1
|
Nascimento H, Martins TMM, Moreira R, Barbieri G, Pires P, Carvalho LN, Rosa LR, Almeida A, Araujo MS, Pessuti CL, Ferrer H, Pereira Gomes JÁ, Belfort R, Raia S. Current Scenario and Future Perspectives of Porcine Corneal Xenotransplantation. Cornea 2024:00003226-990000000-00715. [PMID: 39413247 DOI: 10.1097/ico.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
ABSTRACT Corneal diseases represent a significant cause of blindness worldwide, with corneal transplantation being an effective treatment to prevent vision loss. Despite substantial advances in transplantation techniques, the demand for donor corneas exceeds the available supply, particularly in developing countries. Cornea xenotransplantation has emerged as a promising strategy to address the worldwide scarcity, notably using porcine corneas. In addition to the inherent immune privilege of the cornea, the low cost of porcine breeding and the anatomical and physiological similarities between humans and pigs have made porcine corneas a viable alternative. Nonetheless, ethical concerns, specifically the risk of xenozoonotic transmission and the necessity for stringent biosafety measures, remain significant obstacles. Moreover, the success of xenotransplantation is compromised by innate and adaptive immune responses, which requires meticulous consideration and further studies. Despite these challenges, recent breakthroughs have further contributed to reducing immunogenicity while preserving the corneal architecture. Advances in genetic engineering, such as the use of CRISPR-Cas9 to eliminate critical porcine antigens, have shown promise for mitigating immune reactions. Additionally, new immunosuppressive protocols, such as have techniques like decellularization and the use of porcine-derived acellular matrices, have greatly increased graft survival in preclinical models. Future research must focus on refining immunomodulatory strategies and improving graft preparation techniques to ensure the long-term survival and safety of porcine corneal xenotransplantation in clinical trials in humans.
Collapse
Affiliation(s)
- Heloisa Nascimento
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Thaís M M Martins
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
| | | | - Gabriel Barbieri
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro Pires
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Lucimeire N Carvalho
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Larissa R Rosa
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Augusto Almeida
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | | | - Carmen Luz Pessuti
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Henrique Ferrer
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | - Silvano Raia
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Kim SJ, Moon J. Narrative Review of the Safety of Using Pigs for Xenotransplantation: Characteristics and Diagnostic Methods of Vertical Transmissible Viruses. Biomedicines 2024; 12:1181. [PMID: 38927388 PMCID: PMC11200752 DOI: 10.3390/biomedicines12061181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Amid the deepening imbalance in the supply and demand of allogeneic organs, xenotransplantation can be a practical alternative because it makes an unlimited supply of organs possible. However, to perform xenotransplantation on patients, the source animals to be used must be free from infectious agents. This requires the breeding of animals using assisted reproductive techniques, such as somatic cell nuclear transfer, embryo transfer, and cesarean section, without colostrum derived in designated pathogen-free (DPF) facilities. Most infectious agents can be removed from animals produced via these methods, but several viruses known to pass through the placenta are not easy to remove, even with these methods. Therefore, in this narrative review, we examine the characteristics of several viruses that are important to consider in xenotransplantation due to their ability to cross the placenta, and investigate how these viruses can be detected. This review is intended to help maintain DPF facilities by preventing animals infected with the virus from entering DPF facilities and to help select pigs suitable for xenotransplantation.
Collapse
Affiliation(s)
- Su-Jin Kim
- Apures Co., Ltd., 44, Hansan-gil, Cheongbuk-eup, Pyeongtaek-si 17792, Gyeonggi-do, Republic of Korea;
| | - Joonho Moon
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Ali A, Kemter E, Wolf E. Advances in Organ and Tissue Xenotransplantation. Annu Rev Anim Biosci 2024; 12:369-390. [PMID: 37906838 DOI: 10.1146/annurev-animal-021122-102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
End-stage organ failure can result from various preexisting conditions and occurs in patients of all ages, and organ transplantation remains its only treatment. In recent years, extensive research has been done to explore the possibility of transplanting animal organs into humans, a process referred to as xenotransplantation. Due to their matching organ sizes and other anatomical and physiological similarities with humans, pigs are the preferred organ donor species. Organ rejection due to host immune response and possible interspecies infectious pathogen transmission have been the biggest hurdles to xenotransplantation's success. Use of genetically engineered pigs as tissue and organ donors for xenotransplantation has helped to address these hurdles. Although several preclinical trials have been conducted in nonhuman primates, some barriers still exist and demand further efforts. This review focuses on the recent advances and remaining challenges in organ and tissue xenotransplantation.
Collapse
Affiliation(s)
- Asghar Ali
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Singh AK, Goerlich CE, Zhang T, Lewis BG, Hershfeld A, Mohiuddin MM. CD40-CD40L Blockade: Update on Novel Investigational Therapeutics for Transplantation. Transplantation 2023; 107:1472-1481. [PMID: 36584382 PMCID: PMC10287837 DOI: 10.1097/tp.0000000000004469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective immune responses require antigen presentation by major histocompatibility complexes with cognate T-cell receptor and antigen-independent costimulatory signaling for T-cell activation, proliferation, and differentiation. Among several costimulatory signals, CD40-CD40L is of special interest to the transplantation community because it plays a vital role in controlling or regulating humoral and cellular immunity. Blockade of this pathway has demonstrated inhibition of donor-reactive T-cell responses and prolonged the survival of transplanted organs. Several anti-CD154 and anti-CD40 antibodies have been used in the transplantation model and demonstrated the potential of extending allograft and xenograft rejection-free survival. The wide use of anti-CD154 antibodies was hampered because of thromboembolic complications in transplant recipients. These antibodies have been modified to overcome the thromboembolic complications by altering the antibody binding fragment (Fab) and Fc (fragment, crystallizable) receptor region for therapeutic purposes. Here, we review recent preclinical advances to target the CD40-CD40L pair in transplantation.
Collapse
Affiliation(s)
| | | | - Tianshu Zhang
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | | |
Collapse
|
5
|
Lan T, Bi F, Xu Y, Yin X, Chen J, Han X, Guo W. PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress. Int J Oral Sci 2023; 15:10. [PMID: 36797252 PMCID: PMC9935639 DOI: 10.1038/s41368-023-00217-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.
Collapse
Affiliation(s)
- Tingting Lan
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, China
| | - Fei Bi
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuchan Xu
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoli Yin
- grid.216938.70000 0000 9878 7032Department of Pediatric Dentistry, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China ,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Jie Chen
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xue Han
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China. .,Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Lee H, Park EM, Ko N, Choi K, Oh KB, Kang HJ. Effect of Factor H on Complement Alternative Pathway Activation in Human Serum Remains on Porcine Cells Lacking N-Glycolylneuraminic Acid. Front Immunol 2022; 13:859261. [PMID: 35444661 PMCID: PMC9014258 DOI: 10.3389/fimmu.2022.859261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Triple knockout (TKO) donor pigs lacking alpha-1,3-galactose (Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd(a) expressions were developed to improve the clinical success of xenotransplantation. Neu5Gc, a sialic acid expressed on cell surfaces, recruits factor H to protect cells from attack by the complement system. Lack of Neu5Gc expression may cause unwanted complement activation, abrogating the potential benefit of gene-modified donor pigs. To investigate whether TKO porcine cells display increased susceptibility to complement activation in human serum, pathway-specific complement activation, apoptosis, and human platelet aggregation by porcine cells were compared between alpha-1,3-galactosyltransferase gene-knockout (GTKO) and TKO porcine cells. Methods Primary porcine peripheral blood mononuclear cells (pPBMCs) and endothelial cells (pECs) from GTKO and TKO pigs were used. Cells were incubated in human serum diluted in gelatin veronal buffer (GVB++) or Mg++-EGTA GVB, and C3 deposition and apoptotic changes in these cells were measured by flow cytometry. C3 deposition levels were also measured after incubating these cells in 10% human serum supplemented with human factor H. Platelet aggregation in human platelet-rich plasma containing GTKO or TKO pECs was analyzed. Results The C3 deposition level in GTKO pPBMCs or pECs in GVB++ was significantly higher than that of TKO pPBMCs or pECs, respectively, but C3 deposition levels in Mg++-EGTA-GVB were comparable between them. The addition of factor H into the porcine cell suspension in 10% serum in Mg++ -EGTA-GVB inhibited C3 deposition in a dose-dependent manner, and the extent of inhibition by factor H was similar between GTKO and TKO porcine cells. The percentage of late apoptotic cells in porcine cell suspension in GVB++ increased with the addition of human serum, of which the net increase was significantly less in TKO pPBMCs than in GTKO pPBMCs. Finally, the lag time of platelet aggregation in recalcified human plasma was significantly prolonged in the presence of TKO pECs compared to that in the presence of GTKO pECs. Conclusion TKO genetic modification protects porcine cells from serum-induced complement activation and apoptotic changes, and delays recalcification-induced human platelet aggregation. It does not hamper factor H recruitment on cell surfaces, allowing the suppression of alternative complement pathway activation.
Collapse
Affiliation(s)
- Haneulnari Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Nayoung Ko
- Department of Transgenic Animal Research, Optipharm Inc., Cheongju, South Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm Inc., Cheongju, South Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration (RDA), Wanju, South Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
8
|
Li X, Huang Y, Liang Q, Li G, Feng S, Song Y, Zhang Y, Wang L, Jie Y, Pan Z. Local immunosuppression in WZS-pig to rhesus monkey Descemet's stripping automated endothelial keratoplasty: An innovative method to promote the survival of xeno-grafts. Ophthalmic Res 2021; 65:196-209. [PMID: 34915515 DOI: 10.1159/000521193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
Corneal xenotransplantation is an effective solution for the shortage of human corneas. We investigated the feasibility and efficacy of different postoperative protocols on xeno-Descemet's stripping automated endothelial keratoplasty (DSAEK) grafts. Thirty rhesus monkeys were randomly divided into three groups: control group (C), only Descemet's membrane (DM) stripping; DSAEK 1 (D1) and DSAEK 2 (D2) groups, DM stripping followed by endothelial keratoplasty. Betamethasone 3.5 mg was subconjunctival injected in groups control and D1 postoperatively, while animals in group D2 were treated with topical 0.1% tacrolimus and topical steroids. All groups were evaluated by slit-lamp microscopy, anterior segment OCT and LSCM for at least nine months. A total of 24 monkeys (24 eyes) met the inclusion criteria. Nine months after DSAEK surgery, all xenografts showed good attachment, and most corneas were transparent. Graft rejection occurred in 25% of the cases in group D1 and 28.57% of those in group D2 (P > 0.05). The corneal endothelium density in the DSAEK groups was 2715.83±516.20/mm² (D1) and 2220.00 ± 565.13/mm² (D2) (P > 0.05). Xenogeneic corneal endothelial grafts can survive and function in rhesus monkey eyes for a long time with subconjunctival steroid or topical tacrolimus and steroid treatment.
Collapse
Affiliation(s)
- Xu Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Ying Huang
- National Center for Safety Evaluation of Drugs (NCSED), Beijing, China
| | - Qingfeng Liang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Guoping Li
- Beijing Grand Life Science and Technology, Ltd. PRC, Beijing, China
| | - Shutang Feng
- Beijing Grand Life Science and Technology, Ltd. PRC, Beijing, China
| | - Yaowen Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Yang Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Ying Jie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Zhiqiang Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
9
|
Hu M, Rogers NM, Li J, Zhang GY, Wang YM, Shaw K, O'Connell PJ, Alexander SI. Antigen Specific Regulatory T Cells in Kidney Transplantation and Other Tolerance Settings. Front Immunol 2021; 12:717594. [PMID: 34512640 PMCID: PMC8428972 DOI: 10.3389/fimmu.2021.717594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the best current therapy for end-stage kidney failure. However, with standard immunosuppression, most transplants develop chronic dysfunction or fail, much of which is due to chronic immune injury. Tregs are a subset of T cells involved in limiting immune activation and preventing autoimmune disease. These cells offer the potential to provide tolerance or to allow reduction in immunosuppression in kidney transplants. The importance of Tregs in kidney transplantation has been shown in a number of seminal mouse and animal studies, including those with T cell receptors (TCRs) transgenic Tregs (TCR-Tregs) or Chimeric Antigen Receptor (CAR) Tregs (CAR-Tregs) showing that specificity increases the potency of Treg function. Here we outline the animal and human studies and clinical trials directed at using Tregs in kidney transplantation and other tolerance settings and the various modifications to enhance allo-specific Treg function in vivo and in vitro.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Geoff Y Zhang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Karli Shaw
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
10
|
Lee EJ, Lee H, Park EM, Kang HJ, Kim SJ, Park CG. Immunoglobulin M and Immunoglobulin G Subclass Distribution of Anti-galactose-Alpha-1,3-Galactose and Anti-N-Glycolylneuraminic Acid Antibodies in Healthy Korean Adults. Transplant Proc 2021; 53:1762-1770. [PMID: 33581850 DOI: 10.1016/j.transproceed.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human preformed antibodies (Abs), anti-galactose-alpha-1,3-galactose (Gal) and anti-N-glycolylneuraminic acid (Neu5Gc), can react with porcine antigens of wild-type pigs. To provide basic population data of the Abs for potential application in clinical xenotransplantation, we developed enzyme-linked immunosorbent assay methods and investigated the serum titers of anti-Gal and anti-Neu5Gc Abs, including immunoglobulin (Ig) M and IgG along with its subclasses, in humans. METHODS Anti-Gal and anti-Neu5Gc Abs serum titers were measured in 380 healthy Korean adults using the in-house enzyme-linked immunosorbent assays. The frequency and median values of anti-Gal and anti-Neu5Gc were measured, and their class and subclass distribution were evaluated. RESULTS The detection frequencies of anti-Gal were 99.2%, 95.0%, 23.2%, 94.5%, 12.4%, and 3.4% for IgM, IgG, IgG1, IgG2, IgG3, and IgG4, respectively. The detection frequencies of anti-Neu5Gc Abs were 87.4%, 96.6%, 1.6%, 46.3%, 0.0%, and 0.0% for IgM, IgG, IgG1, IgG2, IgG3, and IgG4, respectively. The median values of anti-Gal IgM (1001.6 ng/mL) and IgG (1198.3 ng/mL) were significantly higher than those of anti-Neu5Gc Abs (IgM, 328.4 ng/mL; IgG, 194.7 ng/mL; P < .001). IgG2 titers of both anti-Gal and anti-Neu5Gc Abs correlated better with the IgG class than the titers of other IgG subclasses. CONCLUSIONS The titers of anti-Gal Abs were higher than those of anti-Neu5Gc Abs. IgG2 was the main IgG subclass in both anti-Gal and anti-Neu5Gc Abs. Variation in the titers of anti-Gal or anti-Neu5Gc Abs may partly explain the biological and immunologic changes that occur in recipients of xenotransplants.
Collapse
Affiliation(s)
- Eun Jin Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym, University Sacred Heart Hospital, Anyang-si, Republic of Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym, University Sacred Heart Hospital, Anyang-si, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym, University Sacred Heart Hospital, Anyang-si, Republic of Korea.
| | - Sang Joon Kim
- Department of Surgery, Myongji Hospital, Goyang-si, Republic of Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
13
|
The resurgent landscape of xenotransplantation of pig organs in nonhuman primates. SCIENCE CHINA-LIFE SCIENCES 2020; 64:697-708. [PMID: 32975720 DOI: 10.1007/s11427-019-1806-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Organ shortage is a major bottleneck in allotransplantation and causes many wait-listed patients to die or become too sick for transplantation. Genetically engineered pigs have been discussed as a potential alternative to allogeneic donor organs. Although xenotransplantation of pig-derived organs in nonhuman primates (NHPs) has shown sequential advances in recent years, there are still underlying problems that need to be completely addressed before clinical applications, including (i) acute humoral xenograft rejection; (ii) acute cellular rejection; (iii) dysregulation of coagulation and inflammation; (iv) physiological incompatibility; and (v) cross-species infection. Moreover, various genetic modifications to the pig donor need to be fully characterized, with the aim of identifying the ideal transgene combination for upcoming clinical trials. In addition, suitable pretransplant screening methods need to be confirmed for optimal donor-recipient matching, ensuring a good outcome from xenotransplantation. Herein, we summarize the understanding of organ xenotransplantation in pigs-to-NHPs and highlight the current status and recent progress in extending the survival time of pig xenografts and recipients. We also discuss practical strategies for overcoming the obstacles to xenotransplantation mentioned above to further advance transplantation of pig organs in the clinic.
Collapse
|
14
|
Singh RB, Marmalidou A, Amouzegar A, Chen Y, Dana R. Animal models of high-risk corneal transplantation: A comprehensive review. Exp Eye Res 2020; 198:108152. [PMID: 32721424 PMCID: PMC7508940 DOI: 10.1016/j.exer.2020.108152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Over the past century, corneal transplantation has become the most commonly performed allogeneic solid tissue transplantation. Although more than 80% of the corneal transplantations have favorable outcomes, immune-mediated rejection continues to be the major cause of failure in well over 50% of graft recipients that have inflamed and vascularized host beds. Over the past two decades, the progress in our understanding of the immunological pathways that mediate graft rejection has aided in the development of novel therapeutic strategies. In order to successfully test the efficacy of these interventions, it is essential to model the immunological processes occurring as a consequence of corneal transplantation. Herein, we have comprehensively reviewed the established animal models used for replicating the immunopathological processes causing graft rejection in high-risk corneal transplantation settings. We have also discussed the practical and technical differences, as well as biological and immunological variations in different animal models.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Wang F, Zhao L, Li H, Li D, Zhou M, Zhou Q, Xie L. Scleral defect repair using decellularized porcine sclera in a rabbit model. Xenotransplantation 2020; 27:e12633. [DOI: 10.1111/xen.12633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/20/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Fuyan Wang
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Long Zhao
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- School of Medicine and Life Sciences University of Jinan‐Shandong Academy of Medical Sciences Jinan China
| | - Hua Li
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Dongfang Li
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Mingming Zhou
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Lixin Xie
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| |
Collapse
|
16
|
Abstract
Human corneal transplantation (keratoplasty) is typically considered to have superior short- and long-term outcomes and lower requirement for immunosuppression compared to solid organ transplants because of the inherent immune privilege and tolerogenic mechanisms associated with the anterior segment of the eye. However, in a substantial proportion of corneal transplants, the rates of acute rejection and/or graft failure are comparable to or greater than those of the commonly transplanted solid organs. Critically, while registry data and observational studies have helped to identify factors that are associated with increased risk of corneal transplant failure, the extent to which these risk factors operate through enhancing immune-mediated rejection is less clear. In this overview, we summarize a range of important recent clinical and basic insights related to high-risk corneal transplantation, the factors associated with graft failure, and the immunological basis of corneal allograft rejection. We highlight critical research areas from which continued progress is likely to drive improvements in the long-term survival of high-risk corneal transplants. These include further development and clinical testing of predictive risk scores and assays; greater use of multicenter clinical trials to optimize immunosuppressive therapy in high-risk recipients and robust clinical translation of novel, mechanistically-targeted immunomodulatory and regenerative therapies that are emerging from basic science laboratories. We also emphasize the relative lack of knowledge regarding transplant outcomes for infection-related corneal diseases that are common in the developing world and the potential for greater cross-pollination and synergy between corneal and solid organ transplant research communities.
Collapse
|
17
|
Human CTLA4-Ig therapy can give false-positive anti-pig antibody results in primates after xenotransplantation. Transpl Immunol 2019; 57:101243. [DOI: 10.1016/j.trim.2019.101243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023]
|
18
|
Yoon CH, Choi SH, Choi HJ, Lee HJ, Kang HJ, Kim JM, Park CG, Choi K, Kim H, Ahn C, Kim MK. Long-term survival of full-thickness corneal xenografts from α1,3-galactosyltransferase gene-knockout miniature pigs in non-human primates. Xenotransplantation 2019; 27:e12559. [PMID: 31566261 DOI: 10.1111/xen.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND We aimed to investigate (a) the long-term survival of corneal grafts from α1,3-galactosyltransferase gene-knockout miniature (GTKOm) pigs in non-human primates as a primary outcome and (b) the effect of anti-CD20 antibody on the survival of corneal grafts from GTKOm pigs as a secondary outcome. METHODS Nine rhesus macaques undergoing full-thickness corneal xenotransplantation using GTKOm pigs were systemically administered steroid, basiliximab, intravenous immunoglobulin, and tacrolimus with (CD20 group) or without (control group) anti-CD20 antibody. RESULTS Graft survival was significantly longer (P = .008) in the CD20 group (>375, >187, >187, >83 days) than control group (165, 91, 72, 55, 37 days). When we compared the graft survival time between older (>7- month-old) and younger (≤7-month-old) aged donor recipients, there was no significant difference. Activated B cells were lower in the CD20 group than control group (P = .026). Aqueous humor complement C3a was increased in the control group at last examination (P = .043) and was higher than that in the CD20 group (P = .014). Anti-αGal IgG/M levels were unchanged in both groups. At last examination, anti-non-Gal IgG was increased in the control group alone (P = .013). CONCLUSIONS The GTKOm pig corneal graft achieved long-term survival when combined with anti-CD20 antibody treatment. Inhibition of activated B cells and complement is imperative even when using GTKO pig corneas.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Jong Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Curie Ahn
- Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Zhao HX, Li XY, Guan WY, Han XT. Impact of co-blocking the costimulatory signals on immune-related genes after high-risk rabbit corneal allograft using 2nd-generation DNA sequencing technology. Genet Mol Biol 2019; 42:472-479. [PMID: 31323080 PMCID: PMC6726163 DOI: 10.1590/1678-4685-gmb-2018-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the impact and mechanism of co-blocking of costimulatory signals CD28-B7-CD40-CD40L during immune allograft rejection. Forty-eight recipient rabbits were prepared as a high-risk corneal allograft model. After surgery, the animals were randomly divided into: control group, MR1 group, anti-B7 group, and co-blocking group (n=12, each group). Subconjunctival injection was first performed on the allograft surgery day until post-surgery day five. Four weeks later, or when immune rejection occurred, the cornea was sampled to detect and analyze the gene spectrum. The survival time in the co-blocking group was significantly longer than that in the other three groups (p < 0.05). Gene expression analysis revealed that the expression of genes associated with immune rejection, interleukin (IL)-1α, IL-1β, intercellular cell adhesion molecule-1, and IL-2 was down-regulated in the co-blocking group, while IL-10 was up-regulated, but the changes in nuclear factor-κB and interferon-γ were not significant. In conclusion, the co-blocking of costimulatory signals can significantly reduce genes that promote corneal allograft rejection. The inhibition of corneal allograft rejection gene expression was significantly enhanced. These gene expression results can explain the conclusion of previous work at the genetic level.
Collapse
Affiliation(s)
- Hai-Xia Zhao
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin-Yu Li
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Ying Guan
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiao-Tong Han
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
20
|
Zhou M, Lu Y, Zhao C, Zhang J, Cooper DKC, Xie C, Song Z, Gao H, Qu Z, Lin S, Deng Y, Hara H, Zhan Y, Jiang Z, Dai Y, Wu C, Cai Z, Mou L. Circulating pig-specific DNA as a novel biomarker for monitoring xenograft rejection. Xenotransplantation 2019; 26:e12522. [PMID: 31077480 DOI: 10.1111/xen.12522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023]
Abstract
Monitoring for immune rejection is crucial for long-term survival of pig xenografts. Circulating DNA is a promising non-invasive biomarker for either organ injury or response to therapy. In this study, circulating pig-specific DNA (cpsDNA) was monitored during xenograft rejection. Potential targets of cpsDNA were selected by in silico analysis, and species specificity of selected primers was confirmed by PCR. Subsequently, cpsDNA as a biomarker was evaluated using a complement-dependent cytotoxicity (CDC) assay in vitro. Then, early diagnosis and response to rapamycin were assessed by an in vivo imaging model of pig-to-mouse cell transplantation. Finally, cpsDNA was monitored in a pig-to-monkey artery patch transplantation model. The results showed that (a) a method of cpsDNA quantitation was established for application in mouse and nonhuman primate models; (b) cpsDNA reflected CDC in vitro; (c) cpsDNA in vivo mirrored xenograft rejection, and correlated with xenograft loss in pig-to-mouse cell transplantation; (d) cpsDNA was significantly reduced when rapamycin was administered; and (e) dynamic cpsDNA was detectable in pig-to-monkey artery patch transplantation. In conclusion, measurement of cpsDNA could prove to be a less invasive, but more specific and sensitive low-cost biomarker enabling monitoring of xenograft rejection and the response to immunosuppressive therapy.
Collapse
Affiliation(s)
- Ming Zhou
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Ying Lu
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Chengjiang Zhao
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Junfang Zhang
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Chongwei Xie
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Zongpei Song
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Zepeng Qu
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Shan Lin
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - YangYang Deng
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhengda Jiang
- Biology Department, Hendrix College, Conway, Arkansas, USA
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Yoon CH, Choi SH, Lee HJ, Kang HJ, Kim MK. Predictive biomarkers for graft rejection in pig-to-non-human primate corneal xenotransplantation. Xenotransplantation 2019; 26:e12515. [PMID: 30983050 DOI: 10.1111/xen.12515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
We investigated the predictive biomarkers for graft rejection in pig-to-non-human primate (NHP) full-thickness corneal xenotransplantation (n = 34). The graft score (0-12) was calculated based on opacity, edema, and vascularization. Scores ≥ 6 were defined as rejection. NHPs were divided into two groups: (a) graft rejection within 6 months; and (b) graft survival until 6 months. In the evaluation of 2-week biomarkers, none of the NHPs showed rejection within 2 weeks and the 34 NHPs were divided into two groups: (a) entire rejection group (n = 16); and (b) survival group (n = 18). In the evaluation of 4-week biomarkers, four NHPs showing rejection within 4 weeks were excluded and the remaining 30 NHPs were divided into two groups: (a) late rejection group (n = 12); and (b) survival group (n = 18). Analysis of biomarker candidates included T/B-cell subsets, levels of anti-αGal IgG/M, donor-specific IgG/M from blood, and C3a from plasma and aqueous humor (AH). CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 were significantly elevated in the rejection group. Receiver operating characteristic areas under the curve was highest for AH C3a (0.847) followed by CD8+ IFNγ+ cells (both the concentration and percentage: 0.715), indicating excellent or acceptable discrimination ability, which suggests that CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 are reliable biomarkers for predicting rejection in pig-to-NHP corneal xenotransplantation.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
22
|
O'Brien SJ, Ekman MB, Manek S, Galandiuk S. CRISPR-mediated gene editing for the surgeon scientist. Surgery 2019; 166:129-137. [PMID: 30922545 DOI: 10.1016/j.surg.2019.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Tremendous advances have occurred in gene editing during the past 20 years with the development of a number of systems. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system represents an exciting area of research. This review examines both the relevant studies pertaining to the history, current status, and modifications of this system, in comparison with other gene-editing systems and future applications, and limitations of the CRISPR-Cas9 gene-editing system, with a focus on applications of relevance to the surgeon scientist. The CRISPR-Cas9 system was described initially in 2012 for gene editing in bacteria and then in human cells, and since then, a number of modifications have improved the efficiency and specificity of gene editing. Clinical studies have been limited because further research is required to verify its safety in patients. Some clinical trials in oncology have opened, and early studies have shown that gene editing may have a particular role in the field of organ transplantation and in the care of trauma patients. Gene editing is likely to play an important role in future research in many aspects of the surgery arena.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Matthew B Ekman
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Stephen Manek
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|
23
|
|
24
|
Song YW, Pan ZQ. Reducing porcine corneal graft rejection, with an emphasis on porcine endogenous retrovirus transmission safety: a review. Int J Ophthalmol 2019; 12:324-332. [PMID: 30809491 DOI: 10.18240/ijo.2019.02.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Donor cornea shortage is a primary hurdle in the development of corneal transplantation. Of all species, porcine corneas are the ideal transplantation material for humans. However, the xenoimmune rejection induced by porcine corneal xenotransplantation compromises surgical efficacy. Although the binding of IgM/IgG in human serum to a genetically modified porcine cornea is significantly weaker than that of the wild type (WT), genetically modified porcine corneas do not display a prolonged graft survival time in vivo. Conversely, costimulatory blockade drugs, such as anti-CD40 antibodies, can reduce the xenoimmune response and prolong graft survival time in animal experiments. Moreover, porcine endothelial grafts can survive for more than 6mo with only the subconjunctival injection of a steroid-based immunosuppressants regime; therefore, they show great value for treating corneal endothelial disease. In addition, zoonotic transmission is a primary concern of xenotransplantation. Porcine endogenous retrovirus (PERV) is the most significant virus assessed by ophthalmologists. PERV integrates into the porcine genome and infects human cells in vitro. Fortunately, no evidence from in vivo studies has yet shown that PERV can be transmitted to hosts.
Collapse
Affiliation(s)
- Yao-Wen Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| | - Zhi-Qiang Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| |
Collapse
|
25
|
Finding an Optimal Corneal Xenograft Using Comparative Analysis of Corneal Matrix Proteins Across Species. Sci Rep 2019; 9:1876. [PMID: 30755666 PMCID: PMC6372616 DOI: 10.1038/s41598-018-38342-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022] Open
Abstract
Numerous animal species have been proposed as sources of corneal tissue for obtaining decellularized xenografts. The selection of an appropriate animal model must take into consideration the differences in the composition and structure of corneal proteins between humans and other animal species in order to minimize immune response and improve outcome of the xenotransplant. Here, we compared the amino-acid sequences of 16 proteins present in the corneal stromal matrix of 14 different animal species using Basic Local Alignment Search Tool, and calculated a similarity score compared to the respective human sequence. Primary amino acid structures, isoelectric point and grand average of hydropathy (GRAVY) values of the 7 most abundant proteins (i.e. collagen α-1 (I), α-1 (VI), α-2 (I) and α-3 (VI), as well as decorin, lumican, and keratocan) were also extracted and compared to those of human. The pig had the highest similarity score (91.8%). All species showed a lower proline content compared to human. Isoelectric point of pig (7.1) was the closest to the human. Most species have higher GRAVY values compared to human except horse. Our results suggest that porcine cornea has a higher relative suitability for corneal transplantation into humans compared to other studied species.
Collapse
|
26
|
Girani L, Xie X, Lei T, Wei L, Wang Y, Deng S. Xenotransplantation in Asia. Xenotransplantation 2019; 26:e12493. [PMID: 30710388 DOI: 10.1111/xen.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Lea Girani
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province Sichuan Academy of an Transplant Science & Sichuan Provincial People’s Hospital Chengdu China
| | - Xiaofang Xie
- School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Tiantian Lei
- School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Liang Wei
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province Sichuan Academy of an Transplant Science & Sichuan Provincial People’s Hospital Chengdu China
| | - Yi Wang
- Health Management Center Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital Chengdu China
- Department of Pharmacy Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital Chengdu China
| | - Shaoping Deng
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province Sichuan Academy of an Transplant Science & Sichuan Provincial People’s Hospital Chengdu China
- School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
27
|
Park CG, Shin JS, Min BH, Kim H, Yeom SC, Ahn C. Current status of xenotransplantation in South Korea. Xenotransplantation 2019; 26:e12488. [PMID: 30697818 DOI: 10.1111/xen.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Seop Shin
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Byoung-Hoon Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | - Su-Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Daewha, Pyeongchang, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Tahvildari M, Inomata T, Amouzegar A, Dana R. Regulatory T cell modulation of cytokine and cellular networks in corneal graft rejection. CURRENT OPHTHALMOLOGY REPORTS 2018; 6:266-274. [PMID: 31807370 PMCID: PMC6894425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Corneal allografts placed in vascularized or inflamed host beds are at increased risk of graft rejection due to the preponderance of activated immune cells in the host bed. Regulatory T cells (Tregs) are master regulators of the adaptive immune response and play a key role in the induction of immune tolerance. The aim of this review is to discuss mechanisms through which Tregs mediate tolerance in corneal transplantation and the novel therapeutic approaches that target Tregs to promote transplant survival. RECENT FINDINGS The inflammatory environment of high-risk allografts not only promotes activation of effector T cells and their infiltration to graft site, but also impairs Treg immunomodulatory function. Recent studies have shown that expansion of Tregs and enhancing their modulatory function significantly improve graft survival. SUMMARY As our understanding of the cellular and molecular pathways in corneal transplantation has deepened, novel therapeutic strategies have been developed to improve allograft survival. In this review, we discuss therapeutic approaches that focus on Tregs to promote corneal allograft survival.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
- Kresge Eye Institute, Department of ophthalmology, Wayne State University, Detroit, MI
| | - Takenori Inomata
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
- Juntendo University Faculty of Medicine, Department of Ophthalmology, Tokyo, Japan
- Juntendo University Faculty of Medicine, Department of Strategic Operative Room, Management and Improvement, Tokyo, Japan
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Tahvildari M, Inomata T, Amouzegar A, Dana R. Regulatory T Cell Modulation of Cytokine and Cellular Networks in Corneal Graft Rejection. CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0191-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Kim J, Choi SH, Lee HJ, Kim HP, Kang HJ, Kim JM, Hwang ES, Park CG, Kim MK. Comparative efficacy of anti-CD40 antibody-mediated costimulation blockade on long-term survival of full-thickness porcine corneal grafts in nonhuman primates. Am J Transplant 2018; 18:2330-2341. [PMID: 29722120 DOI: 10.1111/ajt.14913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/25/2023]
Abstract
Porcine corneas may be good substitutes for human corneas in donor shortage. Therefore, we evaluated the efficacy and safety of an anti-CD40 antibody-based regimen compared with an anti-CD20 antibody-based regimen on the survival of full-thickness corneas in pig-to-rhesus xenotransplant. Thirteen Chinese rhesuses underwent full-thickness corneal xenotransplant. Six were administered anti-CD40 antibody, and the others were administered anti-CD20 antibody, basiliximab, and tacrolimus. Graft survival and changes in lymphocyte, donor-specific and anti-Galα1,3Galβ1,4GlcNAc-R (αGal) antibody, and aqueous complement levels were evaluated. Treatment with the anti-CD40 antibody (>511, >422, >273, >203, >196, 41 days) and anti-CD20 antibody (>470, 297, >260, >210, >184, 134, >97 days) resulted in long-term survival of grafts. In the anti-CD20 group, the number of activated B cells was significantly lower than that in the anti-CD40 group, and the level of aqueous complements at 6 months was significantly higher than the preoperative level. There were no differences in the levels of T cells or donor-specific and anti-αGal antibodies between the 2 groups. In the anti-CD20 group, 3 primates had adverse reactions. In conclusion, both the anti-CD40 antibody- and the anti-CD20 antibody-based protocols were effective for the long-term survival of full-thickness corneal xenografts, but the anti-CD40 antibody-based treatment had fewer adverse effects.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Se Hyun Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hong Pyo Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hee Jung Kang
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Gyeonggi-do, Korea
| | - Jong Min Kim
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Eung Soo Hwang
- Department of Microbiology and Immunology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Microbiology and Immunology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
31
|
Choi HJ, Hyon JY, Lee HK, Song JS, Chung TY, Mo H, Kim J, Kim JE, Yoo H, Lee SH, Kwon I, Kim MK. Standardization of the proceedings for preparing clinical trials of corneal xenotransplantation in South Korea. Xenotransplantation 2018; 26:e12448. [PMID: 30076640 DOI: 10.1111/xen.12448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul, Korea
| | - Hyung Keun Lee
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Suk Song
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Tae-Young Chung
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyojung Mo
- Center for Public Healthcare Education & Training, National Medical Center, Seoul, Korea
| | - Jaeyoung Kim
- Inje University Seoul Paik Hospital, Seoul, Korea
| | | | - Hyounggyoon Yoo
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Seung Hwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Ivo Kwon
- Department of Medical Education, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea
| |
Collapse
|
32
|
Choi HJ, Yoon CH, Hyon JY, Lee HK, Song JS, Chung TY, Mo H, Kim J, Kim JE, Hahm BJ, Yang J, Park WB, Kim MK. Protocol for the first clinical trial to investigate safety and efficacy of corneal xenotransplantation in patients with corneal opacity, corneal perforation, or impending corneal perforation. Xenotransplantation 2018; 26:e12446. [PMID: 30063072 DOI: 10.1111/xen.12446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/16/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenotransplantation using fresh porcine corneas has been suggested as a feasible alternative to overcome the shortage of human donor corneas. Successful long-term survival of grafts without evidence of xenozoonosis in clinically applicable pig-to-non-human primate corneal transplantation model has brought researchers close to human clinical trials. Accordingly, we aimed to prepare a clinical trial protocol to conduct the first corneal xenotransplantation. METHODS We developed the clinical trial protocol based on international consensus statement on conditions for undertaking clinical trials of corneal xenotransplantation developed by the International Xenotransplantation Society. Detailed contents of the protocol have been modified with reference to comments provided by ophthalmologists and multidisciplinary experts, including an infectionist, an organ transplantation specialist, a clinical pharmacologist, a neuropsychiatrist, a laboratory medicine doctor, and a microbiologist. RESULTS Two patients with bilateral legal corneal blindness (best-corrected visual acuity ≤20/200 in the better eye and ≤20/1000 in the candidate eye) or with (impending) corneal perforation will be enrolled. During the screening period, participants and their family members will have two separate deep consideration periods before signing informed consent forms. Each patient will undergo corneal xenotransplantation using fresh corneas from Seoul National University miniature pigs. Commercially available immunosuppressants will be administered and systemic infection prophylaxis will be performed according to the program schedule. After transplantation, each patient will be monitored at a specialized clinic to investigate safety up to 2 years and efficacy up to 1 year. CONCLUSIONS A detailed clinical trial protocol for the first corneal xenotransplantation reflecting the global guidelines is provided.
Collapse
Affiliation(s)
- Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul, Korea
| | - Hyung Keun Lee
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Suk Song
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Tae-Young Chung
- Executive Council, Korean External Eye Disease Society, Seoul, Korea.,Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyojung Mo
- Center for Public Healthcare Education & Training, National Medical Center, Seoul, Korea.,Executive Ethical Committee of the Xenotransplantation Research Center, Seoul, Korea
| | - Jaeyoung Kim
- Inje University Seoul Paik Hospital, Seoul, Korea
| | | | - Bong-Jin Hahm
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Department of Surgery, Transplantation Center, Seoul National University Hospital and Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Executive Council, Korean External Eye Disease Society, Seoul, Korea
| |
Collapse
|
33
|
Liu L, He C, Liu J, Lv Z, Wang G, Gao H, Dai Y, Cooper DKC, Cai Z, Mou L. Transplant Tolerance: Current Insights and Strategies for Long-Term Survival of Xenografts. Arch Immunol Ther Exp (Warsz) 2018; 66:355-364. [PMID: 29992337 DOI: 10.1007/s00005-018-0517-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
Xenotransplantation is an attractive solution to the problem of allograft shortage. However, transplants across discordant species barriers are subject to vigorous immunologic and pathobiologic hurdles, some of which might be overcome with the induction of immunologic tolerance. Several strategies have been designed to induce tolerance to a xenograft at both the central (including induction of mixed chimerism and thymic transplantation) and peripheral (including adoptive transfer of regulatory cells and blocking T cell costimulation) levels. Currently, xenograft tolerance has been well-established in rodent models, but these protocols have not yet achieved similar success in nonhuman primates. This review will discuss the major barriers that impede the establishment of immunological tolerance across xenogeneic barriers and the potential solution to these challenges, and provide a perspective on the future of the development of novel tolerance-inducing strategies.
Collapse
Affiliation(s)
- Lu Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Chen He
- Department of Ophthalmology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Jintao Liu
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Zhiwu Lv
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Ganlu Wang
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - David K C Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
34
|
Choi SH, Yoon CH, Lee HJ, Kim HP, Kim JM, Che JH, Roh KM, Choi HJ, Kim J, Hwang ES, Park CG, Kim MK. Long-term safety outcome of systemic immunosuppression in pig-to-nonhuman primate corneal xenotransplantation. Xenotransplantation 2018; 25:e12442. [PMID: 30264877 PMCID: PMC6166667 DOI: 10.1111/xen.12442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Safety concerns exist for corneal recipients under immunosuppression. We report long-term safety results of porcine corneal xenotransplantation under immunosuppression in nonhuman primates. METHODS Systemic monitoring data from 49 Chinese rhesus macaques that received pig corneal transplant between 2009 and 2018 were retrospectively reviewed. The recipients were divided into 4 groups depending on the systemic immunosuppressants used: (a) conventional steroid group; costimulation blockade groups ([b] anti-CD154 antibody, [c] anti-CD40 antibody); and (d) commercially available immunosuppressants (anti-CD20 antibody, tacrolimus, basiliximab) group. We compared results of general condition monitoring; hematologic, biochemical, and electrolyte tests; and Rhesus Cytomegalovirus infection monitoring. RESULTS All recipients recovered from early weight loss. White blood cell counts significantly decreased at 6 months in the steroid and anti-CD154 groups. Abnormal liver and kidney function and electrolyte imbalance were not observed in all groups. The mean value of Rhesus Cytomegalovirus DNA copies was consistently lower than 200 copies/mL, and antibody titers did not change over time in all groups. Tacrolimus-associated thrombotic microangiopathy was developed in one case, which resolved after discontinuation of tacrolimus. In 2017, a simian varicella virus outbreak led to clinical signs in 5 that received immunosuppressive therapies, of which 3 died. CONCLUSION Costimulatory blockade-based and anti-CD20 antibody/tacrolimus-based immunosuppressive therapies seem to be comparably safe with steroid therapy in nonhuman primates receiving corneal xenotransplantation, as they did not reactivate Rhesus Cytomegalovirus and maintained manageable systemic status. Although reactivation is rare, antiviral prophylaxis for simian varicella virus should be considered in immunocompromised hosts.
Collapse
Affiliation(s)
- Se Hyun Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hong Pyo Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jong Min Kim
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jeong-Hwan Che
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Kyoung Min Roh
- Department of Experimental Animal Research, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Eung-Soo Hwang
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chung-Gyu Park
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee Kum Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
35
|
Liu Y, Zhang Y, Liang Q, Yan C, Wang L, Zhang J, Pan Z. Porcine endothelial grafts could survive for a long term without using systemic immunosuppressors: An investigation of feasibility and efficacy of xeno-Descemet's stripping automated endothelial keratoplasty from WZS-pig to rhesus monkey. Xenotransplantation 2018; 26:e12433. [PMID: 29932259 DOI: 10.1111/xen.12433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yang Liu
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - YingNan Zhang
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Chao Yan
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - Li Wang
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - Jing Zhang
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| | - ZhiQiang Pan
- Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing China
| |
Collapse
|
36
|
Cowan PJ. The 2017 IXA Presidential Lecture: Recent developments in xenotransplantation. Xenotransplantation 2018; 25:e12416. [DOI: 10.1111/xen.12416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/03/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Peter J. Cowan
- Immunology Research Centre; St Vincent’s Hospital Melbourne; Department of Medicine; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
37
|
Kim JM, Kim J, Choi SH, Shin JS, Min BH, Jeong WY, Lee GE, Kim MS, Kwon S, Kim MK, Park CG. Tacrolimus-induced asymptomatic thrombotic microangiopathy diagnosed by laboratory tests in pig-to-rhesus corneal xenotransplantation: A case report. Xenotransplantation 2018; 25:e12404. [DOI: 10.1111/xen.12404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/16/2018] [Accepted: 04/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Jong-Min Kim
- Xenotransplantation Research Center; Seoul Korea
- Institute of Endemic Diseases; Seoul Korea
- Cancer Research Institute; Seoul Korea
- Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
| | - Jaeyoung Kim
- Laboratory Of Ocular Regenerative Medicine and Immunology; Seoul Artificial Eye Center; Seoul National University Hospital Biomedical Research Institute; Seoul Korea
- Department of Ophthalmology; Seoul National University College of Medicine; Seoul Korea
- Department of Ophthalmology; Seoul Paik Hospital; Inje University College of Medicine; Seoul Korea
| | - Se-Hyun Choi
- Laboratory Of Ocular Regenerative Medicine and Immunology; Seoul Artificial Eye Center; Seoul National University Hospital Biomedical Research Institute; Seoul Korea
- Department of Ophthalmology; Seoul National University College of Medicine; Seoul Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center; Seoul Korea
- Institute of Endemic Diseases; Seoul Korea
- Cancer Research Institute; Seoul Korea
- Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Department of Microbiology and Immunology; Seoul National University College of Medicine; Seoul Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center; Seoul Korea
- Cancer Research Institute; Seoul Korea
- Department of Microbiology and Immunology; Seoul National University College of Medicine; Seoul Korea
| | | | - Ga-Eul Lee
- Xenotransplantation Research Center; Seoul Korea
| | - Min-Sun Kim
- Xenotransplantation Research Center; Seoul Korea
| | - Seeun Kwon
- Xenotransplantation Research Center; Seoul Korea
| | - Mee Kum Kim
- Xenotransplantation Research Center; Seoul Korea
- Laboratory Of Ocular Regenerative Medicine and Immunology; Seoul Artificial Eye Center; Seoul National University Hospital Biomedical Research Institute; Seoul Korea
- Department of Ophthalmology; Seoul National University College of Medicine; Seoul Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center; Seoul Korea
- Institute of Endemic Diseases; Seoul Korea
- Cancer Research Institute; Seoul Korea
- Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Department of Microbiology and Immunology; Seoul National University College of Medicine; Seoul Korea. Department of Biomedical Sciences; Seoul National University Graduate School; Seoul Korea
| |
Collapse
|
38
|
Liu Y, Zhang J, Zhang Y, Yin M, Miao S, Liang Q, Pan Z. The feasibility and efficacy of preparing porcine Descemet’s membrane endothelial keratoplasty (DMEK) grafts by two techniques: An ex-vivo investigation for future xeno-DMEK. Xenotransplantation 2018; 25:e12407. [PMID: 29756410 DOI: 10.1111/xen.12407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/14/2018] [Accepted: 04/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Liu
- Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
- Department of Ophthalmology; The First Hospital of Lanzhou University; Chengguan District, Lanzhou China
| | - Jing Zhang
- Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Yingnan Zhang
- Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Mingyang Yin
- Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Sen Miao
- Beijing Anzhen Hospital; Capital Medical University; Beijing China
| | - Qingfeng Liang
- Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Zhiqiang Pan
- Beijing Ophthalmology and Visual Sciences Key Laboratory; Beijing Tongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| |
Collapse
|
39
|
Smeringaiova I, Reinstein Merjava S, Stranak Z, Studeny P, Bednar J, Jirsova K. Endothelial Wound Repair of the Organ-Cultured Porcine Corneas. Curr Eye Res 2018; 43:856-865. [PMID: 29648937 DOI: 10.1080/02713683.2018.1458883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To assess whether injured porcine endothelium of small and large corneoscleral disc differ in its reparative/regenerative capacity under various conditions of organ culture storage. MATERIAL AND METHODS 166 paired porcine corneas were trephined to obtain tissues with diameter 12.0 mm and 17.5 mm (with area neighboring endothelial periphery). In tested discs, central endothelium was mechanically wounded. Density of live endothelial cells (LECD), percentage of dead cells (%DC), coefficient of variation and cell hexagonality were assessed in central and paracentral endothelium following 5- or 9-day incubation in medium with 2% or 10% fetal bovine serum. The parameters were assessed also in fresh and intact cultured discs. Dead endothelial cells (EC) were visualized by trypan blue, cell borders by Alizarin Red S dye. Endothelial imprints were immunoassayed for the proliferation marker Ki-67 and the nucleolar marker fibrillarin. RESULTS In fresh corneas, the LECD/mm2 (mean ± standard deviation) were 3998.0 ± 215.4 (central area) and 3888.2 ± 363.1 (paracentral area). Only the length of storage had significant effect on wound repair. Lesion was repaired partially after 5-day and fully after 9-day cultivation. After 9-day storage in medium with 10% serum, the mean LECD detected in small discs were 2409.4 ± 881.8 (central area) and 3949.5 ± 275.5 (paracentral area) and in large discs the mean LECD were 2555.0 ± 347.0 (central area) and 4007.5 ± 261.2 (paracentral area). Ki-67 showed cell proliferation associated with healing of EC of both large and small corneas. CONCLUSIONS The lesions were completely repaired within 9 days of storage. Presence of the area, where stem cells appear to be located, contributes to stimulation of endothelial reparation less than serum concentration and time of culture. Both cell migration and proliferation contribute to the wound repair.
Collapse
Affiliation(s)
- Ingrida Smeringaiova
- a Laboratory of the Biology and Pathology of the Eye, Clinic of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic.,b Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Stanislava Reinstein Merjava
- a Laboratory of the Biology and Pathology of the Eye, Clinic of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Zbynek Stranak
- c Department of Ophthalmology, Third Faculty of Medicine , Charles University and University Hospital Kralovske Vinohrady , Prague , Czech Republic
| | - Pavel Studeny
- c Department of Ophthalmology, Third Faculty of Medicine , Charles University and University Hospital Kralovske Vinohrady , Prague , Czech Republic
| | - Jan Bednar
- b Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Katerina Jirsova
- b Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
40
|
Tahvildari M, Amouzegar A, Foulsham W, Dana R. Therapeutic approaches for induction of tolerance and immune quiescence in corneal allotransplantation. Cell Mol Life Sci 2018; 75:1509-1520. [PMID: 29307015 DOI: 10.1007/s00018-017-2739-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023]
Abstract
The cornea is the most commonly transplanted tissue in the body. Corneal grafts in low-risk recipients enjoy high success rates, yet over 50% of high-risk grafts (with inflamed and vascularized host beds) are rejected. As our understanding of the cellular and molecular pathways that mediate rejection has deepened, a number of novel therapeutic strategies have been unveiled. This manuscript reviews therapeutic approaches to promote corneal transplant survival through targeting (1) corneal lymphangiogenesis and hemangiogenesis, (2) antigen presenting cells, (3) effector and regulatory T cells, and (4) mesenchymal stem cells.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.,Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Li M, Eckl J, Abicht JM, Mayr T, Reichart B, Schendel DJ, Pohla H. Induction of porcine-specific regulatory T cells with high specificity and expression of IL-10 and TGF-β1 using baboon-derived tolerogenic dendritic cells. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Mingqian Li
- Laboratory of Tumor Immunology; LIFE Center; Ludwig-Maximilians-Universität; Munich Germany
- Department of Urology; University Hospital; Ludwig-Maximilians-Universität; Munich Germany
| | - Judith Eckl
- Institute of Molecular Immunology; Helmholtz Zentrum München; German Research Center for Environmental Health; Munich Germany
- Medigene Immunotherapies GmbH; Planegg-Martinsried Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology; Ludwig-Maximilians-Universität; Munich Germany
- Walter Brendel Centre of Experimental Medicine; Ludwig-Maximilians-Universität; Munich Germany
| | - Tanja Mayr
- Department of Anaesthesiology; Ludwig-Maximilians-Universität; Munich Germany
- Walter Brendel Centre of Experimental Medicine; Ludwig-Maximilians-Universität; Munich Germany
| | - Bruno Reichart
- Walter Brendel Centre of Experimental Medicine; Ludwig-Maximilians-Universität; Munich Germany
| | - Dolores J. Schendel
- Institute of Molecular Immunology; Helmholtz Zentrum München; German Research Center for Environmental Health; Munich Germany
- Medigene Immunotherapies GmbH; Planegg-Martinsried Germany
| | - Heike Pohla
- Laboratory of Tumor Immunology; LIFE Center; Ludwig-Maximilians-Universität; Munich Germany
- Department of Urology; University Hospital; Ludwig-Maximilians-Universität; Munich Germany
- Institute of Molecular Immunology; Helmholtz Zentrum München; German Research Center for Environmental Health; Munich Germany
| |
Collapse
|
42
|
Cowan PJ, Tector AJ. The Resurgence of Xenotransplantation. Am J Transplant 2017; 17:2531-2536. [PMID: 28397351 DOI: 10.1111/ajt.14311] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/25/2023]
Abstract
There has been an upsurge of interest in xenotransplantation in recent years. This resurgence can attributed to a combination of factors. First, there has been a dramatic improvement in efficacy in several preclinical models, with maximum xenograft survival times increasing to 950 days for islets, 945 days for hearts, and 310 days for kidneys. Second, the rapid development of genome editing technology (particularly the advent of clustered regularly interspaced short palindromic repeats/Cas9) has revolutionized the capacity to generate new donor pigs with multiple protective genetic modifications; what once took many years to achieve can now be performed in months, with much greater precision and scope. Third, the specter of porcine endogenous retrovirus (PERV) has receded significantly. There has been no evidence of PERV transmission in clinical trials and preclinical models, and improved screening methods and new options for the treatment or even elimination of PERV are now available. Balancing these positive developments are several remaining challenges, notably the heavy and often clinically inapplicable immunosuppression required to prevent xenograft rejection. Nonetheless, the potential for xenotransplantation as a solution to the shortage of human organs and tissues for transplantation continues to grow.
Collapse
Affiliation(s)
- P J Cowan
- Immunology Research Centre, St Vincent's Hospital Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - A J Tector
- School of Medicine, University of Alabama, Birmingham, AL
| |
Collapse
|
43
|
In Vivo Costimulation Blockade-Induced Regulatory T Cells Demonstrate Dominant and Specific Tolerance to Porcine Islet Xenografts. Transplantation 2017; 101:1587-1599. [PMID: 27653300 DOI: 10.1097/tp.0000000000001482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although islet xenotransplantation is a promising therapy for type 1 diabetes, its clinical application has been hampered by cellular rejection and the requirement for high levels of immunosuppression. The aim of this study was to determine the role of Foxp3 regulatory T (Treg) cells in costimulation blockade-induced dominant tolerance to porcine neonatal islet cell cluster (NICC) xenografts in mice. METHODS Porcine-NICC were transplanted under the renal capsule of BALB/c or C57BL/6 recipients and given a single dose of CTLA4-Fc at the time of transplant and 4doses of anti-CD154 mAb to day 6. Depletion of Foxp3Treg cell was performed in DEpletion of REGulatory T cells mice at day 80 posttransplantation. Foxp3Treg cell from spleens of treated BALB/c mice (tolerant Treg cell), and splenocytes were cotransferred into islet transplanted nonobese diabetic background with severe combined immunodeficiency mice to assess suppressive function. RESULTS In treated mice, increased numbers of Foxp3Treg cell were identified in the porcine-NICC xenografts, draining lymph node, and spleen. Porcine-NICC xenografts from treated mice expressed elevated levels of TGF-β, IL-10 and IFN-γ. Porcine-NICC xenograft tolerance was abrogated after depletion of Foxp3Treg cell. Tolerant Treg cell produced high levels of IL-10 and had diverse T cell receptor Vβ repertoires with an oligoclonal expansion in CDR3 of T cell receptor Vβ14. These tolerant Treg cells had the capacity to transfer dominant tolerance and specifically exhibited more potent regulatory function to porcine-NICC xenografts that naive Treg cell. CONCLUSIONS This study demonstrated that short-term costimulation blockade-induced dominant tolerance and that Foxp3Treg cell played an essential role in its maintenance. Foxp3Treg cells were activated and had more potent regulatory function in vivo than naive Treg cells.
Collapse
|
44
|
Choi HJ, Kim J, Kim JY, Lee HJ, Wee WR, Kim MK, Hwang ES. Long-term safety from transmission of porcine endogenous retrovirus after pig-to-non-human primate corneal transplantation. Xenotransplantation 2017; 24. [PMID: 28503733 DOI: 10.1111/xen.12314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The risk of xenozoonosis mainly by porcine endogenous retrovirus (PERV) has been considered as one of the main hurdles in xenotransplantation and therefore should be elucidated prior to the clinical use of porcine corneal grafts. Accordingly, an investigation was performed to analyze the infectivity of PERVs from porcine keratocytes to human cells, and the long-term risk of transmission of PERVs was determined using pig-to-non-human primate (NHP) corneal transplantation models. METHODS The infectivity of PERVs from the SNU miniature pig keratocytes was investigated by coculture with a human embryonic kidney cell line. Twenty-two rhesus macaques underwent xenocorneal transplantation as follows: (i) group 1 (n=4): anterior lamellar keratoplasty (LKP) with freshly preserved porcine corneas, (ii) group 2 (n=5): anterior LKP with decellularized porcine corneas followed by penetrating keratoplasty (PKP) with allografts, (iii) group 3 (n=3): PKP under steroid-based immunosuppression, (iv) group 4 (n=4): PKP under anti-CD154 antibody-based immunosuppression, (v) group 5 (n=4): deep anterior LKP with freshly preserved porcine corneas under anti-CD40 antibody-based immunosuppression, and (vi) group 6 (n=2): PKP under anti-CD40 antibody-based immunosuppression. Postoperative blood samples were serially collected, and tissue samples were obtained from thirteen different organs at the end of each experiment. The existence of PERV DNA and RNA was investigated using PCR and RT-PCR. RESULTS Using two independent in vitro infectivity tests, neither PERV pol nor pig mitochondrial cytochrome oxidase II was detected after 41 and 92 days of coculture, respectively. After xenocorneal transplantation, a total of 257 serial peripheral blood mononuclear cell samples, 34 serial plasma samples, and 282 tissue samples were obtained from the NHP recipients up to 1176 days post-transplantation. No PERV transmission was evident in any samples. CONCLUSIONS Within the limits of this study, there is no evidence to support any risk of PERV transmission from porcine corneal tissues to NHP recipients, despite the existence of PERV-expressing cells in porcine corneas.
Collapse
Affiliation(s)
- Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Jiyeon Kim
- Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Young Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | - Eung Soo Hwang
- Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Kim J, Kim DH, Choi HJ, Lee HJ, Kang HJ, Park CG, Hwang ES, Kim MK, Wee WR. Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates. Xenotransplantation 2017; 24:10.1111/xen.12298. [PMID: 28393447 PMCID: PMC5464973 DOI: 10.1111/xen.12298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/26/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated costimulation blockade in a clinically applicable pig-to-non-human primate corneal xenotransplantation model. METHODS Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T and B cell subsets and anti-αGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-αGal, non-αGal, and donor-specific antibodies after 6 months were compared with baseline values. RESULTS Anti-CD40 antibody-mediated costimulation blockade resulted in the successful survival of xenocorneal grafts (>389, >382, >236, >201, and >61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (P=.0159, Mann-Whitney U test). Systemic expansion of central or effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (P<.05, Mann-Whitney U test) or those in the anti-CD154 antibody-treated primates (P>.05, Mann-Whitney U test). The levels of anti-αGal, non-αGal, and donor-specific antibodies at 6 months were not significantly increased compared with baseline levels (P>.05, Wilcoxon signed rank test). CONCLUSIONS An anti-CD40 antibody-mediated blockade appears to be effective immunosuppressive approach for porcine corneal deep-lamellar xenotransplantation in primates.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hyuk Jin Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Chung-Gyu Park
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
46
|
Dong X, Hara H, Wang Y, Wang L, Zhang Y, Cooper DK, Dai Y, Pan Z. Initial study of α1,3-galactosyltransferase gene-knockout/CD46 pig full-thickness corneal xenografts in rhesus monkeys. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaojuan Dong
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Hidetaka Hara
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing China
| | - Li Wang
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Yingnan Zhang
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - David K.C. Cooper
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Yifan Dai
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing China
| | - Zhiqiang Pan
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| |
Collapse
|
47
|
Lee W, Mammen A, Dhaliwal DK, Long C, Miyagawa Y, Ayares D, Cooper DKC, Hara H. Development of retrocorneal membrane following pig-to-monkey penetrating keratoplasty. Xenotransplantation 2016; 24. [PMID: 28247507 DOI: 10.1111/xen.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Recent reports of long-term survival after wild-type (WT) pig-to-monkey corneal xenotransplantation are encouraging. We experienced the rapid development of retrocorneal membranes, a rare complication after corneal allotransplantation (although seen in infants and young children). The original specific aim of the study was to determine the factors associated with successful (young) pig corneal transplantation in monkeys. However, when it was obvious that retrocorneal membranes rapidly developed, our aims became to determine the factors involved in its development after both WT and Genetically engineered (GE ) pig corneal xenotransplantation and to investigate the characteristics of the retrocorneal membrane. Rhesus monkeys were recipients of penetrating keratoplasty using WT and GE pigs (n=2, respectively, 1-3 months old). Local/systemic steroids were administered for 3 months. Grafts were evaluated by slit lamp for corneal transparency, edema, and neovascularization. Hematoxylin and eosin, Masson trichrome staining, and immunohistochemical analysis were performed. Gal staining was also carried out to distinguish the origin of the membrane. All penetrating keratoplasty recipients developed fibrous retrocorneal membranes in the early post-transplantation period, regardless of whether the graft was from a WT or GE pig. There were no features of rejection, with no cell infiltrate in the graft or anterior chamber during the three-month follow-up. There was no difference in the clinical course between the two groups (WT or GE corneas). Immunohistochemistry indicated that the retrocorneal membranes were CK negative, α-SMA positive, and vimentin positive, suggesting that they were of fibrous (keratocytic) origin. Also, the membrane was Gal positive, suggesting that it is derived from pig cornea. Following pig-to-monkey corneal xenotransplantation, we report that retrocorneal membranes are derived from donor pig keratocytes. Prevention of retrocorneal membranes will be necessary to achieve successful corneal xenotransplantation.
Collapse
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex Mammen
- Eye and Ear Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepinder K Dhaliwal
- Eye and Ear Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuko Miyagawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Kim HJ, Yoon IH, Min BH, Kim YH, Shin JS, Kim JM, Kim JS, Nam HY, Lee WW, Park CG. Porcine antigen-specific IFN-γ ELISpot as a potentially valuable tool for monitoring cellular immune responses in pig-to-non-human primate islet xenotransplantation. Xenotransplantation 2016; 23:310-9. [PMID: 27464486 DOI: 10.1111/xen.12248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/19/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent progress in xenotransplantation of porcine islets to non-human primates (NHPs) gives hope for human clinical trials in the near future. Thus, implementation of an appropriate monitoring method to detect the development of detrimental porcine antigen-specific cellular immune responses is necessary. The enzyme-linked immunospot (ELISpot) assay has been widely used to monitor antigen-specific alloreactive T-cell responses in humans; however, the utility of porcine islet-specific ELISpot assay has not yet been thoroughly evaluated for pig-to-NHPs intraportal islet xenotransplantation. METHODS The optimal ELISpot assay conditions, including the number of responder and stimulator cells and the provision of costimulation, were determined. Then, ELISpot assays were conducted on serial stocks of peripheral blood mononuclear cell (PBMC) samples previously isolated from NHP recipients transplanted with porcine islets. Either splenocytes from donor pigs or pancreatic islets from third-party pigs were used for antigen stimulation. At the same time, the ratio of CD4(+) /CD8(+) T cells and the percentage of CD4(+) FoxP3(+) T cells in the peripheral blood were evaluated. Finally, liver biopsy samples were evaluated to assess the immunopathology of the grafts. RESULTS The optimal conditions for the ELISpot assay were defined as 2.5 × 10(5) responder cells incubated with 5.0 × 10(5) stimulator cells in 96-well, flat-bottom plates without further costimulation. Using donor splenocytes as stimulators, a serial interferon-gamma (IFN-γ) ELISpot assay with PBMCs from the monkeys with prolonged porcine islet grafts (>180 days) demonstrated that the number of donor antigen-specific IFN-γ-producing cells significantly increased upon overt graft rejection. However, use of third-party porcine islets as stimulators did not reflect graft rejection, suggesting that the use of donor-specific PBMCs, and not tissue (porcine islet)-specific cells, as stimulators could better serve the purpose of this assay in adult porcine islet transplantation. IFN-γ spot number was neither influenced by the peripheral blood CD4(+) /CD8(+) T-cell ratio nor the percentage of CD4(+) FoxP3(+) T cells. Finally, in cases of overt graft rejection, the number of IFN-γ spots and the graft-infiltrating T cells in biopsied liver samples increased simultaneously. CONCLUSION Use of PBMCs in a porcine antigen-specific IFN-γ ELISpot assay is a reliable method for monitoring T-cell-mediated rejection in pig-to-NHP islet xenotransplantation.
Collapse
Affiliation(s)
- Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Il-Hee Yoon
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Hee Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Young Nam
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Woo Lee
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Affiliation(s)
- Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Kim DH, Kim J, Jeong HJ, Lee HJ, Kim MK, Wee WR. Biophysico-functional compatibility of Seoul National University (SNU) miniature pig cornea as xenocorneal graft for the use of human clinical trial. Xenotransplantation 2016; 23:202-10. [PMID: 27170205 DOI: 10.1111/xen.12234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Xenocorneal transplantation is one of the solutions for shortage of donor cornea, and remarkable advances have been made in pig-to-rhesus studies from the immunological perspective. Most successful preclinical trials have been carried out with corneas of the Seoul National University (SNU) miniature pig (SNU pig, genetically unmodified) as donor tissues; however, there has been no biophysico-functional evaluation of the SNU pig cornea as a substitute for human cornea. The purpose of this study was to investigate the biophysical and functional compatibility of SNU pig cornea for use in human clinical trials. METHODS Ninety-three eyeballs obtained from 51 SNU pigs were used to evaluate the physical properties and changes in porcine corneal endothelial cells (PCECs) depending on preservation time and storage condition before surgery, proliferative and functional characteristics of PCECs, and the microbiologic safety of porcine cornea. Corneal diameters and curvatures, axial length, anterior chamber depth, and central corneal thickness were measured and compared with previously reported human data. Corneal endothelial cell density (ECD) was serially measured with a confocal microscope during 7 days of preservation in the same storage solution used for human corneas. Corneal endothelial cell proliferation and immunofluorescence staining of Na- and K-dependent ATPase in PCECs were evaluated after 7 days of preservation. The corneoscleral rims of SNU pigs were cultured for gram-positive bacteria, gram-negative bacteria, and fungi to evaluate their microbiological safety. RESULTS Corneal diameter and thickness in SNU pigs was larger than human and corneal curvature was flatter; however, they were within surgically operable ranges. Mean ECD (day 0) and ECD loss after 7 days of preservation were 2625 ± 81 cells/mm(2) and 7.60 ± 1.53%, respectively, which is comparable to human ECD and ECD loss in the same conditions. The ECD of SNU pigs was inversely decreased with aging (R(2) = 0.4034, P = 0.001), and the estimated ages of pigs whose mean ECD would be more than 2500 and 2200 cells/mm(2) or more were 48 and 72 months or less, respectively. Mean doubling time of the endothelial cells was 52 to 96 h depending on the method used. The Na- and K-dependent ATPase pump in SNU pig cornea was well maintained for 7 days. No cultured microorganisms were found upon using the modified European Eye Bank Association protocol, which included additional antiseptic management during the enucleation procedure. CONCLUSIONS In conclusion, SNU pig cornea is feasible for xenocorneal transplantation using the same preservation protocol as human with respect to biophysical and functional properties and can be stored for up to 7 days for transplantation in human clinical trials. An age limitation of donor pigs may be required for qualified corneal products to be used in human trials.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Korea.,Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Jaeyoung Kim
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jeong Jeong
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Mee Kum Kim
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Won Ryang Wee
- Laboratory of Corneal Regenerative Medicine and Ocular Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|