1
|
Hinze CA, Simon S, Gottlieb J. Respiratory infections in lung transplant recipients. Curr Opin Infect Dis 2025:00001432-990000000-00217. [PMID: 39927477 DOI: 10.1097/qco.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW Morbidity and mortality rates after lung transplantation still remain higher than after other forms of solid organ transplantation, primarily due to a higher risk of infections and the development of chronic lung allograft dysfunction. Thus, a tiered approach highlighting the most significant respiratory pathogens including common opportunistic infections along with diagnostic, treatment and prevention strategies, including vaccination and prophylaxis is needed. RECENT FINDINGS The need for intense immunosuppressive therapy to prevent rejection, coupled with the transplanted lung's constant exposure to environment and impaired local defence mechanisms leads to frequent infections. Viral and bacterial infections are most frequent while fungal infections mainly involve the tracheobronchial tract but may be fatal in case of disseminated disease. Some infectious agents are known to trigger acute rejection or contribute to chronic allograft dysfunction. Invasive testing in the form of bronchoscopy with bronchoalveolar lavage is standard and increasing experience in point of care testing is gained to allow early preemptive therapy. SUMMARY Timely diagnosis, treatment, and ongoing monitoring are essential, but this can be difficult due to the wide variety of potential pathogens.
Collapse
Affiliation(s)
- Christopher Alexander Hinze
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Susanne Simon
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School
| | - Jens Gottlieb
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
2
|
Paraskeva MA, Snell GI. Advances in lung transplantation: 60 years on. Respirology 2024; 29:458-470. [PMID: 38648859 DOI: 10.1111/resp.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Lung transplantation is a well-established treatment for advanced lung disease, improving survival and quality of life. Over the last 60 years all aspects of lung transplantation have evolved significantly and exponential growth in transplant volume. This has been particularly evident over the last decade with a substantial increase in lung transplant numbers as a result of innovations in donor utilization procurement, including the use donation after circulatory death and ex-vivo lung perfusion organs. Donor lungs have proved to be surprisingly robust, and therefore the donor pool is actually larger than previously thought. Parallel to this, lung transplant outcomes have continued to improve with improved acute management as well as microbiological and immunological insights and innovations. The management of lung transplant recipients continues to be complex and heavily dependent on a tertiary care multidisciplinary paradigm. Whilst long term outcomes continue to be limited by chronic lung allograft dysfunction improvements in diagnostics, mechanistic understanding and evolutions in treatment paradigms have all contributed to a median survival that in some centres approaches 10 years. As ongoing studies build on developing novel approaches to diagnosis and treatment of transplant complications and improvements in donor utilization more individuals will have the opportunity to benefit from lung transplantation. As has always been the case, early referral for transplant consideration is important to achieve best results.
Collapse
Affiliation(s)
- Miranda A Paraskeva
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Gregory I Snell
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Fernández-Ruiz M. Pharmacological management of invasive mold infections in solid organ transplant recipients. Expert Opin Pharmacother 2024; 25:239-254. [PMID: 38436619 DOI: 10.1080/14656566.2024.2326507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Solid organ transplant (SOT) recipients face an increased susceptibility to invasive fungal infection (IFI) due to filamentous fungi. Post-transplant invasive aspergillosis (IA) and mucormycosis are related to exceedingly high mortality rates and graft loss risk, and its management involve a unique range of clinical challenges. AREAS COVERED First, the current treatment recommendations for IA and mucormycosis among SOT recipients are critically reviewed, including the supporting evidence. Next, we discussed particular concerns in this patient population, such as drug-drug interactions (DDIs) between triazoles and post-transplant immunosuppression or treatment-related toxicity. The role for immunomodulatory and host-targeted therapies is also considered, as well as the theoretical impact of the intrinsic antifungal activity of calcineurin inhibitors. Finally, a personal opinion is made on future directions in the pharmacological approach to post-transplant IFI. EXPERT OPINION Despite relevant advances in the treatment of mold IFIs in the SOT setting, such as the incorporation of isavuconazole (with lower incidence of DDIs and better tolerability than voriconazole), there remains a large room for improvement in areas such as the position of combination therapy or the optimal strategy for the reduction of baseline immunosuppression. Importantly, future studies should define the specific contribution of newer antifungal agents and classes.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Davis AE, Kennelley GE, Amaye-Obu T, Jowdy PF, Ghadersohi S, Nasir-Moin M, Paragh G, Berman HA, Huss WJ. The phenomenon of phototoxicity and long-term risks of commonly prescribed and structurally diverse drugs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2024; 19:100221. [PMID: 38389933 PMCID: PMC10883358 DOI: 10.1016/j.jpap.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Photosensitivity to structurally diverse drugs is a common but under-reported adverse cutaneous reaction and can be classified as phototoxic or photoallergic. Phototoxic reactions occur when the skin is exposed to sunlight after administering topical or systemic medications that exhibit photosensitizing activity. These reactions depend on the dose of medication, degree of exposure to ultraviolet light, type of ultraviolet light, and sufficient skin distribution volume. Accurate prediction of the incidence and phototoxic response severity is challenging due to a paucity of literature, suggesting that phototoxicity may be more frequent than reported. This paper reports an extensive literature review on phototoxic drugs; the review employed pre-determined search criteria that included meta-analyses, systematic reviews, literature reviews, and case reports freely available in full text. Additional reports were identified from reference sections that contributed to the understanding of phototoxicity. The following drugs and/or drug classes are discussed: amiodarone, voriconazole, chlorpromazine, doxycycline, fluoroquinolones, hydrochlorothiazide, nonsteroidal anti-inflammatory drugs, and vemurafenib. In reviewing phototoxic skin reactions, this review highlights drug molecular structures, their reactive pathways, and, as there is a growing association between photosensitizing drugs and the increasing incidence of skin cancer, the consequential long-term implications of photocarcinogenesis.
Collapse
Affiliation(s)
- Anna E Davis
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gabrielle E Kennelley
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Tatiana Amaye-Obu
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Peter F Jowdy
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Ghadersohi
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mehr Nasir-Moin
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Harvey A Berman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Romanell Center for the Philosophy of Medicine and Bioethics, Park Hall University at Buffalo, Buffalo, NY 14260, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
5
|
Lim W, Moon S, Lee NR, Shin HG, Yu SY, Lee JE, Kim I, Ko KP, Park SK. Group I pharmaceuticals of IARC and associated cancer risks: systematic review and meta-analysis. Sci Rep 2024; 14:413. [PMID: 38172159 PMCID: PMC10764325 DOI: 10.1038/s41598-023-50602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
We aimed to summarize the cancer risk among patients with indication of group I pharmaceuticals as stated in monographs presented by the International Agency for Research on Cancer working groups. Following the PRISMA guidelines, a comprehensive literature search was conducted using the PubMed database. Pharmaceuticals with few studies on cancer risk were identified in systematic reviews; those with two or more studies were subjected to meta-analysis. For the meta-analysis, a random-effects model was used to calculate the summary relative risks (SRRs) and 95% confidence intervals (95% CIs). Heterogeneity across studies was presented using the Higgins I square value from Cochran's Q test. Among the 12 group I pharmaceuticals selected, three involved a single study [etoposide, thiotepa, and mustargen + oncovin + procarbazine + prednisone (MOPP)], seven had two or more studies [busulfan, cyclosporine, azathioprine, cyclophosphamide, methoxsalen + ultraviolet (UV) radiation therapy, melphalan, and chlorambucil], and two did not have any studies [etoposide + bleomycin + cisplatin and treosulfan]. Cyclosporine and azathioprine reported increased skin cancer risk (SRR = 1.32, 95% CI 1.07-1.62; SRR = 1.56, 95% CI 1.25-1.93) compared to non-use. Cyclophosphamide increased bladder and hematologic cancer risk (SRR = 2.87, 95% CI 1.32-6.23; SRR = 2.43, 95% CI 1.65-3.58). Busulfan increased hematologic cancer risk (SRR = 6.71, 95% CI 2.49-18.08); melphalan was associated with hematologic cancer (SRR = 4.43, 95% CI 1.30-15.15). In the systematic review, methoxsalen + UV and MOPP were associated with an increased risk of skin and lung cancer, respectively. Our results can enhance persistent surveillance of group I pharmaceutical use, establish novel clinical strategies for patients with indications, and provide evidence for re-categorizing current group I pharmaceuticals into other groups.
Collapse
Affiliation(s)
- Woojin Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Na Rae Lee
- National Evidence-based Healthcare Collaborating Agency (NECA), Seoul, 04933, Republic of Korea
| | - Ho Gyun Shin
- National Evidence-based Healthcare Collaborating Agency (NECA), Seoul, 04933, Republic of Korea
| | - Su-Yeon Yu
- National Evidence-based Healthcare Collaborating Agency (NECA), Seoul, 04933, Republic of Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul, 08826, Republic of Korea
| | - Inah Kim
- Department of Occupational and Environmental Medicine, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Kwang-Pil Ko
- Clinical Preventive Medicine Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Ruiz E, Moreno P, Gonzalez FJ, Fernandez AM, Cantador B, Parraga JL, Salvatierra A, Alvarez A. Influence of De Novo Malignancies on Long-Term Survival after Lung Transplantation. Cancers (Basel) 2023; 15:4011. [PMID: 37568825 PMCID: PMC10417357 DOI: 10.3390/cancers15154011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Malignancies are an important cause of mortality after solid organ transplantation. The purpose of this study was to analyze the incidence of malignancies in patients receiving lung transplants (LT) and their influence on patients' survival. (2) Methods: Review of consecutive LT from 1994 to 2021. Patients with and without malignancies were compared by univariable and multivariable analyses. Survival was compared with Kaplan-Meier and Cox regression analysis. (3) Results: There were 731 LT malignancies developed in 91 patients (12.4%) with related mortality of 47% (n = 43). Native lung cancer, digestive and hematological malignancies were associated with higher lethality. Malignancies were more frequent in males (81%; p = 0.005), transplanted for emphysema (55%; p = 0.003), with cyclosporine-based immunosuppression (58%; p < 0.001), and receiving single LT (65%; p = 0.011). Survival was worse in patients with malignancies (overall) and with native lung cancer. Risk factors for mortality were cyclosporine-based immunosuppression (OR 1.8; 95%CI: 1.3-2.4; p < 0.001) and de novo lung cancer (OR 2.6; 95%CI: 1.5-4.4; p < 0.001). (4) Conclusions: Malignancies are an important source of morbidity and mortality following lung transplantation that should not be neglected. Patients undergoing single LT for emphysema are especially at higher risk of mortality due to lung cancer in the native lung.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonio Alvarez
- Department of Thoracic Surgery and Lung Transplantation, University Hospital Reina Sofia, 14004 Cordoba, Spain; (E.R.); (P.M.); (F.J.G.); (A.M.F.); (B.C.); (J.L.P.); (A.S.)
| |
Collapse
|
7
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Fernández-Ruiz M, Bodro M, Gutiérrez Martín I, Rodriguez-Álvarez R, Ruiz-Ruigómez M, Sabé N, López-Viñau T, Valerio M, Illaro A, Fortún J, Salto-Alejandre S, Cordero E, Fariñas MDC, Muñoz P, Vidal E, Carratalà J, Goikoetxea J, Ramos-Martínez A, Moreno A, Aguado JM. Isavuconazole for the Treatment of Invasive Mold Disease in Solid Organ Transplant Recipients: A Multicenter Study on Efficacy and Safety in Real-life Clinical Practice. Transplantation 2023; 107:762-773. [PMID: 36367924 DOI: 10.1097/tp.0000000000004312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Isavuconazole has theoretical advantages over other mold-active triazoles for the treatment of invasive aspergillosis and mucormycosis after solid organ transplantation (SOT). The available clinical experience, nevertheless, is scarce. METHODS We performed a retrospective study including all adult SOT recipients with proven or probable invasive mold disease (IMD) that received isavuconazole for ≥24 h as first-line or salvage therapy at 10 Spanish centers between September 2017 and November 2021. The primary efficacy outcome was clinical response (complete or partial resolution of attributable symptoms and findings) by weeks 6 and 12. Safety outcomes included the rates of treatment-emergent adverse events and premature isavuconazole discontinuation. RESULTS We included 81 SOT recipients that received isavuconazole for a median of 58.0 days because of invasive aspergillosis (n = 71) or mucormycosis (n = 10). Isavuconazole was used as first-line (72.8%) or salvage therapy due because of previous treatment-emergent toxicity (11.1%) or refractory IMD (7.4%). Combination therapy was common (37.0%), mainly with an echinocandin or liposomal amphotericin B. Clinical response by weeks 6 and 12 was achieved in 53.1% and 54.3% of patients, respectively, and was more likely when isavuconazole was administered as first-line single-agent therapy. At least 1 treatment-emergent adverse event occurred in 17.3% of patients, and 6.2% required premature discontinuation. Daily tacrolimus dose was reduced in two-thirds of patients by a median of 50.0%, although tacrolimus levels remained stable throughout the first month of therapy. CONCLUSIONS Isavuconazole is a safe therapeutic option for IMD in SOT recipients, with efficacy comparable to other patient groups.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Bodro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Isabel Gutiérrez Martín
- Department of Internal Medicine, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | | | - María Ruiz-Ruigómez
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Núria Sabé
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa López-Viñau
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Maricela Valerio
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Aitziber Illaro
- Department of Pharmacy, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Sonsoles Salto-Alejandre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - Elisa Cordero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - María Del Carmen Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
- Department of Medicine, School of Medicine, Universidad de Cantabria, Santander, Spain
| | - Patricia Muñoz
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Vidal
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Department of Medicine, School of Medicine, University of Córdoba, Córdoba, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Josune Goikoetxea
- Unit of Infectious Diseases, Hospital Universitario de Cruces, Baracaldo, Spain
| | - Antonio Ramos-Martínez
- Unit of Infectious Diseases, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Asunción Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Parza K, Singh P, Cvinar J, Zimmerman T, Watson B, Faris M. Voriconazole Induced Cutaneous Squamous Cell Carcinoma in an Immunocompetent Patient. Cureus 2022; 14:e25508. [PMID: 35663682 PMCID: PMC9153335 DOI: 10.7759/cureus.25508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Voriconazole therapy can be associated with hair loss, vision changes, and skin phototoxicity, but rarely is it associated with the development of skin cancer. We present a case of an immunocompetent 42-year-old Caucasian male with a past medical history significant for chronic pulmonary aspergillosis (CPA) and prior cutaneous squamous cell carcinoma (cSCC) of the left hand who arrived at our clinic for evaluation of an enlarging, non-tender left preauricular mass over the past six months. He had diffuse actinic changes and appeared older relative to his age. He had a fair complexion but was compliant with sun protection measures and minimized unnecessary ultraviolet (UV) light exposure. His left-sided facial mass was excised, and the final pathology was consistent with cSCC. His only home medication was oral voriconazole 200 mg once daily for six years for pulmonary aspergillosis. He was negative for human immunodeficiency virus (HIV) and had no history of prior transplant operations. This case highlights the importance of recognizing voriconazole as an independent risk factor in the development of cSCC, especially in patients on chronic therapy for aspergillosis.
Collapse
Affiliation(s)
- Kevin Parza
- Internal Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| | - Pratishtha Singh
- Internal Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| | - Jessica Cvinar
- Internal Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| | | | - Brian Watson
- Pathology, Grand Strand Medical Center, Myrtle Beach, USA
| | - Mohamed Faris
- Internal Medicine, Grand Strand Medical Center, Myrtle Beach, USA
| |
Collapse
|
10
|
Safety and Effectiveness of Isavuconazole Treatment for Fungal Infections in Solid Organ Transplant Recipients (ISASOT Study). Microbiol Spectr 2022; 10:e0178421. [PMID: 35171022 PMCID: PMC8849063 DOI: 10.1128/spectrum.01784-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isavuconazole (ISA) is an alternative treatment for Aspergillus spp. and other fungal infections, but evidence regarding its use in solid organ transplant recipients (SOTR) is scarce. All SOTR who received ISA for treatment of a fungal infection (FI) at our center from December 2017 to January 2021 were included. The duration of the treatment depended on the type of infection. All patients were followed up to 3 months after treatment. Fifty-three SOTR were included, and the majority (44, 83%) were lung transplant recipients. The most frequently treated FI was tracheobronchitis (25, 46.3%). Aspergillus spp. (43, 81.1%); specially A. flavus (16, 37.2%) and A. fumigatus (12, 27.9%), was the most frequent etiology. Other filamentous fungi including one mucormycosis, and four yeast infections were treated. The median duration of treatment was 81 days (IQR 15-197). Mild gamma-glutamyltransferase elevation was the most frequent adverse event (34%). ISA was prematurely discontinued in six patients (11.3%) due to mild hepatotoxicity (2), fatigue (2), gastrointestinal intolerance (1) and myopathy (1). The mean tacrolimus dose decrease was 30% after starting ISA. Seven patients received ISA with mTOR inhibitors with good tolerability. Two patients developed breakthrough FI (3.8%). Among patients who completed the treatment, 27 (50.9%) showed clinical cure and 15 (34.1%) presented fungal persistence. Three patients (6%) died while on ISA due to FI. ISA was well tolerated and appeared to be an effective treatment for FI in SOTR. IMPORTANCE We describe 53 solid organ transplant recipients treated with isavuconazole for fungal infections. Because its use in clinical practice, there is scarce data of its use in solid organ transplant recipients, where interactions with calcineurin inhibitors and mTOR and adverse drug events have limited the use of other triazoles. To the best of our knowledge, this is the first article describing the safety regarding adverse events and drug interactions of isavuconazole for the treatment of fungal infections in a cohort of solid organ transplant recipients. Also, although this is a noncomparative study, we report some real world effectivity data of these patients, including treatment of non-Aspergillus fungal infections.
Collapse
|
11
|
Cells to Surgery Quiz: February 2022. J Invest Dermatol 2022. [DOI: 10.1016/j.jid.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Phoompoung P, Villalobos APC, Jain S, Foroutan F, Orchanian-Cheff A, Husain S. Risk factors of invasive fungal infections in lung transplant recipients: A systematic review and meta-analysis. J Heart Lung Transplant 2021; 41:255-262. [PMID: 34872817 DOI: 10.1016/j.healun.2021.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Invasive fungal infection (IFI) remains a common complication after lung transplantation, causing significant morbidity and mortality. We have attempted to quantify systematically risk factors of IFI in lung transplant recipients. METHODS Studies were retrieved from Ovid MEDLINE, Ovid Embase, Cochrane database of systematic reviews and Cochrane central register of controlled trials. All case-control and cohort studies evaluating the risk factors of IFI in adult lung transplant recipients were screened. Two researchers reviewed and assessed all studies independently. We pooled the estimated effect of each factor associated with IFI by using a random effect model. RESULTS Eight studies were included in the systematic review and 5 studies were eligible for the meta-analysis. Rates of IFI range from 8% to 33% in lung transplant recipients. Independent risk factors for invasive aspergillosis (IA) in lung transplantation include previous fungal colonization (odds ratio [OR] 2.44; 95% confidence interval [CI] 0.08-0.47), cytomegalovirus infection (OR 1.96; 95% CI 1.08-3.56), and single lung transplantation (OR 1.77; 95% CI 1.08-2.91). Pre-emptive antifungal therapy is a protective factor for IA in lung transplant (OR 0.2; 95% CI 0.08-0.47). CONCLUSION Cytomegalovirus infection, previous fungal colonization and single lung transplantation independently increase the risk of IA in lung transplant recipients. Pre-emptive antifungal therapy is a protective factor for IA in the lung transplant population.
Collapse
Affiliation(s)
- Pakpoom Phoompoung
- Ajmera Transplant Center, University Health Network, Toronto, Canada; Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Farid Foroutan
- Ajmera Transplant Center, University Health Network, Toronto, Canada
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, Toronto, Canada
| | - Shahid Husain
- Ajmera Transplant Center, University Health Network, Toronto, Canada.
| |
Collapse
|
13
|
D'Arcy ME, Pfeiffer RM, Rivera DR, Hess GP, Cahoon EK, Arron ST, Brownell I, Cowen EW, Israni AK, Triplette MA, Yanik EL, Engels EA. Voriconazole and the Risk of Keratinocyte Carcinomas Among Lung Transplant Recipients in the United States. JAMA Dermatol 2021; 156:772-779. [PMID: 32401271 PMCID: PMC7221851 DOI: 10.1001/jamadermatol.2020.1141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Question What is the association between voriconazole, an antifungal used to treat aspergillosis infections, and the risk of keratinocyte carcinomas among recipients of lung transplants? Findings In a population-based cohort study of 9599 non-Hispanic white recipients of 9793 lung transplants in the United States (2007-2016) with linkage to pharmacy claims, increasing cumulative voriconazole exposure was associated with an increased risk of cutaneous squamous cell carcinoma. Meaning These findings suggest that physicians caring for lung transplant recipients at high risk for aggressive keratinocyte carcinomas should limit voriconazole exposure when possible and encourage skin protection behaviors and more frequent cancer screenings. Importance The antifungal medication voriconazole is used to prevent and treat aspergillosis, a major cause of mortality among recipients of lung transplants (hereinafter referred to as lung recipients). Small studies suggest that voriconazole increases risk of cutaneous squamous cell carcinoma (SCC). Objective To examine associations of voriconazole and other antifungal medications with risk of keratinocyte carcinomas (SCC and cutaneous basal cell carcinoma [BCC]) in lung recipients. Design, Setting, and Participants This population-based cohort study included non-Hispanic white patients (n = 9599) who underwent lung transplant in the United States from January 1, 2007, to December 31, 2016, identified through the national Scientific Registry of Transplant Recipients with data linkable to pharmacy claims. Data were analyzed from March 1, 2018, to February 13, 2019. Exposures Antifungal medication use, including voriconazole, itraconazole, posaconazole, and other antifungals, was ascertained from pharmacy claims and treated as a time-varying exposure (assessed every 30 days). Cumulative antifungal exposure was calculated as the total number of exposed months. Main Outcomes and Measures Primary outcomes were the first SCC or BCC reported to the transplant registry by transplant centers. Follow-up began at transplant and ended at SCC or BCC diagnosis, transplant failure or retransplant, death, loss to follow-up, or December 31, 2016. Cox proportional hazards regression models were used to estimate adjusted hazard ratios (AHRs) for each antifungal medication. Results Among the 9793 lung transplants in 9599 recipients included in the analysis, median age at transplant was 59 (interquartile range [IQR], 48-65) years, 5824 (59.5%) were male, and 5721 (58.4%) reported ever smoking. During a median follow-up of 3.0 (IQR, 1.4-5.0) years after transplant, 1031 SCCs (incidence, 322 per 10 000 person-years) and 347 BCCs (incidence, 101 per 10 000 person-years) were reported. Compared with lung recipients with no observed voriconazole use, those with 1 to 3 months of voriconazole use experienced increased AHR for SCC of 1.09 (95% CI, 0.90-1.31); 4 to 7 months, 1.42 (95% CI, 1.16-1.73); 8 to 15 months, 2.04 (95% CI, 1.67-2.50); and more than 15 months, 3.05 (95% CI, 2.37-3.91). Ever itraconazole exposure was associated with increased SCC risk (AHR, 1.20; 95% CI, 1.00-1.45). For BCC, risk was not associated with voriconazole use but was increased with itraconazole use (AHR, 1.74; 95% CI, 1.27-2.37) or posaconazole use (AHR, 1.55; 95% CI, 1.00-2.41). Conclusions and Relevance In this study, voriconazole use was associated with increased SCC risk among lung recipients, especially after prolonged exposure. Further research evaluating the risk-benefit ratio of shorter courses or alternative medications in transplant recipients at high risk for SCC should be considered.
Collapse
Affiliation(s)
- Monica E D'Arcy
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Donna R Rivera
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland
| | - Gregory P Hess
- The Wharton School, University of Pennsylvania, Philadelphia
| | - Elizabeth K Cahoon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Sarah T Arron
- Department of Dermatology, University of California, San Francisco
| | - Isaac Brownell
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Edward W Cowen
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ajay K Israni
- Kidney Transplant Program, Hennepin Healthcare, University of Minnesota, Minneapolis.,Scientific Registry of Transplant Recipients, Minneapolis, Minnesota
| | - Matthew A Triplette
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | | | - Eric A Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
14
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
15
|
Preventing Pulmonary Aspergillosis: Can We Breathe Easy? Transplantation 2021; 104:2473-2474. [PMID: 32080159 DOI: 10.1097/tp.0000000000003188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Vecchiato M, Piaserico S, Biolo G, Frigo AC, Loy M, Rea F, Russo I, Alaibac M. Skin cancers in Italian lung transplant recipients: Incidence and risk factors analysis. Dermatol Ther 2021; 34:e14749. [PMID: 33403691 DOI: 10.1111/dth.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022]
Abstract
Only a few studies reported the incidence and risk factors of skin cancers in lung transplant recipients. The aim of this study was to determine the cumulative incidence of skin cancers in a cohort of patients undergoing lung transplantation and to define predictors of their development. About 247 consecutive patients receiving lung transplantation at the Thoracic Surgery Unit of University Hospital of Padova between May 1995 and October 2016 were studied. Cumulative incidence of skin cancers was estimated considering death as a competing event. The effect of potential predictors was evaluated with univariate and multivariable Cox models for competing risks. About 37 (15.0%) patients developed skin tumors. The cumulative incidence of any skin cancer was 14.2% at 5 years, 21.4% at 10 years, and 24.3% at 15 years posttransplantation. Age at transplantation, male gender, phototype II, and voriconazole use were independent risk factors for development of squamous cell carcinoma. Only male gender and phototype II were independent risk factors for development of basal cell carcinoma. Since lung transplant recipients have a greater risk of developing skin cancers, the management of these patients needs a multidisciplinary approach, in which dermatologists and transplant physicians have a primary role.
Collapse
Affiliation(s)
- Marco Vecchiato
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Piaserico
- Unit of Dermatology, Department of Medicine, University of Padova, Padova, Italy
| | - Giulia Biolo
- Unit of Dermatology, Department of Medicine, University of Padova, Padova, Italy
| | - Anna Chiara Frigo
- Biostatistics, Epidemiology, and Public Health Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University Hospital, Padova, Italy
| | - Monica Loy
- Thoracic Surgical Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Federico Rea
- Thoracic Surgical Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Irene Russo
- Unit of Dermatology, Department of Medicine, University of Padova, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Corallo CE, Ivulich SP, Kotecha DS, Morrissey O. Dementia-Like Symptoms Associated With Posaconazole. J Pharm Pract 2020; 35:135-139. [PMID: 33084474 DOI: 10.1177/0897190020958235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Posaconazole is widely used in lung transplant recipients as pre-emptive therapy or universal fungal prophylaxis. In this patient group, posaconazole is increasingly used instead of voriconazole due to the concerns of an increased risk of squamous cell carcinoma (SCC) with voriconazole, particularly with its long-term use. Dose dependent toxicity has not been identified for posaconazole in the registration trials of intravenous (IV) and modified-release tablet formulations. This is supported by post-marketing experience. We describe a lung transplant recipient who experienced dementia-like symptoms almost 3 years after commencing posaconazole for treatment of Aspergillus fumigatus complex and Lomentospora prolificans (formerly Scedosporium prolificans) fungal infections. Symptoms resolved upon discontinuation of posaconazole, but recurred when re-challenged at a lower dose more than a year later. To the best of our knowledge, this is the first case reporting a dementia-like state with posaconazole.
Collapse
Affiliation(s)
| | | | - Dr Sakhee Kotecha
- Department of Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Victoria, Australia
| | - Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
The incidence of cutaneous squamous cell carcinoma in patients receiving voriconazole therapy for chronic pulmonary aspergillosis. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2233-2237. [PMID: 32820348 PMCID: PMC7578142 DOI: 10.1007/s00210-020-01950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/20/2020] [Indexed: 11/15/2022]
Abstract
Voriconazole has been associated with cutaneous squamous cell carcinoma (cSCC) in transplant patients but less is known about the risk in less severely immunosuppressed patients. Our aim was to estimate the incidence of cSCC after voriconazole exposure in patients with chronic pulmonary aspergillosis on a background of chronic lung disease. The notes of patients seen at a tertiary referral centre from 2009 to 2019 with chronic pulmonary aspergillosis were reviewed for the diagnosis of cSCC and voriconazole use documented. Among 1111 patients, 668 (60.1%) received voriconazole for longer than 28 days. Twelve patients received a diagnosis of cSCC; nine had used voriconazole. Mean duration of voriconazole use was 36.7 months. The crude incidence rate was 4.88 in 1000 person/years in those who had voriconazole and 2.79 in 1000 patient/years in those who did not receive voriconazole for longer than 28 days. On Cox regression, age (HR 1.09, 95% CI 1.02–1.16, p = 0.01) and male gender (HR 3.97, 95% CI 0.84–18.90, p = 0.082) were associated with cSCC. Voriconazole use was associated with a slightly increased risk, which was not significant (HR 1.35, 95% CI 0.35–5.20, p = 0.659). Voriconazole use beyond 28 days did not lead to a significantly increased risk of cSCC in a large cohort of patients with chronic pulmonary aspergillosis.
Collapse
|
19
|
Abstract
Lung transplantation is an established therapeutic option for selected patients with advanced lung diseases. As early outcomes after lung transplantation have improved, chronic medical illnesses have emerged as significant obstacles to long-term survival. Among them is post-transplant malignancy, currently representing the 2nd most common cause of death 5–10 years after transplantation. Chronic immunosuppressive therapy and resulting impairment of anti-tumor immune surveillance is thought to have a central role in cancer development after solid organ transplantation (SOT). Lung transplant recipients receive more immunosuppression than other SOT populations, likely contributing to even higher risk of cancer among this group. The most common cancers in lung transplant recipients are non-melanoma skin cancers, followed by lung cancer and post-transplant lymphoproliferative disorder (PTLD). The purpose of this review is to outline the common malignancies following lung transplant, their risk factors, prognosis and current means for both prevention and treatment.
Collapse
Affiliation(s)
- Osnat Shtraichman
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pulmonary Institute, Rabin Medical Center, Affiliated with Sackler School of Medicine Tel Aviv University, Petach Tikva, Israel
| | - Vivek N Ahya
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Lee V, Gober MD, Bashir H, O'Day C, Blair IA, Mesaros C, Weng L, Huang A, Chen A, Tang R, Anagnos V, Li J, Roling S, Sagaityte E, Wang A, Lin C, Yeh C, Atillasoy C, Marshall C, Dentchev T, Ridky T, Seykora JT. Voriconazole enhances UV-induced DNA damage by inhibiting catalase and promoting oxidative stress. Exp Dermatol 2019; 29:29-38. [PMID: 31519066 DOI: 10.1111/exd.14038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common form of skin cancer and is associated with cumulative UV exposure. Studies have shown that prolonged voriconazole use promotes cSCC formation; however, the biological mechanisms responsible for the increased incidence remain unclear. Here, we show that voriconazole directly increases oxidative stress in human keratinocytes and promotes UV-induced DNA damage as determined by comet assay, 8-oxoguanine immunofluorescence and mass spectrometry. Voriconazole treatment of human keratinocytes potentiates UV-induced apoptosis and activation of the p38 MAP kinase and 53BP1 UV stress response pathways. The p38 MAP kinase activation promoted by voriconazole exposure can be mitigated by pretreating keratinocytes with N-acetylcysteine. Voriconazole increases oxidative stress in keratinocytes by directly inhibiting catalase leading to lower intracellular NADPH levels and the triazole moieties in voriconazole are critical for inhibiting catalase. Furthermore, voriconazole is shown to promote UV-induced dysplasia in an in vivo model. Together, these data demonstrate that voriconazole potentiates oxidative stress in UV-irradiated keratinocytes through catalase inhibition. Use of antioxidants may mitigate the pro-oncogenic effects of voriconazole.
Collapse
Affiliation(s)
- Vivian Lee
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael D Gober
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hasan Bashir
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Conor O'Day
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liwei Weng
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Huang
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aaron Chen
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rachel Tang
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vince Anagnos
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - JiLon Li
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sophie Roling
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilija Sagaityte
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Wang
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chenyan Lin
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher Yeh
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cem Atillasoy
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine Marshall
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd Ridky
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13544. [PMID: 30900296 DOI: 10.1111/ctr.13544] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
These updated AST-IDCOP guidelines provide information on epidemiology, diagnosis, and management of Aspergillus after organ transplantation. Aspergillus is the most common invasive mold infection in solid-organ transplant (SOT) recipients, and it is the most common invasive fungal infection among lung transplant recipients. Time from transplant to diagnosis of invasive aspergillosis (IA) is variable, but most cases present within the first year post-transplant, with shortest time to onset among liver and heart transplant recipients. The overall 12-week mortality of IA in SOT exceeds 20%; prognosis is worse among those with central nervous system involvement or disseminated disease. Bronchoalveolar lavage galactomannan is preferred for the diagnosis of IA in lung and non-lung transplant recipients, in combination with other diagnostic modalities (eg, chest CT scan, culture). Voriconazole remains the drug of choice to treat IA, with isavuconazole and lipid formulations of amphotericin B regarded as alternative agents. The role of combination antifungals for primary therapy of IA remains controversial. Either universal prophylaxis or preemptive therapy is recommended in lung transplant recipients, whereas targeted prophylaxis is favored in liver and heart transplant recipients. In these guidelines, we also discuss newer antifungals and diagnostic tests, antifungal susceptibility testing, and special patient populations.
Collapse
Affiliation(s)
- Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
22
|
Puza CJ, Beasley GM, Barbas AS, Mosca PJ. Type of Organ Transplanted Impacts the Risk and Presentation of Cutaneous Squamous Cell Carcinoma in Transplant Recipients. EXP CLIN TRANSPLANT 2019; 18:93-97. [PMID: 30968759 DOI: 10.6002/ect.2018.0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Transplant immunosuppression increases the risk of cutaneous squamous cell carcinoma by 65- to 200-fold. Our objective was to investigate the impact of the type of organ transplanted on the risk and presentation of cutaneous squamous cell carcinoma. MATERIALS AND METHODS The retrospective database of the Duke University Health System was queried to identify patients who underwent an organ transplant from 1996 to 2016. Data regarding transplant outcomes, cutaneous squamous cell carcinoma, immunosuppressive regimens, and survival were recorded. We used chi-square tests, analysis of variance, and unpaired t tests to compare the incidence and presentation of cutaneous squamous cell carcinoma among organ types. RESULTS Of 3652 renal, hepatic, and cardiothoracic transplant patients identified, 142 patients developed at least 1 cutaneous squamous cell carcinoma. The incidence of cutaneous squamous cell carcinoma varied by type of organ transplanted, with 46 of 1684 (2.7%) renal transplant patients developing cutaneous squamous cell carcinoma, 33 of 804 (4.1%) hepatic transplant patients, and 63 of 1164 (5.4%) cardiothoracic transplant patients over the median follow-up time of 6.5 years. Incidence in the renal transplant versus the cardiothoracic transplant group was significantly different (P < .001). The time to presentation of cutaneous squamous cell carcinoma varied significantly by group, with the renal cohort presenting at 3.8 years compared with at 2.4 years in the cardiothoracic group and 2.1 years in the hepatic group (P < .001). CONCLUSIONS The type of organ transplanted confers a unique risk and presentation of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Charles J Puza
- From the Duke University School of Medicine, Duke University Health System, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
23
|
Cohen BE, Krivitskiy I, Bui S, Forrester K, Kahn J, Barbers R, Ngo B. Comparison of Skin Cancer Incidence in Caucasian and Non-Caucasian Liver Vs. Lung Transplant Recipients: A Tale of Two Regimens. Clin Drug Investig 2019; 39:197-203. [PMID: 30471069 DOI: 10.1007/s40261-018-0732-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Organ transplantation is a significant risk factor for the development of skin cancer. The impact of skin type, immunosuppressive regimens, and photosensitizing agents requires further study. OBJECTIVE The objective of this study was to compare skin cancer development between Caucasian and non-Caucasian transplant recipients at the University of Southern California. METHODS We performed a retrospective chart review of lung and liver transplantations to determine the incidence of post-transplant skin cancer. Participants included patients who underwent lung or liver transplantation between 2005 and 2013 at our institution. Patients included in the study were limited to those who survived through the study observation period. RESULTS We analyzed 475 patients who underwent transplantation, including 370 liver transplant recipients and 105 lung transplant recipients. Among these, 46.3% identified as Caucasian, while 53.7% were non-Caucasian. Over a mean follow-up of 7.9 years, 11.8% of Caucasian patients developed at least one skin cancer, compared with 2.7% of non-Caucasians (p < 0.001). However, irrespective of race, skin cancer development was significantly greater in lung compared with liver transplant recipients (20.0% vs. 3.2%, p < 0.001). The standard immunosuppressive and prophylactic regimens were mycophenolate mofetil and tacrolimus based for both transplants. Mycophenolate mofetil was maintained throughout the course in lung transplant patients, whereas this agent was reduced and terminated when possible in liver transplant recipients. In addition, during the years examined, voriconazole, a known photosensitizing agent, was used in lung transplant recipients to prevent aspergillosis. CONCLUSIONS Fair skin type increases post-transplant skin cancer development, irrespective of the immunosuppressive regimen. A higher risk of skin cancer is associated with different regimens; in particular photosensitizing agents may increase risk in transplant recipients.
Collapse
Affiliation(s)
- Brandon E Cohen
- Department of Dermatology, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.
| | - Igor Krivitskiy
- School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Bui
- School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin Forrester
- School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey Kahn
- Department of Hepatology, University of Southern California, Los Angeles, CA, USA
| | - Richard Barbers
- Department of Pulmonology, University of Southern California, Los Angeles, CA, USA
| | - Binh Ngo
- Department of Dermatology, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.,Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
24
|
Risk Factors for Developing Nonmelanoma Skin Cancer after Lung Transplantation. J Skin Cancer 2019; 2019:7089482. [PMID: 30984427 PMCID: PMC6431522 DOI: 10.1155/2019/7089482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 02/12/2019] [Indexed: 01/25/2023] Open
Abstract
Background Nonmelanoma skin cancer (NSMC) is the most common malignancy after organ transplantation. Lung transplant recipients (LTRs) are particularly prone to develop NMSC as compared to renal or hepatic transplant recipients due to higher dosages of immunosuppression needed. Everolimus, an immunosuppressant used in organ transplant recipients, is thought to inherit a lower risk for NMSC than calcineurin inhibitors, especially in renal transplant recipients. It is currently unknown whether this also applies to LTRs. Objectives To determine risk factors for NMSC and precancerous lesions after lung transplantation (LTx) and to characterize the effect of everolimus-based regimens regarding this risk. Materials and Methods 90 LTRs and former participants of the interventional trial “Immunosuppressive Therapy with Everolimus after Lung Transplantation”, who were randomized to receive either an everolimus- or mycophenolate mofetil- (MMF-) based regimen, were enrolled and screened in this retrospective, single-center cohort study. Results After a median follow-up of 101 months, we observed a prevalence of 38% for NMSC or precancerous lesions. 33% of the patients continuously receiving everolimus from LTx to dermatologic examination compared to 39% of all other patients, predominantly receiving an MMF-based regimen, were diagnosed with at least one NMSC or precancerous lesion (P=.66). Independent risk factors for NMSC or precancerous lesions after LTx were male sex and duration of voriconazole therapy. Conclusion NMSC or precancerous lesions were very common after LTx, and risk factors were similar to previous reports on LTRs. Everolimus did not decrease this risk under the given circumstances of this study. Patients should be counseled regarding their risk, perform vigorous sunscreen, and undergo regular dermatological controls, regardless of their immunosuppressive regimen.
Collapse
|
25
|
Voriconazole exposure and risk of cutaneous squamous cell carcinoma among lung or hematopoietic cell transplant patients: A systematic review and meta-analysis. J Am Acad Dermatol 2018; 80:500-507.e10. [PMID: 30130598 DOI: 10.1016/j.jaad.2018.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/11/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Current evidence about the association between voriconazole and risk of cutaneous squamous cell carcinoma (SCC) remains inconsistent. OBJECTIVE To assess the association between voriconazole use and risk of SCC. METHODS We systematically searched PubMed and Embase and performed a random effects model meta-analysis to calculate the pooled relative risk (RR) with a 95% confidence interval (CI). RESULTS Of the 8 studies involving a total of 3710 individuals with a lung transplant or hematopoietic cell transplant that were included in the qualitative analysis, 5 were included in the meta-analysis. Use of voriconazole was significantly associated with increased risk of SCC (RR, 1.86; 95% CI, 1.36-2.55). The increased risk did not differ according to type of transplantation or adjustment for sun exposure. Longer duration of voriconazole use was found to be positively associated with risk of SCC (RR, 1.72; 95% CI, 1.09-2.72). Voriconazole use was not associated with increased risk of basal cell carcinoma (RR, 0.84; 95% CI, 0.41-1.71). LIMITATIONS There were some heterogeneities in the retrospective observational studies. CONCLUSIONS Our findings support an increased risk of SCC associated with voriconazole in individuals with a lung transplant or hematopoietic cell transplant. Routine dermatologic surveillance should be performed, especially among individuals at high risk of developing SCC.
Collapse
|
26
|
Clinical risk factors for invasive aspergillosis in lung transplant recipients: Results of an international cohort study. J Heart Lung Transplant 2018; 37:1226-1234. [PMID: 30139546 DOI: 10.1016/j.healun.2018.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a frequent complication in lung transplant recipients (LTRs). Clinical risk factors for IA have not been fully characterized, especially in the era of extensive anti-fungal prophylaxis. The primary objective of this study was to evaluate the clinical risk factors associated with IA in LTRs. The secondary objective was to assess the mortality in LTRs who had at least 1 episode of IA compared with LTRs who never had experienced IA. METHODS We conducted an international, multicenter, retrospective cohort study of 900 consecutive adults who received lung transplants between 2005 and 2008 with 4years of follow-up. Risk factors associated with IA were identified using univariate and multiple regression Cox proportional hazards models. RESULTS Anti-fungal prophylaxis was administered to 61.7% (555 of 900) of patients, and 79 patients developed 115 episodes of IA. The rate to development of the first episode was 29.6 per 1,000 person-years. Aspergillus fumigatus was the most common species isolated (63% [72 of 115 episodes]). Through multivariate analysis, significant risk factors identified for IA development were single lung transplant (hazard ratio, 1.84; 95% confidence interval, 1.09-3.10; p = 0.02,) and colonization with Aspergillus at 1 year post-transplantation (hazard ratio, 2.11; 95% confidence interval, 1.28-3.49; p = 0.003,). Cystic fibrosis, pre-transplant colonization with Aspergillus spp, and use of anti-fungal prophylaxis were not significantly associated with the development of IA. Time-dependent analysis showed IA was associated with higher mortality rates. CONCLUSION Incidence of IA remains high in LTRs. Single-lung transplant and airway colonization with Aspergillus spp. within 1 year post-transplant were significantly associated with IA.
Collapse
|
27
|
Kulkarni HS, Witt CA. Voriconazole in lung transplant recipients - how worried should we be? Am J Transplant 2018; 18:5-6. [PMID: 28941318 PMCID: PMC6195419 DOI: 10.1111/ajt.14517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/12/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, MO, United States
| | - Chad A. Witt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in Saint Louis, MO, United States
| |
Collapse
|