1
|
Righi I, Trabattoni D, Rosso L, Vaira V, Clerici M. Immune checkpoint molecules in solid organ transplantation: A promising way to prevent rejection. Immunol Lett 2024; 267:106860. [PMID: 38677335 DOI: 10.1016/j.imlet.2024.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Immune checkpoint (IC) molecules modulate immune responses upon antigen presentation; the interaction between different IC molecules will result in the stimulation or, rather, the thwarting of such responses. Tumor cells express increased amounts of inhibitory IC molecules in an attempt to evade immune responses; therapeutic agents have been developed that bind inhibitory IC molecules, restoring tumor-directed immune responses and changing the prognosis of a number of cancers. Stimulation of inhibitory IC molecules could be beneficial in preventing rejection in the setting of solid organ transplantation (SOT), and in vivo as well as in vivo results obtained in animal models show this to indeed to be the case. With the exception of belatacept, a monoclonal antibody (mAb) in which an IgG Fc fragment is linked to the extracellular domain of CTLA-4, this has not yet translated into the generation of novel therapeutic approaches to prevent SOT rejection. We provide a review of state-of-the art knowledge on the role played by IC molecules in transplantation, confident that innovative research will lead to new avenues to manage rejection in solid organ transplant.
Collapse
Affiliation(s)
- Ilaria Righi
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovan Battista Grassi 74, 20157 Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan Via Francesco Sforza 12, 20122, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan Via Francesco Sforza 12, 20122, Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan Via Francesco Sforza 12, 20122, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148 Milan, Italy.
| |
Collapse
|
2
|
Terada Y, Li W, Shepherd HM, Takahashi T, Yokoyama Y, Bery AI, Mineura K, Bai YZ, Ritter JH, Hachem RR, Bharat A, Lavine KJ, Nava RG, Puri V, Krupnick AS, Gelman AE, Reed HO, Wong BW, Kreisel D. Smoking exposure-induced bronchus-associated lymphoid tissue in donor lungs does not prevent tolerance induction after transplantation. Am J Transplant 2024; 24:280-292. [PMID: 37619922 PMCID: PMC11088405 DOI: 10.1016/j.ajt.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The presence of bronchus-associated lymphoid tissue (BALT) in donor lungs has been suggested to accelerate graft rejection after lung transplantation. Although chronic smoke exposure can induce BALT formation, the impact of donor cigarette use on alloimmune responses after lung transplantation is not well understood. Here, we show that smoking-induced BALT in mouse donor lungs contains Foxp3+ T cells and undergoes dynamic restructuring after transplantation, including recruitment of recipient-derived leukocytes to areas of pre-existing lymphoid follicles and replacement of graft-resident donor cells. Our findings from mouse and human lung transplant data support the notion that a donor's smoking history does not predispose to acute cellular rejection or prevent the establishment of allograft acceptance with comparable outcomes to nonsmoking donors. Thus, our work indicates that BALT in donor lungs is plastic in nature and may have important implications for modulating proinflammatory or tolerogenic immune responses following transplantation.
Collapse
Affiliation(s)
- Yuriko Terada
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hailey M Shepherd
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsuyoshi Takahashi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yuhei Yokoyama
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amit I Bery
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katsutaka Mineura
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jon H Ritter
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramsey R Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ruben G Nava
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Varun Puri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Brian W Wong
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
3
|
Kaiho T, Suzuki H, Hata A, Matsumoto H, Tanaka K, Sakairi Y, Motohashi S, Yoshino I. Targeting PD-1/PD-L1 inhibits rejection in a heterotopic tracheal allograft model of lung transplantation. Front Pharmacol 2023; 14:1298085. [PMID: 38026994 PMCID: PMC10657857 DOI: 10.3389/fphar.2023.1298085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Immune checkpoint molecules such as programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have revolutionized the field of lung cancer treatment. As part of our study, we examined the role of these proteins in acute rejection in a mouse model of heterotopic tracheal transplantation. Recipient mice were untreated (Allo group) or treated with anti-PD-L1 (aPDL1 group) or PD-L1 Fc recombinant protein (PD-L1 Fc group). A further group of C57BL/6 mice received isografts (Iso group). The occlusion rate was significantly higher in the Allo group than in the Iso group (p = 0.0075), and also higher in the aPD-L1 group (p = 0.0066) and lower in the PD-L1 Fc group (p = 0.030) than in the Allo group. PD-L1 Fc recombinant protein treatment significantly decreased interleukin-6 and interferon-γ levels and reduced the CD4+/CD8+ T cell ratio, without increasing PD-1 and T-cell immunoglobulin mucin 3 expression in CD4+ T cells. These data suggest that PD-L1 Fc recombinant protein decreases the levels of inflammatory cytokines and the proportion of CD4+ T cells without exhaustion. The PD-L1-mediated immune checkpoint mechanism was associated with rejection in the murine tracheal transplant model, suggesting a potential novel target for immunotherapy in lung transplantation.
Collapse
Affiliation(s)
- Taisuke Kaiho
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Hata
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroki Matsumoto
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuhisa Tanaka
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichiro Motohashi
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
4
|
Righi I, Vaira V, Morlacchi LC, Croci GA, Rossetti V, Blasi F, Ferrero S, Nosotti M, Rosso L, Clerici M. PD-1 expression in transbronchial biopsies of lung transplant recipients is a possible early predictor of rejection. Front Immunol 2023; 13:1024021. [PMID: 36703976 PMCID: PMC9871480 DOI: 10.3389/fimmu.2022.1024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Chronic lung allograft dysfunction (CLAD) is the main cause of the reduced survival of lung transplanted (LTx) patients. The possible role of immune checkpoint molecules in establishing tolerance has been scarcely investigated in the setting of lung transplantation. Methods We conducted a retrospective, observational pilot study on a consecutive series of transbronchial cryobiopsies (TCB) obtained from 24 patients during LTx follow-up focusing on PD-1, one of the most investigated immune checkpoint molecules. Results Results showed that PD-1-expressing T lymphocytes were present in all TCB with a histological diagnosis of acute rejection (AR; 9/9), but not in most (11/15) of the TCB not resulting in a diagnosis of AR (p=0.0006). Notably, the presence of PD-1-expressing T lymphocytes in TCB resulted in a 10-times higher risk of developing chronic lung allograft dysfunction (CLAD), the main cause of the reduced survival of lung transplanted patients, thus being associated with a clearly worst clinical outcome. Discussion Results of this pilot study indicate a central role of PD-1 in the development of AR and its evolution towards CLAD and suggest that the evaluation of PD-1-expressing lymphocytes in TCB could offer a prognostic advantage in monitoring the onset of AR in patients who underwent lung transplantation.
Collapse
Affiliation(s)
- Ilaria Righi
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Corinna Morlacchi
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Alberto Croci
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valeria Rossetti
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Mario Nosotti
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,*Correspondence: Lorenzo Rosso,
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,Don C. Gnocchi Foundation, IRCCS, Milan, Italy
| |
Collapse
|
5
|
Jiang J, Huang H, Chen R, Lin Y, Ling Q. Immunotherapy for hepatocellular carcinoma recurrence after liver transplantation, can we harness the power of immune checkpoint inhibitors? Front Immunol 2023; 14:1092401. [PMID: 36875077 PMCID: PMC9978931 DOI: 10.3389/fimmu.2023.1092401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death globally and liver transplantation (LT) can serve as the best curative treatment option. However, HCC recurrence after LT remains the major obstacle to the long-term survival of recipients. Recently, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many cancers and provided a new treatment strategy for post-LT HCC recurrence. Evidence has been accumulated with the real-world application of ICIs in patients with post-LT HCC recurrence. Notably, the use of these agents as immunity boosters in recipients treated with immunosuppressors is still controversial. In this review, we summarized the immunotherapy for post-LT HCC recurrence and conducted an efficacy and safety evaluation based on the current experience of ICIs for post-LT HCC recurrence. In addition, we further discussed the potential mechanism of ICIs and immunosuppressive agents in regulating the balance between immune immunosuppression and lasting anti-tumor immunity.
Collapse
Affiliation(s)
- Jingyu Jiang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Liu Z, Liao F, Zhu J, Zhou D, Heo GS, Leuhmann HP, Scozzi D, Parks A, Hachem R, Byers DE, Tague LK, Kulkarni HS, Cano M, Wong BW, Li W, Huang HJ, Krupnick AS, Kreisel D, Liu Y, Gelman AE. Reprogramming alveolar macrophage responses to TGF-β reveals CCR2+ monocyte activity that promotes bronchiolitis obliterans syndrome. J Clin Invest 2022; 132:159229. [PMID: 36189800 PMCID: PMC9525120 DOI: 10.1172/jci159229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is a major impediment to lung transplant survival and is generally resistant to medical therapy. Extracorporeal photophoresis (ECP) is an immunomodulatory therapy that shows promise in stabilizing BOS patients, but its mechanisms of action are unclear. In a mouse lung transplant model, we show that ECP blunts alloimmune responses and inhibits BOS through lowering airway TGF-β bioavailability without altering its expression. Surprisingly, ECP-treated leukocytes were primarily engulfed by alveolar macrophages (AMs), which were reprogrammed to become less responsive to TGF-β and reduce TGF-β bioavailability through secretion of the TGF-β antagonist decorin. In untreated recipients, high airway TGF-β activity stimulated AMs to express CCL2, leading to CCR2+ monocyte-driven BOS development. Moreover, we found TGF-β receptor 2-dependent differentiation of CCR2+ monocytes was required for the generation of monocyte-derived AMs, which in turn promoted BOS by expanding tissue-resident memory CD8+ T cells that inflicted airway injury through Blimp-1-mediated granzyme B expression. Thus, through studying the effects of ECP, we have identified an AM functional plasticity that controls a TGF-β-dependent network that couples CCR2+ monocyte recruitment and differentiation to alloimmunity and BOS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramsey Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E. Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laneshia K. Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hrishikesh S. Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marlene Cano
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Howard J. Huang
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston, Texas, USA
| | - Alexander S. Krupnick
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Kreisel
- Department of Surgery
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yongjian Liu
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston, Texas, USA
| | - Andrew E. Gelman
- Department of Surgery
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Lynch CA, Guo Y, Mei A, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Solving the Conundrum of Eosinophils in Alloimmunity. Transplantation 2022; 106:1538-1547. [PMID: 34966103 PMCID: PMC9234098 DOI: 10.1097/tp.0000000000004030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eosinophils are bone-marrow-derived granulocytes known for their ability to facilitate clearance of parasitic infections and their association with asthma and other inflammatory diseases. The purpose of this review is to discuss the currently available human observational and animal experimental data linking eosinophils to the immunologic response in solid organ transplantation. First, we present observational human studies that demonstrate a link between transplantation and eosinophils yet were unable to define the exact role of this cell population. Next, we describe published experimental models and demonstrate a defined mechanistic role of eosinophils in downregulating the alloimmune response to murine lung transplants. The overall summary of this data suggests that further studies are needed to define the role of eosinophils in multiple solid organ allografts and points to the possibility of manipulating this cell population to improve graft survival.
Collapse
Affiliation(s)
- Cherie Alissa Lynch
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Yizhan Guo
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Alex Mei
- Department of Surgery, University of Maryland, Baltimore Maryland
| | | | | | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | | |
Collapse
|
8
|
Guo Y, Mei Z, Li D, Banerjee A, Khalil MA, Burke A, Ritter J, Lau C, Kreisel D, Gelman AE, Jacobsen E, Luzina IG, Atamas SP, Krupnick AS. Ischemia reperfusion injury facilitates lung allograft acceptance through IL-33-mediated activation of donor-derived IL-5 producing group 2 innate lymphoid cells. Am J Transplant 2022; 22:1963-1975. [PMID: 35510760 PMCID: PMC9357103 DOI: 10.1111/ajt.17084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023]
Abstract
Pathways regulating lung alloimmune responses differ from most other solid organs and remain poorly explored. Based on our recent work identifying the unique role of eosinophils in downregulating lung alloimmunity, we sought to define pathways contributing to eosinophil migration and homeostasis. Using a murine lung transplant model, we have uncovered that immunosuppression increases eosinophil infiltration into the allograft in an IL-5-dependent manner. IL-5 production depends on immunosuppression-mediated preservation of donor-derived group 2 innate lymphoid cells (ILC2). We further describe that ischemia reperfusion injury upregulates the expression of IL-33, which functions as the dominant and nonredundant mediator of IL-5 production by graft-resident ILC2. Our work thus identifies unique cellular mechanisms that contribute to lung allograft acceptance. Notably, ischemia reperfusion injury, widely considered to be solely deleterious to allograft survival, can also downregulate alloimmune responses by initiating unique pathways that promote IL-33/IL-5/eosinophil-mediated tolerance.
Collapse
Affiliation(s)
- Yizhan Guo
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Zhongcheng Mei
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Dongge Li
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Anirban Banerjee
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - May A. Khalil
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Allen Burke
- Department of Pathology, University of Maryland, Baltimore Maryland
| | - Jon Ritter
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
| | - Christine Lau
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Daniel Kreisel
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Andrew E. Gelman
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Elizabeth Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Irina G. Luzina
- Department of Medicine, University of Maryland, Baltimore Maryland
| | - Sergei P. Atamas
- Department of Surgery, University of Maryland, Baltimore Maryland
| | | |
Collapse
|
9
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Li S, Xu H, Kirk AD. Modulation of Xenogeneic T-cell Proliferation by B7 and mTOR Blockade of T Cells and Porcine Endothelial Cells. Transplantation 2022; 106:950-962. [PMID: 34387242 PMCID: PMC8850983 DOI: 10.1097/tp.0000000000003920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Activation of porcine endothelial cells (PECs) is the mechanistic centerpiece of xenograft rejection. This study sought to characterize the immuno-phenotype of human T cells in response to PECs and to explore the immuno-modulation of B7 and mammalian target of rapamycin blockade of T cells and/or PECs during xeno-responses. METHODS Rapid memory T-cell (TM) responses to PECs were assessed by an intracellular cytokine staining. T-cell proliferation to PEC with or without belatacept or rapamycin was evaluated by a mixed lymphocyte-endothelial cell reaction (MLER). Additionally, rapamycin-pretreated PECs were used in MLER. Cell phenotypes were analyzed by flow cytometry. RESULTS Tumor necrosis factor-α/interferon-γ producers were detected in CD8+ cells stimulated by human endothelium but not PECs. MLER showed proliferation of CD4+ and CD8+ cells with predominantly memory subsets. Purified memory and naive cells proliferated following PEC stimulation with an increased frequency of TM in PEC-stimulated naive cells. Proliferating cells upregulated programmed cell death-1 (PD-1) and CD2 expression. Belatacept partially inhibited T-cell proliferation with reduced CD2 expression and frequency of the CD8+CD2highCD28- subset. Rapamycin dramatically inhibited PEC-induced T-cell proliferation, and rapamycin-preconditioned PECs failed to induce T-cell proliferation. PD-1 blockade did not restore T-cell proliferation to rapamycin-preconditioned PECs. CONCLUSIONS Humans lack rapid TM-mediated responses to PECs but induce T-cell proliferative responses characterized largely as TM with increasing CD2 and PD-1 expression. B7-CD28 and mammalian target of rapamycin blockade of T cells exhibit dramatic inhibitory effects in altering xeno-proliferating cells. Rapamycin alters PEC xeno-immunogenicity leading to inhibition of xeno-specific T-cell proliferation independent of PD-1-PD ligand interaction.
Collapse
Affiliation(s)
- Shu Li
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - He Xu
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
11
|
Morrell ED, Brager C, Ramos KJ, Chai XY, Kapnadak SG, Edelman J, Matute-Bello G, Altemeier WA, Hwang B, Mulligan MS, Bhatraju PK, Wurfel MM, Mikacenic C, Lease ED, Limaye AP, Fisher CE. CXCL10 and Soluble Programmed Death-Ligand 1 during Respiratory Viral Infections Are Associated with Chronic Lung Allograft Dysfunction in Lung Transplant Recipients. Am J Respir Cell Mol Biol 2022; 66:577-579. [PMID: 35486077 PMCID: PMC9116355 DOI: 10.1165/rcmb.2021-0404le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Eric D Morrell
- University of Washington Seattle, Washington.,VA Puget Sound Health Care System Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | | | | | - Xin-Ya Chai
- University of Washington Seattle, Washington
| | | | - Jeffrey Edelman
- University of Washington Seattle, Washington.,VA Puget Sound Health Care System Seattle, Washington
| | - Gustavo Matute-Bello
- University of Washington Seattle, Washington.,VA Puget Sound Health Care System Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | - William A Altemeier
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | - Billanna Hwang
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | - Michael S Mulligan
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | | | - Mark M Wurfel
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | | | | | | | | |
Collapse
|
12
|
Righi I, Vaira V, Morlacchi LC, Croci GA, Rossetti V, Blasi F, Ferrero S, Nosotti M, Rosso L, Clerici M. Immune Checkpoints Expression in Chronic Lung Allograft Rejection. Front Immunol 2021; 12:714132. [PMID: 34489963 PMCID: PMC8418069 DOI: 10.3389/fimmu.2021.714132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) is the main cause of poor survival and low quality of life of lung transplanted patients. Several studies have addressed the role of dendritic cells, macrophages, T cells, donor specific as well as anti-HLA antibodies, and interleukins in CLAD, but the expression and function of immune checkpoint molecules has not yet been analyzed, especially in the two CLAD subtypes: BOS (bronchiolitis obliterans syndrome) and RAS (restrictive allograft syndrome). To shed light on this topic, we conducted an observational study on eight consecutive grafts explanted from patients who received lung re-transplantation for CLAD. The expression of a panel of immune molecules (PD1/CD279, PDL1/CD274, CTLA4/CD152, CD4, CD8, hFoxp3, TIGIT, TOX, B-Cell-Specific Activator Protein) was analyzed by immunohistochemistry in these grafts and in six control lungs. Results showed that RAS compared to BOS grafts were characterized by 1) the inversion of the CD4/CD8 ratio; 2) a higher percentage of T lymphocytes expressing the PD-1, PD-L1, and CTLA4 checkpoint molecules; and 3) a significant reduction of exhausted PD-1-expressing T lymphocytes (PD-1pos/TOXpos) and of exhausted Treg (PD-1pos/FOXP3pos) T lymphocytes. Results herein, although being based on a limited number of cases, suggest a role for checkpoint molecules in the development of graft rejection and offer a possible immunological explanation for the worst prognosis of RAS. Our data, which will need to be validated in ampler cohorts of patients, raise the possibility that the evaluation of immune checkpoints during follow-up offers a prognostic advantage in monitoring the onset of rejection, and suggest that the use of compounds that modulate the function of checkpoint molecules could be evaluated in the management of chronic rejection in LTx patients.
Collapse
Affiliation(s)
- Ilaria Righi
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Corinna Morlacchi
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Alberto Croci
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valeria Rossetti
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Mario Nosotti
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation, IRCCS, Milan, Italy
| |
Collapse
|
13
|
Differential gene analysis during the development of obliterative bronchiolitis in a murine orthotopic lung transplantation model: A comprehensive transcriptome-based analysis. PLoS One 2020; 15:e0232884. [PMID: 32384121 PMCID: PMC7209239 DOI: 10.1371/journal.pone.0232884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/23/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Obliterative bronchiolitis (OB) is a known issue during minor histocompatibility antigen (mHA) disparity during lung transplantation. This study evaluated gene expression in a murine orthotropic lung transplantation model using microarray analysis. METHODS Left lungs from C57BL/10(H-2b) donor mice were transplanted into mHA-mismatched C57BL/6(H-2b) recipient mice. Three groups (OB, non-OB, and sham controls) were confirmed pathologically and analyzed. Gene expression changes in the lung grafts were determined by microarray and immunohistochemical staining, and genes were verified by quantitative PCR in the lungs and mediastinal lymph nodes (LNs). RESULTS A total of 1343 genes were upregulated in the OB lungs compared to the sham group. Significant upregulation was observed for genes related to innate, e.g. Tlr2 and CCL3 and adaptive immunity, e.g. H2-ab1 and Il-21. Positive labeling for MHC class II antigen was observed in the bronchial epithelium of OB accompanied with B cells. We found increased Tlr2, Ccl3, H2-ab1, Il-21, Ighg3, Ifng, and Pdcd1 mRNA expression in the OB lung, and increased Il-21, Ighg3, and Pdcd1 expression in the OB LNs. CONCLUSIONS Adaptive and innate immune reactions were involved in OB after lung transplantation, and genetic examination of related genes could be used for detection of OB.
Collapse
|
14
|
Allocco JB, Alegre ML. Exploiting immunometabolism and T cell function for solid organ transplantation. Cell Immunol 2020; 351:104068. [PMID: 32139072 PMCID: PMC7150626 DOI: 10.1016/j.cellimm.2020.104068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Cellular metabolism is central to T cell function and proliferation, with most of the research to date focusing on cancer and autoimmunity. Cellular metabolism is associated with a host of physiological phenomena, from epigenetic changes, to cellular function and fate. For the purpose of this review, we will discuss the metabolism of T cells relating to their differentiation and function. We will cover a variety of metabolic processes, ranging from glycolysis to amino acid metabolism. Understanding how T cell metabolism informs T cell function may be useful to understand alloimmune responses and design novel therapies to improve graft outcome.
Collapse
Affiliation(s)
- Jennifer B Allocco
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
15
|
Onyema OO, Guo Y, Hata A, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Deciphering the role of eosinophils in solid organ transplantation. Am J Transplant 2020; 20:924-930. [PMID: 31647606 PMCID: PMC7842192 DOI: 10.1111/ajt.15660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Eosinophils are rare granulocytes that belong to the innate arm of the immune system. This cell population is traditionally defined as a destructive and cytotoxic mediator in asthma and helminth infection. Limited data in transplantation have suggested that eosinophils play a similar role in potentiating deleterious organ inflammation and immunologic rejection. Contrary to this long-held notion, recent data have uncovered the possibility that eosinophils play an alternative role in immune homeostasis, defense against a wide range of pathogens, as well as downregulation of deleterious inflammation. Specifically, translational data from small animal models of lung transplantation have demonstrated a critical role for eosinophils in the downregulation of alloimmunity. These findings shed new light on the unique immunologic features of the lung allograft and demonstrate that environmental polarization may alter the phenotype and function of leukocyte populations previously thought to be static in nature. In this review, we provide an update on eosinophils in the homeostasis of the lung as well as other solid organs.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Yizhan Guo
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Atsushi Hata
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alexander Sasha Krupnick
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Madelon N, Montanari E, Gruaz L, Pimenta J, Muller YD, Bühler LH, Puga Yung GL, Seebach JD. Prolongation of rat-to-mouse islets xenograft survival by co-transplantation of autologous IL-10 differentiated murine tolerogenic dendritic cells. Xenotransplantation 2020; 27:e12584. [PMID: 31984564 DOI: 10.1111/xen.12584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tolerogenic dendritic cells (DCs) represent a promising approach to promote transplantation tolerance. In this study, the potential of autologous bone marrow (BM)-derived murine DC to protect rat-to-mouse islets xenografts was analyzed. METHODS Tolerogenic DCs were generated by differentiating BM cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin 10 (IL-10, IL-10 DC). The phenotype of IL-10 DC was characterized in vitro by expression of costimulatory/inhibitory molecules (flow cytometry) and cytokines (Luminex and ELISA), their function by phagocytosis and T-cell stimulation assays. To study transplant tolerance in vivo, rat islets were transplanted alone or in combination with autologous murine IL-10 DC under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. Xenograft survival was evaluated by monitoring glycemia, cellular infiltration of xenografts by microscopy and flow cytometry 10 days post-transplantation. RESULTS Compared with control DC, IL-10 DC exhibited lower levels of major histocompatibility complex class II, costimulatory molecules (CD40, CD86, CD205), lower production of pro-inflammatory cytokines (IL-12p70, TNF, IL-6), and higher production of IL-10. Phagocytosis of xenogeneic rat splenocytes was not impaired in IL-10 DC, whereas stimulation of T-cell proliferation was reduced in the presence of IL-10 DC. Xenograft survival of rat islets in diabetic mice co-transplanted with autologous murine IL-10 DC was significantly prolonged from 12 to 21 days, without additional immunosuppressive treatment. Overall, infiltration of xenografts by T cells and myeloid cells was not different in IL-10 DC recipient mice, but enriched for CD8+ T cells and myeloid cells with suppressor-associated phenotype. CONCLUSIONS Autologous IL-10-differentiated DC with tolerogenic properties prolong rat-to-mouse islets xenograft survival, potentially by locally inducing immune regulatory cells, indicating their potential for regulatory immune cell therapy in xenotransplantation.
Collapse
Affiliation(s)
- Natacha Madelon
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Elisa Montanari
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Lyssia Gruaz
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Joel Pimenta
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Yannick D Muller
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Leo H Bühler
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Gisella L Puga Yung
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Jörg D Seebach
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
17
|
Mardomi A, Mohammadi N, Khosroshahi HT, Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation. J Cell Physiol 2019; 235:4183-4197. [PMID: 31696513 DOI: 10.1002/jcp.29369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
The promising outcomes of immune-checkpoint based immunotherapies in cancer have provided a proportional perspective ahead of exploiting similar approaches in allotransplantation. Belatacept (CTLA-4-Ig) is an example of costimulation blockers successfully exploited in renal transplantation. Due to the wide range of regulatory molecules characterized in the past decades, some of these molecules might be candidates as immunomodulators in the case of tolerance induction in transplantation. Although there are numerous attempts on the apprehension of the effects of co-signaling molecules on immune response, the necessity for a better understanding is evident. By increasing the knowledge on the biology of co-signaling pathways, some pitfalls are recognized and improved approaches are proposed. The blockage of CD80/CD28 axis is an instance of evolution toward more efficacy. It is now evident that anti-CD28 antibodies are more effective than CD80 blockers in animal models of transplantation. Other co-signaling axes such as PD-1/PD-L1, CD40/CD154, 2B4/CD48, and others discussed in the present review are examples of critical immunomodulatory molecules in allogeneic transplantation. We review here the outcomes of recent experiences with co-signaling molecules in preclinical studies of solid organ transplantation.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nabiallah Mohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeid Abediankenari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8 + regulatory T cells in immune tolerance. Immunol Rev 2019; 292:209-224. [PMID: 31593314 PMCID: PMC7027528 DOI: 10.1111/imr.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8+ Tregs have been long described and significant progresses have been made about their phenotype, their functional mechanisms, and their suppressive ability compared to conventional CD4+ Tregs. They are now at the dawn of their clinical use. In this review, we will summarize their phenotypic characteristics, their mechanisms of action, the similarities, differences and synergies between CD8+ and CD4+ Tregs, and we will discuss the biology, development and induction of CD8+ Tregs, their manufacturing for clinical use, considering open questions/uncertainties and future technically accessible improvements notably through genetic modifications.
Collapse
Affiliation(s)
- Léa Flippe
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
19
|
Onyema OO, Guo Y, Mahgoub B, Wang Q, Manafi A, Mei Z, Banerjee A, Li D, Stoler MH, Zaidi MT, Schrum AG, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight 2019; 4:128241. [PMID: 31167966 DOI: 10.1172/jci.insight.128241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Despite the accepted notion that granulocytes play a universally destructive role in organ and tissue grafts, it has been recently described that eosinophils can facilitate immunosuppression-mediated acceptance of murine lung allografts. The mechanism of eosinophil-mediated tolerance, or their role in regulating alloimmune responses in the absence of immunosuppression, remains unknown. Using lung transplants in a fully MHC-mismatched BALB/c (H2d) to C57BL/6 (H2b) strain combination, we demonstrate that eosinophils downregulate T cell-mediated immune responses and play a tolerogenic role even in the absence of immunosuppression. We further show that such downregulation depends on PD-L1/PD-1-mediated synapse formation between eosinophils and T cells. We also demonstrate that eosinophils suppress T lymphocyte responses through the inhibition of T cell receptor/CD3 (TCR/CD3) subunit association and signal transduction in an inducible NOS-dependent manner. Increasing local eosinophil concentration, through administration of intratracheal eotaxin and IL-5, can ameliorate alloimmune responses in the lung allograft. Thus, our data indicate that eosinophil mobilization may be utilized as a novel means of lung allograft-specific immunosuppression.
Collapse
Affiliation(s)
| | - Yizhan Guo
- Department of Surgery, Carter Center for Immunology, and
| | - Bayan Mahgoub
- Department of Surgery, Carter Center for Immunology, and
| | - Qing Wang
- Department of Surgery, Carter Center for Immunology, and
| | - Amir Manafi
- Department of Surgery, Carter Center for Immunology, and
| | - Zhongcheng Mei
- Department of Surgery, Carter Center for Immunology, and
| | | | - Dongge Li
- Department of Surgery, Carter Center for Immunology, and
| | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Melissa T Zaidi
- Molecular Microbiology and Immunology, Surgery, Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Adam G Schrum
- Molecular Microbiology and Immunology, Surgery, Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University, St. Louis, Missouri, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University, St. Louis, Missouri, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, USA
| | | |
Collapse
|
20
|
Liu Z, Liao F, Scozzi D, Furuya Y, Pugh KN, Hachem R, Chen DL, Cano M, Green JM, Krupnick AS, Kreisel D, Perl AKT, Huang HJ, Brody SL, Gelman AE. An obligatory role for club cells in preventing obliterative bronchiolitis in lung transplants. JCI Insight 2019; 5:124732. [PMID: 30990794 DOI: 10.1172/jci.insight.124732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Obliterative bronchiolitis (OB) is a poorly understood airway disease characterized by the generation of fibrotic bronchiolar occlusions. In the lung transplant setting, OB is a pathological manifestation of bronchiolitis obliterans syndrome (BOS), which is a major impediment to long-term recipient survival. Club cells play a key role in bronchiolar epithelial repair, but whether they promote lung transplant tolerance through preventing OB remains unclear. We determined if OB occurs in mouse orthotopic lung transplants following conditional transgene-targeted club cell depletion. In syngeneic lung transplants club cell depletion leads to transient epithelial injury followed by rapid club cell-mediated repair. In contrast, allogeneic lung transplants develop severe OB lesions and poorly regenerate club cells despite immunosuppression treatment. Lung allograft club cell ablation also triggers the recognition of alloantigens, and pulmonary restricted self-antigens reported associated with BOS development. However, CD8+ T cell depletion restores club cell reparative responses and prevents OB. In addition, ex-vivo analysis reveals a specific role for alloantigen-primed effector CD8+ T cells in preventing club cell proliferation and maintenance. Taken together, we demonstrate a vital role for club cells in maintaining lung transplant tolerance and propose a new model to identify the underlying mechanisms of OB.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Kaitlyn N Pugh
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Jonathan M Green
- Department of Medicine.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander S Krupnick
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anne Karina T Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Howard J Huang
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston, Texas, USA
| | | | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Abstract
Although cluster of differentiation (CD)8 regulatory T (Treg) cells have been in the last 20 years more studied since evidences of their role in tolerance as been demonstrated in transplantation, autoimmune diseases and cancer, their characteristics are still controversial. In this review, we will focus on recent advances on CD8 Treg cells and description of a role for CD8 Treg cells in tolerance in both solid organ transplantation and graft-versus-host disease and their potential for clinical trials.
Collapse
|
22
|
Coiffard B, Pelardy M, Loundou AD, Nicolino-Brunet C, Thomas PA, Papazian L, Dignat-George F, Reynaud-Gaubert M. Effect of Immunosuppression on Target Blood Immune Cells Within 1 Year After Lung Transplantation: Influence of Age on T Lymphocytes. Ann Transplant 2018; 23:11-24. [PMID: 29302022 PMCID: PMC6248312 DOI: 10.12659/aot.906372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Lymphocytes are targeted by immunosuppressive therapy in solid organ transplantation and they influence allograft outcome. Material/Methods Peripheral blood lymphocyte subsets (PBLS) determined by flow cytometry during the first year post-transplant from patients who underwent a first lung transplantation in a French University Hospital between December 2011 and July 2013 were retrospectively analyzed according to recipient characteristics and allograft outcome. Results Fifty-seven recipients were enrolled and 890 PBLS were collected. T lymphocytes and NK cells were rapidly decreased, below normal range, from the first postoperative days. B cells decreased more gradually, remaining within normal range, with the lowest level reached after day 100. In multivariate analysis, greater T lymphopenia was found in older recipients (−414 [−709 to −119] cells/μL, p=0.007). According to the outcome, multivariate analysis evidenced lower levels of lymphocytes when bacterial and viral infection occurred (−177 [−310 to −44] cells/μL, p=0.009 and (−601 [−984 to −218] cells/μL, p=0.002, respectively), higher CD8+ T lymphocytes with BOS (+324 [+94 to +553] cells/μL, p=0.006), and higher leukocytes with restrictive allograft syndrome (+3770 [+418 to +7122] cells/μL, p=0.028). Conclusions Aging is associated in our cohort with more severe T lymphopenia after induction therapy for lung transplantation. The analysis of leukocytes and PBLS is associated with specific profile according to the allograft outcome.
Collapse
Affiliation(s)
- Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, Hosital Nord, Marseille, France.,URMITE CNRS IRD UMR 6236, Aix-Marseille University, Marseille, France
| | - Matthieu Pelardy
- Laboratory of Hematology and Vascular Biology, Hospital La Conception, Marseille, France
| | - Anderson D Loundou
- Department of Public Health, Aix-Marseille University, Marseille, France
| | - Corine Nicolino-Brunet
- Laboratory of Hematology and Vascular Biology, Hospital La Conception, Marseille, France
| | | | - Laurent Papazian
- URMITE CNRS IRD UMR 6236, Aix-Marseille University, Marseille, France.,Respiratory Intensive Care Unit, Hospital Nord, Marseille, France
| | - Françoise Dignat-George
- Laboratory of Hematology and Vascular Biology, Hospital La Conception, Marseille, France.,VRCM, UMR-S1076 INSERM, Aix-Marseille University, Marseille, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory Medicine and Lung Transplantation, Hosital Nord, Marseille, France.,URMITE CNRS IRD UMR 6236, Aix-Marseille University, Marseille, France
| |
Collapse
|