we analyzed the ex vivo-perfused lung response to three key perturbations: exposure to the perfusion circuit, exogenous fresh whole blood, and bacteria. Results Ninety-nine lungs rejected for transplantation underwent ex vivo perfusion. One hour after reaching experimental conditions, fresh whole blood was added to the perfusate (n = 55). Two hours after reaching target temperature, Streptococcus pneumoniae was added to the perfusate (n = 42) or to the airspaces (n = 17). Perfusate and airspace samples were collected at baseline (once lungs were equilibrated for 1 h, but before blood or bacteria were added) and 4 h later. Interleukin (IL)-6, IL-8, angiopoietin (Ang)-2, and soluble tumor necrosis factor receptor (sTNFR)-1 were quantified. Baseline perfusate and airspace biomarker levels varied significantly, and this was not related to pre-procurement PaO2:FiO2 ratio, cold ischemia time, and baseline alveolar fluid clearance (AFC). After 4 h of ex vivo perfusion, the lung demonstrated a sustained production of proinflammatory mediators. The change in biomarker levels was not influenced by baseline donor lung characteristics (cold ischemia time, baseline AFC) nor was it associated with measures of experimental epithelial (final AFC) or endothelial (percent weight gain) injury. In the presence of exogenous blood, the rise in biomarkers was attenuated. Lungs exposed to intravenous (IV) bacteria relative to control lungs demonstrated a significantly higher rise in perfusate IL-6. Conclusions The ex vivo-perfused lung has a marked endogenous capacity to produce inflammatory mediators over the course of short-term perfusion that is not significantly influenced by donor lung characteristics or the presence of exogenous blood, and only minimally affected by the introduction of systemic bacteremia. The lack of association between biomarker change and donor lung cold ischemia time, final alveolar fluid clearance, and experimental percent weight gain suggests that the maintained ability of the human lung to produce biomarkers is not merely a marker of lung epithelial or endothelial injury, but may support the function of the lung as an immune cell reservoir.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - James T Ross
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Nesseler
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France.,Univ Rennes, CHU de Rennes, Inra, Inserm, Institut NUMECAN-UMR_A 1341, UMR_S 1241, 35000, Rennes, France.,Univ Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), 35000, Rennes, France
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA.,Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Sato M. Bronchiolitis obliterans syndrome and restrictive allograft syndrome after lung transplantation: why are there two distinct forms of chronic lung allograft dysfunction? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:418. [PMID: 32355862 PMCID: PMC7186721 DOI: 10.21037/atm.2020.02.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bronchiolitis obliterans syndrome (BOS) had been considered to be the representative form of chronic rejection or chronic lung allograft dysfunction (CLAD) after lung transplantation. In BOS, small airways are affected by chronic inflammation and obliterative fibrosis, whereas peripheral lung tissue remains relatively intact. However, recognition of another form of CLAD involving multiple tissue compartments in the lung, termed restrictive allograft syndrome (RAS), raised a fundamental question: why there are two phenotypes of CLAD? Increasing clinical and experimental data suggest that RAS may be a prototype of chronic rejection after lung transplantation involving both cellular and antibody-mediated alloimmune responses. Some cases of RAS are also induced by fulminant general inflammation in lung allografts. However, BOS involves alloimmune responses and the airway-centered disease process can be explained by multiple mechanisms such as external alloimmune-independent stimuli (such as infection, aspiration and air pollution), exposure of airway-specific autoantigens and airway ischemia. Localization of immune responses in different anatomical compartments in different phenotypes of CLAD might be associated with lymphoid neogenesis or the de novo formation of lymphoid tissue in lung allografts. Better understanding of distinct mechanisms of BOS and RAS will facilitate the development of effective preventive and therapeutic strategies of CLAD.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Burki S, Noda K, Philips BJ, Velayutham M, Shiva S, Sanchez PG, Kumar A, D'Cunha J. Impact of triptolide during ex vivo lung perfusion on grafts after transplantation in a rat model. J Thorac Cardiovasc Surg 2020; 161:S0022-5223(20)30191-4. [PMID: 32169373 DOI: 10.1016/j.jtcvs.2019.12.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Ex vivo lung perfusion creates a proinflammatory environment leading to deterioration in graft quality that may contribute to post-transplant graft dysfunction. Triptolide has been shown to have a therapeutic potential in various disease states because of its anti-inflammatory properties. On this basis, we investigated the impact of triptolide on graft preservation during ex vivo lung perfusion and associated post-transplant outcomes in a rat transplant model. METHODS We performed rat normothermic ex vivo lung perfusion with acellular Steen solution containing 100 nM triptolide for 4 hours and compared the data with untreated lungs. Orthotopic single lung transplantation after ex vivo lung perfusion was performed. RESULTS Physiologic and functional parameters of lung grafts on ex vivo lung perfusion with triptolide were better than those without treatment. Graft glucose consumption was significantly attenuated on ex vivo lung perfusion with triptolide via inhibition of hypoxia signaling resulting in improved mitochondrial function and reduced oxidative stress. Also, intragraft inflammation was markedly lower in triptolide-treated lungs because of inhibition of nuclear factor-κB signaling. Furthermore, post-transplant graft function and inflammatory events were significantly improved in the triptolide group compared with the untreated group. CONCLUSIONS Treatment of lung grafts with triptolide during ex vivo lung perfusion may serve to enhance graft preservation and improve graft protection resulting in better post-transplant outcomes.
Collapse
Affiliation(s)
- Sarah Burki
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Brian J Philips
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Murugesan Velayutham
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Sruti Shiva
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Ajay Kumar
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Pheonix, Ariz.
| |
Collapse
|
17
|
Carmona P, Medina-Armenteros Y, Cabral A, Monteiro SM, Gonçalves Fonseca S, Faria AC, Lemos F, Saitovitch D, Noronha IL, Kalil J, Coelho V. Regulatory/inflammatory cellular response discrimination in operational tolerance. Nephrol Dial Transplant 2019; 34:2143-2154. [PMID: 31280312 DOI: 10.1093/ndt/gfz114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/03/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antigen-specific cellular response is essential in immune tolerance. We tested whether antigen-specific cellular response is differentially modulated in operational tolerance (OT) in renal transplantation with respect to critical antigenic challenges in allotransplantation-donor antigens, pathogenic antigens and self-antigens. METHODS We analysed the profile of immunoregulatory (REG) and pro-inflammatory (INFLAMMA) cytokines for the antigen-specific response directed to these three antigen groups, by Luminex. RESULTS We showed that, in contrast to chronic rejection and healthy individuals, OT gives rise to an immunoregulatory deviation in the cellular response to donor human leucocyte antigen DR isotype peptides, while preserving the pro-inflammatory response to pathogenic peptides. Cellular autoreactivity to the N6 heat shock protein 60 (Hsp60) peptide also showed a REG profile in OT, increasing IL4, IL-5, IL-10 and IL-13. CONCLUSIONS The REG shift of donor indirect alloreactivity in OT, with inhibition of interleukin (IL)-1B, IL-8, IL-12, IL-17, granulocyte colony-stimulating factor, Interferon-γ and monocyte chemoattractant protein-1, indicates that this may be an important mechanism in OT. In addition, the differential REG profile of cellular response to the Hsp60 peptide in OT suggests that REG autoimmunity may also play a role in human transplantation tolerance. Despite cross-reactivity of antigen-specific T cell responses, a systemic functional antigen-specific discrimination takes place in OT.
Collapse
Affiliation(s)
- Priscila Carmona
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Yordanka Medina-Armenteros
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Amanda Cabral
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Sandra Maria Monteiro
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Simone Gonçalves Fonseca
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil.,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ana Caetano Faria
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil.,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Francine Lemos
- Serviço de Transplante Renal, Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil
| | - David Saitovitch
- Divisão de Nefrologia, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Irene L Noronha
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil.,Laboratório de Nefrologia Celular e Molecular, Divisão de Nefrologia, Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Verônica Coelho
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| |
Collapse
|
18
|
Abstract
Machine perfusion is a hot topic in liver transplantation and several new perfusion concepts are currently developed. Prior to introduction into routine clinical practice, however, such perfusion approaches need to demonstrate their impact on liver function, post-transplant complications, utilization rates of high-risk organs, and cost benefits. Therefore, based on results of experimental and clinical studies, the community has to recognize the limitations of this technology. In this review, we summarize current perfusion concepts and differences between protective mechanisms of ex- and in-situ perfusion techniques. Next, we discuss which graft types may benefit most from perfusion techniques, and highlight the current understanding of liver viability testing. Finally, we present results from recent clinical trials involving machine liver perfusion, and analyze the value of different outcome parameters, currently used as endpoints for randomized controlled trials in the field.
Collapse
Affiliation(s)
- Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Xavier Muller
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Protective effects of hydrogen inhalation during the warm ischemia phase against lung ischemia-reperfusion injury in rat donors after cardiac death. Microvasc Res 2019; 125:103885. [PMID: 31175855 DOI: 10.1016/j.mvr.2019.103885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Successful amelioration of long-term warm ischemia lung injury in donors after cardiac death (DCDs) can remarkably improve outcomes. Hydrogen gas provides potent anti-inflammatory and antioxidant effects against ischemia-reperfusion injury (IRI). This study observed the effects of hydrogen inhalation on lung grafts during the warm ischemia phase in cardiac death donors. METHODS After cardiac death, rat donor lungs (n = 8) underwent mechanical ventilation with 40% oxygen plus 60% nitrogen (control group) or 3% hydrogen and 40% oxygen plus 57% nitrogen (hydrogen group) for 2 h during the warm ischemia phase in situ. Then, lung transplantation was performed after 2 h of cold storage and 3 h of recipient reperfusion prior to lung graft assessment. Rats that underwent left thoracotomy without transplantation served as the sham group (n = 8). The results of static compliance and arterial blood gas analysis were assessed in the recipients. The wet-to-dry weight ratio (W/D), inflammation, oxidative stress, cell apoptosis and histologic changes were evaluated after 3 h of reperfusion. Nuclear factor kappa B (NF-κB) protein expression in the graft was analyzed by Western blotting. RESULTS Compared with the sham group, lung function, W/D, inflammatory reaction, oxidative stress and histological changes were decreased in both transplant groups (control and hydrogen groups). However, compared with the control group, exposure to 3% hydrogen significantly improved lung graft static compliance and oxygenation and remarkably decreased the wet-to-dry weight ratio, inflammatory reactions, and lipid peroxidation. Furthermore, hydrogen improved the lung graft histological changes, decreased the lung injury score and apoptotic index and reduced NF-κB nuclear accumulation in the lung grafts. CONCLUSION Lung inhalation with 3% hydrogen during the warm ischemia phase attenuated lung graft IRI via NF-κB-dependent anti-inflammatory and antioxidative effects in rat donors after cardiac death.
Collapse
|
20
|
Hypothermic Oxygenated Perfusion: A Simple and Effective Method to Modulate the Immune Response in Kidney Transplantation. Transplantation 2019; 103:e128-e136. [DOI: 10.1097/tp.0000000000002634] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Glanville AR, Verleden GM, Todd JL, Benden C, Calabrese F, Gottlieb J, Hachem RR, Levine D, Meloni F, Palmer SM, Roman A, Sato M, Singer LG, Tokman S, Verleden SE, von der Thüsen J, Vos R, Snell G. Chronic lung allograft dysfunction: Definition and update of restrictive allograft syndrome-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 2019; 38:483-492. [PMID: 31027539 DOI: 10.1016/j.healun.2019.03.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Allan R Glanville
- Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | | | - Fiorella Calabrese
- Department of Cardiothoracic and Vascular Sciences, University of Padova Medical School, Padova, Italy
| | - Jens Gottlieb
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center for Lung Research, Hannover, Germany
| | - Ramsey R Hachem
- Division of Pulmonary & Critical Care, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Deborah Levine
- Pulmonary Disease and Critical Care Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Federica Meloni
- Department of Respiratory Diseases Policlinico San Matteo Foundation & University of Pavia, Pavia, Italy
| | - Scott M Palmer
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Antonio Roman
- Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Jan von der Thüsen
- Department of Pathology, University Medical Center, Rotterdam, The Netherlands
| | - Robin Vos
- University Hospital Gasthuisberg, Leuven, Belgium
| | - Gregory Snell
- Lung Transplant Service, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Li S, Wang S, Murugan R, Al-Khafaji A, Lebovitz DJ, Souter M, Stuart SRN, Kellum JA. Donor biomarkers as predictors of organ use and recipient survival after neurologically deceased donor organ transplantation. J Crit Care 2018; 48:42-47. [PMID: 30172032 DOI: 10.1016/j.jcrc.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/05/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023]
Abstract
PURPOSE We sought to build prediction models for organ transplantation and recipient survival using both biomarkers and clinical information. MATERIALS AND METHODS We abstracted clinical variables from a previous randomized trial (n = 556) of donor management. In a subset of donors (n = 97), we measured two candidate biomarkers in plasma at enrollment and just prior to explantation. RESULTS Secretory leukocyte protease inhibitor (SLPI) was significant for predicting liver transplantation (C-statistic 0.65 (0.53, 0.78)). SLPI also significantly improved the predictive performance of a clinical model for liver transplantation (integrated discrimination improvement (IDI): 0.090 (0.009, 0.210)). For other organs, clinical variables alone had strong predictive ability (C-statistic >0.80). Recipient 3-years survival was 80.0% (71.9%, 87.0%). Donor IL-6 was significantly associated with recipient 3-years survival (adjusted Hazard Ratio (95%CI): 1.26(1.08, 1.48), P = .004). Neither clinical variables nor biomarkers showed strong predictive ability for 3-year recipient survival. CONCLUSIONS Plasma biomarkers in neurologically deceased donors were associated with organ use. SLPI enhanced prediction within a liver transplantation model, whereas IL-6 before transplantation was significantly associated with recipient 3-year survival. Clinicaltrials.gov: NCT00987714.
Collapse
Affiliation(s)
- Shengnan Li
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shu Wang
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Raghavan Murugan
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ali Al-Khafaji
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daniel J Lebovitz
- Department of Critical Care, Akron Children's Hospital, Akron, OH, United States
| | - Michael Souter
- Department of Anesthesiology & Pain Medicine, University of Washington, Harborview Medical Center, Seattle, WA, United States
| | - Susan R N Stuart
- Center for Organ Recovery and Education, Pittsburgh, PA, United States
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | | |
Collapse
|
23
|
Verleden SE, Martens A, Ordies S, Neyrinck AP, Van Raemdonck DE, Verleden GM, Vanaudenaerde BM, Vos R. Immediate post-operative broncho-alveolar lavage IL-6 and IL-8 are associated with early outcomes after lung transplantation. Clin Transplant 2018; 32:e13219. [PMID: 29405435 DOI: 10.1111/ctr.13219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Previous studies demonstrated that increased cytokine and chemokine levels, either shortly before or after lung transplantation, were associated with post-transplant outcome. However, small patient cohorts were mostly used, focusing on 1 molecule and 1 outcome. In a large single-center cohort, we investigated the predictive value of immediate post-operative broncho-alveolar lavage (BAL) expression of IL-6 and IL-8 on multiple key outcomes, including PGD, CLAD, graft survival, as well as several secondary outcomes. MATERIAL AND METHODS All patients undergoing a first lung transplant in whom routine bronchoscopy with BAL was performed during the first 48 hours post-transplantation were included. IL-6 and IL-8 protein levels were measured in BAL via ELISA. RESULTS A total of 336 patients were included. High IL-6 levels measured within 24 hours of transplantation were associated with longer time on ICU and time to hospital discharge; and increased prevalence of PGD grade 3. Increased IL-8 levels, measured within 24 hours, were associated with PGD3, more ECMO use, higher donor paO2 , younger donor age, but not with other short-or long-term outcome. IL-6 and IL-8 measured between 24 and 48 hours of transplantation were not associated with any outcome parameters. CONCLUSION Recipient BAL IL-6 and IL-8 within 24 hours post-transplant were associated with an increased incidence of PGD3.
Collapse
Affiliation(s)
- Stijn E Verleden
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - An Martens
- Department of cardiovascular sciences, KU Leuven, Leuven, Belgium
| | - Sofie Ordies
- Department of cardiovascular sciences, KU Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of cardiovascular sciences, KU Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - Geert M Verleden
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Lung transplant unit, Department of chronic diseases, metabolism and ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Targeting Circulating Leukocytes and Pyroptosis During Ex Vivo Lung Perfusion Improves Lung Preservation. Transplantation 2017; 101:2841-2849. [PMID: 28452921 DOI: 10.1097/tp.0000000000001798] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Takahashi M, Chen-Yoshikawa TF, Saito M, Tanaka S, Miyamoto E, Ohata K, Kondo T, Motoyama H, Hijiya K, Aoyama A, Date H. Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury. Eur J Cardiothorac Surg 2017; 51:442-448. [PMID: 28364439 DOI: 10.1093/ejcts/ezw342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
Objectives Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Methods Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Results Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1β and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Conclusions Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI.
Collapse
Affiliation(s)
- Mamoru Takahashi
- Central Animal Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | - Masao Saito
- Department of Aerospace Psychology, Nagoya University, Japan
| | - Satona Tanaka
- Research Institute of Disaster management and EMS, Kokushikan University, Tokyo, Japan
| | - Ei Miyamoto
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Ohata
- Department of Gastroenterology, NTT Medical Center Tokyo,Higashi-gotanda, Shinagawa-ku, Japan
| | - Takeshi Kondo
- Department of Internal Medicine, Division of Gastroenterology, Hyogo College of Medicine, Hyogo, Japan
| | - Hideki Motoyama
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kyoko Hijiya
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Aoyama
- Department of Public Health and Health Systems, Nagoya University School of Medicine, Nagoya, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Andreasson ASI, Karamanou DM, Gillespie CS, Özalp F, Butt T, Hill P, Jiwa K, Walden HR, Green NJ, Borthwick LA, Clark SC, Pauli H, Gould KF, Corris PA, Ali S, Dark JH, Fisher AJ. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion. Eur J Cardiothorac Surg 2017; 51:577-586. [PMID: 28082471 PMCID: PMC5400024 DOI: 10.1093/ejcts/ezw358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES: Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. METHODS: In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. RESULTS: Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. CONCLUSIONS: This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study.
Collapse
Affiliation(s)
- Anders S I Andreasson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Danai M Karamanou
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Colin S Gillespie
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, UK
| | - Faruk Özalp
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Tanveer Butt
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Paul Hill
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Kasim Jiwa
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Hannah R Walden
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nicola J Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Stephen C Clark
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Henning Pauli
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Kate F Gould
- Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Paul A Corris
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John H Dark
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Cardiopulmonary Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
28
|
Horie M, Saito T, Moseley J, D'Errico L, Salazar P, Nakajima D, Brock K, Yasufuku K, Binnie M, Keshavjee S, Paul N. The role of biomechanical anatomical modeling via computed tomography for identification of restrictive allograft syndrome. Clin Transplant 2017; 31. [DOI: 10.1111/ctr.13027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Miho Horie
- Joint Department of Medical Imaging; University Health Network; University of Toronto; Toronto ON Canada
- Institute for Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Canada
| | - Tomohito Saito
- Latner Thoracic Surgery Research Laboratories; Toronto General Research Institute; University Health Network; University of Toronto; Toronto ON Canada
- Toronto Lung Transplant Program; University Health Network; University of Toronto; ON Canada
- Department of Thoracic Surgery; Kansai Medical University; Hirakara Japan
| | - Joanne Moseley
- Princess Margaret Cancer Center; University Health Network; University of Toronto; Toronto ON Canada
| | - Luigia D'Errico
- Joint Department of Medical Imaging; University Health Network; University of Toronto; Toronto ON Canada
| | | | - Daisuke Nakajima
- Latner Thoracic Surgery Research Laboratories; Toronto General Research Institute; University Health Network; University of Toronto; Toronto ON Canada
- Toronto Lung Transplant Program; University Health Network; University of Toronto; ON Canada
| | - Kristy Brock
- Department of Imaging Physics; The University of Texas M.D. Anderson Cancer Center; Houston TX USA
| | - Kazuhiro Yasufuku
- Latner Thoracic Surgery Research Laboratories; Toronto General Research Institute; University Health Network; University of Toronto; Toronto ON Canada
- Toronto Lung Transplant Program; University Health Network; University of Toronto; ON Canada
| | - Matthew Binnie
- Latner Thoracic Surgery Research Laboratories; Toronto General Research Institute; University Health Network; University of Toronto; Toronto ON Canada
- Toronto Lung Transplant Program; University Health Network; University of Toronto; ON Canada
| | - Shaf Keshavjee
- Institute for Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Canada
- Latner Thoracic Surgery Research Laboratories; Toronto General Research Institute; University Health Network; University of Toronto; Toronto ON Canada
- Toronto Lung Transplant Program; University Health Network; University of Toronto; ON Canada
- Department of Thoracic Surgery; Kansai Medical University; Hirakara Japan
| | - Narinder Paul
- Joint Department of Medical Imaging; University Health Network; University of Toronto; Toronto ON Canada
- Institute for Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Canada
| |
Collapse
|
29
|
Suberviola B, Rellan L, Riera J, Iranzo R, Garcia Campos A, Robles JC, Vicente R, Miñambres E, Santibanez M. Role of biomarkers in early infectious complications after lung transplantation. PLoS One 2017; 12:e0180202. [PMID: 28704503 PMCID: PMC5509107 DOI: 10.1371/journal.pone.0180202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
Background Infections and primary graft dysfunction are devastating complications in the immediate postoperative period following lung transplantation. Nowadays, reliable diagnostic tools are not available. Biomarkers could improve early infection diagnosis. Methods Multicentre prospective observational study that included all centres authorized to perform lung transplantation in Spain. Lung infection and/or primary graft dysfunction presentation during study period (first postoperative week) was determined. Biomarkers were measured on ICU admission and daily till ICU discharge or for the following 6 consecutive postoperative days. Results We included 233 patients. Median PCT levels were significantly lower in patients with no infection than in patients with Infection on all follow up days. PCT levels were similar for PGD grades 1 and 2 and increased significantly in grade 3. CRP levels were similar in all groups, and no significant differences were observed at any study time point. In the absence of PGD grade 3, PCT levels above median (0.50 ng/ml on admission or 1.17 ng/ml on day 1) were significantly associated with more than two- and three-fold increase in the risk of infection (adjusted Odds Ratio 2.37, 95% confidence interval 1.06 to 5.30 and 3.44, 95% confidence interval 1.52 to 7.78, respectively). Conclusions In the absence of severe primary graft dysfunction, procalcitonin can be useful in detecting infections during the first postoperative week. PGD grade 3 significantly increases PCT levels and interferes with the capacity of PCT as a marker of infection. PCT was superior to CRP in the diagnosis of infection during the study period.
Collapse
Affiliation(s)
- Borja Suberviola
- Critical Care Department, Hospital Universitario Marqués de Valdecilla – IDIVAL, Santander, Spain
- * E-mail:
| | - Luzdivina Rellan
- Department of Anesthesiology, Complexo Hospitalario Universitario A Coruna, A Coruna, Spain
| | - Jordi Riera
- Critical Care Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Reyes Iranzo
- Department of Anesthesiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Juan Carlos Robles
- Transplant Coordination Unit, Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Rosario Vicente
- Department of Anesthesiology, Hospital Universitario y Politécnico de La Fe, Valencia, Spain
| | - Eduardo Miñambres
- Critical Care Department - Transplant Coordination Unit, Hospital Universitario Marques de Valdecilla – IDIVAL, Santander, Spain
| | | |
Collapse
|
30
|
Berastegui C, Gómez-Ollés S, Sánchez-Vidaurre S, Culebras M, Monforte V, López-Meseguer M, Bravo C, Ramon MA, Romero L, Sole J, Cruz MJ, Román A. BALF cytokines in different phenotypes of chronic lung allograft dysfunction in lung transplant patients. Clin Transplant 2017; 31. [DOI: 10.1111/ctr.12898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Cristina Berastegui
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Susana Gómez-Ollés
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
- Ciber Enfermedades Respiratorias (Ciberes); Barcelona Spain
| | - Sara Sánchez-Vidaurre
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Mario Culebras
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Victor Monforte
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
- Ciber Enfermedades Respiratorias (Ciberes); Barcelona Spain
| | - Manuel López-Meseguer
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Carlos Bravo
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
- Ciber Enfermedades Respiratorias (Ciberes); Barcelona Spain
| | - Maria-Antonia Ramon
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Laura Romero
- Servei de Cirurgia Toràcica; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Joan Sole
- Servei de Cirurgia Toràcica; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Maria-Jesus Cruz
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
- Ciber Enfermedades Respiratorias (Ciberes); Barcelona Spain
| | - Antonio Román
- Servei de Pneumologia; Hospital Universitari Vall d'Hebron; Universitat Autònoma de Barcelona; Barcelona Spain
- Ciber Enfermedades Respiratorias (Ciberes); Barcelona Spain
| |
Collapse
|
31
|
|
32
|
Singer JP, Diamond JM, Gries CJ, McDonnough J, Blanc PD, Shah R, Dean MY, Hersh B, Wolters PJ, Tokman S, Arcasoy SM, Ramphal K, Greenland JR, Smith N, Heffernan P, Shah L, Shrestha P, Golden JA, Blumenthal NP, Huang D, Sonett J, Hays S, Oyster M, Katz PP, Robbins H, Brown M, Leard LE, Kukreja J, Bacchetta M, Bush E, D'Ovidio F, Rushefski M, Raza K, Christie JD, Lederer DJ. Frailty Phenotypes, Disability, and Outcomes in Adult Candidates for Lung Transplantation. Am J Respir Crit Care Med 2016; 192:1325-34. [PMID: 26258797 DOI: 10.1164/rccm.201506-1150oc] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Frailty is associated with morbidity and mortality in abdominal organ transplantation but has not been examined in lung transplantation. OBJECTIVES To examine the construct and predictive validity of frailty phenotypes in lung transplant candidates. METHODS In a multicenter prospective cohort, we measured frailty with the Fried Frailty Phenotype (FFP) and Short Physical Performance Battery (SPPB). We evaluated construct validity through comparisons with conceptually related factors. In a nested case-control study of frail and nonfrail subjects, we measured serum IL-6, tumor necrosis factor receptor 1, insulin-like growth factor I, and leptin. We estimated the association between frailty and disability using the Lung Transplant Valued Life Activities disability scale. We estimated the association between frailty and risk of delisting or death before transplant using multivariate logistic and Cox models, respectively. MEASUREMENTS AND MAIN RESULTS Of 395 subjects, 354 completed FFP assessments and 262 completed SPPB assessments; 28% were frail by FFP (95% confidence interval [CI], 24-33%) and 10% based on the SPPB (95% CI, 7-14%). By either measure, frailty correlated more strongly with exercise capacity and grip strength than with lung function. Frail subjects tended to have higher plasma IL-6 and tumor necrosis factor receptor 1 and lower insulin-like growth factor I and leptin. Frailty by either measure was associated with greater disability. After adjusting for age, sex, diagnosis, and transplant center, both FFP and SPPB were associated with increased risk of delisting or death before lung transplant. For every 1-point worsening in score, hazard ratios were 1.30 (95% CI, 1.01-1.67) for FFP and 1.53 (95% CI, 1.19-1.59) for SPPB. CONCLUSIONS Frailty is prevalent among lung transplant candidates and is independently associated with greater disability and an increased risk of delisting or death.
Collapse
Affiliation(s)
| | | | - Cynthia J Gries
- 3 Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | - Beverly Hersh
- 3 Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | - Nancy Smith
- 5 Department of Surgery, College of Physicians and Surgeons, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jasleen Kukreja
- 6 Department of Surgery, University of California, San Francisco, San Francisco, California
| | | | - Errol Bush
- 6 Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Frank D'Ovidio
- 5 Department of Surgery, College of Physicians and Surgeons, and
| | | | | | - Jason D Christie
- 2 Department of Medicine and.,7 Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Lederer
- 4 Department of Medicine.,8 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
33
|
Lung Transplantation. PATHOLOGY OF TRANSPLANTATION 2016. [PMCID: PMC7153460 DOI: 10.1007/978-3-319-29683-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The therapeutic options for patients with advanced pulmonary parenchymal or vascular disorders are currently limited. Lung transplantation remains one of the few viable interventions, but on account of the insufficient donor pool only a minority of these patients actually undergo the procedure each year. Following transplantation there are a number of early and late allograft complications such as primary graft dysfunction, allograft rejection, infection, post-transplant lymphoproliferative disorder and late injury that is now classified as chronic lung allograft dysfunction. The pathologist plays an essential role in the diagnosis and classification of these myriad complications. Although the transplant procedures are performed in selected centers patients typically return to their local centers. When complications arise it is often the responsibility of the local pathologist to evaluate specimens. Therefore familiarity with the pathology of lung transplantation is important.
Collapse
|
34
|
Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, Keshavjee S, Chow CW. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant 2016; 16:342-52. [PMID: 26308240 DOI: 10.1111/ajt.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction, the major cause of death following lung transplantation, usually manifests as irreversible airflow obstruction associated with obliterative bronchiolitis (OB), a lesion characterized by chronic inflammation, lymphoid neogenesis, fibroproliferation and small airway obliteration. Spleen tyrosine kinase (Syk), a tyrosine kinase that regulates B cell function and innate immunity, has been implicated in the pathogenesis of chronic inflammation and tissue repair. This study evaluated the role of Syk in development of OB, using an intrapulmonary tracheal transplant model of OB with the conditional Syk-knockout Syk(flox/flox) //rosa26-CreER(T2) mice and a Syk-selective inhibitor, GSK2230413. BALB/c trachea allografts were transplanted into Syk-knockout (Syk(del/del) ) mice or wild-type C57BL/6 recipients treated with GSK2230413. At day 28, histological analysis revealed that in the Syk(del/del) and GSK2230413-treated C57BL/6 recipients, the graft lumen remained open compared with allografts transplanted into Syk-expressing (Syk(flox/flox) ) and placebo control-treated C57BL/6 recipients. Immunofluorescence showed lymphoid neogenesis with distinct B and T cell zones in control mice. In contrast, lymphoid neogenesis was absent and few B or T cells were found in Syk(del/del) and GSK2230413-treated mice. These observations suggest that inhibition of Syk may be a potential therapeutic strategy for the management of OB following lung transplantation.
Collapse
Affiliation(s)
- Y Matsuda
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - X Wang
- Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - H Oishi
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Z Guan
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Saito
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Liu
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - S Keshavjee
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - C-W Chow
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Levvey BJ, Whitford HM, Williams TJ, Westall GP, Paraskeva M, Manterfield C, Miller T, McGiffin D, Snell GI. Donation After Circulatory Determination of Death Lung Transplantation for Pulmonary Arterial Hypertension: Passing the Toughest Test. Am J Transplant 2015; 15:3208-14. [PMID: 26189486 DOI: 10.1111/ajt.13388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/06/2015] [Accepted: 05/16/2015] [Indexed: 01/25/2023]
Abstract
Lung transplantation (LTx) is a therapeutic option for severe pulmonary arterial hypertension (PAH) patients failing optimal medical therapy. The use of donation after circulatory determination of death (DCDD) donor lungs for PAH LTx has rarely been reported, primarily reflecting concerns that DCDD lungs represent extended criteria donors, at risk of morbidity and mortality. A retrospective study of all Alfred Hospital DCDD and DNDD (donation after neurologic determination of death) PAH LTx was undertaken. Protocolized fluid/inotrope/ventilator and extracorporeal membrane oxygenation (ECMO) strategies were utilized. Since our first DCDD LTx in 2006, 512 LTx have been performed. Of 31 PAH recipients, 11 received DCDD lungs (11% of DCDD LTx) and 20 received DNDD lungs (5% of DNDD LTx) (p = 0.04). Only one PAH patient died on the LTx waiting list. Peri-LTx ECMO was utilized in 3/11 (27%) DCDD and 6/20 (30%) DNDD PAH LTx (p = 0.68). Primary graft dysfunction, intensive care, and overall stay were the same in both groups. Survival at 1 and 8 years was 100% and 80% for DCDD versus 100% and 70% for DNDD LTx (p = 0.88), respectively. In conclusion, excellent results can be achieved for PAH LTx. DCDD donor lungs are not extended lungs per se having passed the toughest test.
Collapse
Affiliation(s)
- B J Levvey
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - H M Whitford
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - T J Williams
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - G P Westall
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - M Paraskeva
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - C Manterfield
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - T Miller
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - D McGiffin
- Department of Cardiothoracic Surgery, The Alfred Hospital, Melbourne, Victoria, Australia
| | - G I Snell
- Lung Transplant Service, Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Thompson BR, Ellis MJ, Stuart-Andrews C, Lopez M, Kedarisetty S, Snell GI, Prisk GK. Early bronchiolitis obliterans syndrome shows an abnormality of perfusion not ventilation in lung transplant recipients. Respir Physiol Neurobiol 2015; 216:28-34. [DOI: 10.1016/j.resp.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
37
|
Saito T, Horie M, Sato M, Nakajima D, Shoushtarizadeh H, Binnie M, Azad S, Hwang DM, Machuca TN, Waddell TK, Singer LG, Cypel M, Liu M, Paul NS, Keshavjee S. Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction. J Heart Lung Transplant 2015; 35:59-66. [PMID: 26342441 DOI: 10.1016/j.healun.2015.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 07/01/2015] [Accepted: 07/17/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. METHODS This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RESULTS RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p < 0.0001), whereas BOS showed no significant post-transplant change (mean 4,318 ml vs 4,396 ml, p = 0.214). The area under the receiver operating characteristic curve of CT lung volume for differentiating RAS from BOS was 0.959 (95% confidence interval 0.912 to 1.01, p < 0.0001) and the calculated accuracy was 0.938 at a threshold of 85%. CONCLUSION In bilateral lung or heart‒lung transplant patients with CLAD, low-dose CT volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS.
Collapse
Affiliation(s)
- Tomohito Saito
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, Hirakara, Japan
| | - Miho Horie
- Cardiothoracic Division, Department of Medical Imaging, Time Resolved Imaging and Image Optimization Core Laboratory, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Masaaki Sato
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Daisuke Nakajima
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Hassan Shoushtarizadeh
- Cardiothoracic Division, Department of Medical Imaging, Time Resolved Imaging and Image Optimization Core Laboratory, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Binnie
- Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sassan Azad
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David M Hwang
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tiago N Machuca
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lianne G Singer
- Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Narinder S Paul
- Cardiothoracic Division, Department of Medical Imaging, Time Resolved Imaging and Image Optimization Core Laboratory, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, Hirakara, Japan.
| |
Collapse
|
38
|
Characteristic Patterns in the Fibrotic Lung. Comparing Idiopathic Pulmonary Fibrosis with Chronic Lung Allograft Dysfunction. Ann Am Thorac Soc 2015; 12 Suppl 1:S34-41. [DOI: 10.1513/annalsats.201410-476mg] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
39
|
Salvadori M, Bertoni E. What's new in clinical solid organ transplantation by 2013. World J Transplant 2014; 4:243-66. [PMID: 25540734 PMCID: PMC4274595 DOI: 10.5500/wjt.v4.i4.243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/27/2014] [Indexed: 02/05/2023] Open
Abstract
Innovative and exciting advances in the clinical science in solid organ transplantation continuously realize as the results of studies, clinical trials, international conferences, consensus conferences, new technologies and discoveries. This review will address to the full spectrum of news in transplantation, that verified by 2013. The key areas covered are the transplantation activity, with particular regards to the donors, the news for solid organs such as kidney, pancreas, liver, heart and lung, the news in immunosuppressive therapies, the news in the field of tolerance and some of the main complications following transplantation as infections and cancers. The period of time covered by the study starts from the international meetings held in 2012, whose results were published in 2013, up to the 2013 meetings, conferences and consensus published in the first months of 2014. In particular for every organ, the trends in numbers and survival have been reviewed as well as the most relevant problems such as organ preservation, ischemia reperfusion injuries, and rejections with particular regards to the antibody mediated rejection that involves all solid organs. The new drugs and strategies applied in organ transplantation have been divided into new way of using old drugs or strategies and drugs new not yet on the market, but on phase Ito III of clinical studies and trials.
Collapse
|
40
|
Hydrogen preconditioning during ex vivo lung perfusion improves the quality of lung grafts in rats. Transplantation 2014; 98:499-506. [PMID: 25121557 DOI: 10.1097/tp.0000000000000254] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although the benefits of ex vivo lung perfusion (EVLP) have been globally advocated, the potentially deleterious effects of applying EVLP, in particular activation of proinflammatory cascades and alteration of metabolic profiles, are rarely discussed. This study examined proinflammatory events and metabolic profiles in lung grafts on EVLP and tested whether preconditioning lung grafts with inhaled hydrogen, a potent, cytoprotective gaseous signaling molecule, would alter the lungs' response to EVLP. METHODS Rat heart-lung blocks were mounted on an acellular normothermic EVLP system for 4 hr and ventilated with air or air supplemented with 2% hydrogen. Arterial and airway pressures were monitored continuously; perfusate was sampled hourly to examine oxygenation. After EVLP, the lung grafts were transplanted orthotopically into syngeneic rats, and lung function was examined. RESULTS Placing lung grafts on EVLP resulted in significant upregulation of the messenger RNAs for several proinflammatory cytokines, higher glucose consumption, and increased lactate production. Hydrogen administration attenuated proinflammatory changes during EVLP through upregulation of the heme oxygenase-1. Hydrogen administration also promoted mitochondrial biogenesis and significantly decreased lactate production. Additionally, in the hydrogen-treated lungs, the expression of hypoxia-inducible factor-1 was significantly attenuated during EVLP. These effects were maintained throughout EVLP and led to better posttransplant lung graft function in the recipients of hydrogen-treated lungs. CONCLUSIONS Lung grafts on EVLP exhibited prominent proinflammatory changes and compromised metabolic profiles. Preconditioning lung grafts using inhaled hydrogen attenuated these proinflammatory changes, promoted mitochondrial biogenesis in the lungs throughout the procedure, and resulted in better posttransplant graft function.
Collapse
|
41
|
Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Van Raemdonck DE, Dupont LJ, Vanaudenaerde BM, Verleden G, Vos R. Restrictive chronic lung allograft dysfunction: Where are we now? J Heart Lung Transplant 2014; 34:625-30. [PMID: 25577564 DOI: 10.1016/j.healun.2014.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) remains a frequent and troublesome complication after lung transplantation. Apart from bronchiolitis obliterans syndrome (BOS), a restrictive phenotype of CLAD (rCLAD) has recently been recognized, which occurs in approximately 30% of CLAD patients. The main characteristics of rCLAD include a restrictive pulmonary function pattern with a persistent decline in lung function (FEV1, FVC and TLC), persistent parenchymal infiltrates and (sub)pleural thickening on chest CT scan, as well as pleuroparenchymal fibroelastosis and obliterative bronchiolitis on histopathologic examination. Once diagnosed, median survival is only 6 to 18 months compared with 3 to 5 years with BOS. In this perspective we review the historic evidence for rCLAD and describe the different diagnostic criteria and prognosis. Furthermore, we elaborate on the typical radiologic and histopathologic presentations of rCLAD and highlight risk factors and mechanisms. Last, we summarize some opportunities for further research including the urgent need for adequate therapy. In this perspective we not only assess the current knowledge, but also clarify the existing gaps in understanding this increasingly recognized complication after lung transplantation.
Collapse
Affiliation(s)
- Stijn E Verleden
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium.
| | - David Ruttens
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Elly Vandermeulen
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Hannelore Bellon
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Lieven J Dupont
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Geert Verleden
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Robin Vos
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| |
Collapse
|
42
|
Abstract
Research in pulmonary transplantation is actively evolving in quality and scope to meet the challenges of a growing population of lung allograft recipients. In 2013, research groups leveraged large publicly available datasets in addition to multicenter research networks and single-center studies to make significant contributions to our knowledge and clinical care in the areas of donor use, clinical transplant outcomes, mechanisms of rejection, infectious complications, and chronic allograft dysfunction.
Collapse
Affiliation(s)
- Jamie L Todd
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | |
Collapse
|