1
|
Tol MC, de Vries RHW, Engelse MA, Carlotti F, van Apeldoorn AA, de Koning EJP, Huurman VAL. Subcutaneous Implantation of Open Microwell Islet Delivery Devices in Pigs. Surg Innov 2024:15533506241306491. [PMID: 39670992 DOI: 10.1177/15533506241306491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
BACKGROUND Intraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets. We assessed the surgical feasibility, tolerability and safety of implantation of open microwell devices at subcutaneous sites with varying friction in pigs. METHODS Open, non-immunoisolating microwell islet delivery devices were made from polyvinylidene fluoride (PVDF). Empty (n = 26) and islet-seeded devices (n = 8) were implanted subcutaneously in 6 immunocompetent pigs in low-friction sites (abdomen and lateral hip) and high-friction sites (anterior neck) for 3 months. Retrieved grafts were analyzed histologically with haematoxylin and eosin, and Masson's Trichrome staining. RESULTS Islet-seeding and transportation of IDDs was free from complications with minimal islet spillage. IDDs were implanted subcutaneously using standard surgical equipment, without complications during the surgeries. IDDs implanted in the neck and IDDs co-transplanted with human islets were expelled and retrieved after 10 days. Empty IDDs were removed after 3 months. The abdominal site showed reduced signs of inflammation as compared to the neck region, while similar tissue ingrowth and vascularization of devices were found in the two locations. CONCLUSIONS Open microwell IDDs can safely be implanted with standard surgical equipment and successful islet-loading can be performed. Low-friction sites are preferable over high-friction sites for subcutaneous implantation in the porcine model since these lead to the least amount of foreign body reaction.
Collapse
Affiliation(s)
- Maarten C Tol
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Rick H W de Vries
- Department of Cell Biology - Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Aart A van Apeldoorn
- Department of Cell Biology - Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Volkert A L Huurman
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Jeon S, Heo J, Myung N, Shin JY, Kim MK, Kang H. High-Efficiency, Prevascularization-Free Macroencapsulation System for Subcutaneous Transplantation of Pancreatic Islets for Enhanced Diabetes Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408329. [PMID: 39308296 PMCID: PMC11636157 DOI: 10.1002/adma.202408329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Indexed: 12/13/2024]
Abstract
Pancreatic islet macroencapsulation systems for subcutaneous transplantation have garnered significant attention as a therapy for Type I diabetes due to their minimal invasiveness and low complication rates. However, the low vascular density of subcutaneous tissue threatens the long-term survival of islets. To address this issue, prevascularized systems are introduced but various challenges remain, including system complexity and vascular-cell immunogenicity. Here, a novel prevasculature-free macroencapsulation system designed as a multilayer sheet, which ensures sufficient mass transport even in regions with sparse vasculature, is presented. Islets are localized in top/bottom micro-shell layers (≈300 µm thick) to maximize proximity to the surrounding host vasculature. These sheets, fabricated via bioprinting using rat islets and alginate-based bio-ink, double islet viability and optimize islet density, improving insulin secretion function by 240%. The subcutaneous transplantation of small islet masses (≈250 islet equivalent) into diabetic nude mice enable rapid (<1 day) recovery of blood glucose, which remain stable for >120 days. Additionally, antifibrotic drug-loaded multilayer sheets facilitate blood glucose regulation by rat islets at the subcutaneous sites of diabetic immunocompetent mice for >35 days. Thus, this macroencapsulation system can advance the treatment of Type I diabetes and is also effective for islet xenotransplantation in subcutaneous tissue.
Collapse
Affiliation(s)
- Seunggyu Jeon
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Jun‐Ho Heo
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Noehyun Myung
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Ji Yeong Shin
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Min Kyeong Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Hyun‐Wook Kang
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| |
Collapse
|
3
|
Li B, Ma L, Li X, Suleman Z, Liu C, Piskareva O, Liu M. Size matters: Altering antigen specific immune tolerance by tuning size of particles. J Control Release 2024; 373:823-836. [PMID: 39094633 DOI: 10.1016/j.jconrel.2024.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Precisely co-delivering antigens and immunosuppressants via nano/microcarriers to antigen-presenting cells (APCs) to induce antigen-specific immune tolerance represents a highly promising strategy for treating or preventing autoimmune diseases. The physicochemical properties of nano/microcarriers play a pivotal role in regulating immune function, with particle size and surface charge emerging as crucial parameters. In particular, very few studies have investigated micron-scale carriers of antigens. Herein, various nanoparticles and microparticles (NPs/MPs) with diverse particle sizes (ranging from 200 nm to 5 μm) and surface charges were prepared. Antigen peptides (MOG35-55) and immunosuppressants were encapsulated in these particles to induce antigen-specific immune tolerance. Two emulsifiers, PVA and PEMA, were employed to confer different surface charges to the NPs/MPs. The in vitro and in vivo studies demonstrated that NP/MP-PEMA could induce immune tolerance earlier than NP/MP-PVA and that NP/MP-PVA could induce immune tolerance more slowly and sustainably, indicating that highly negatively charged particles can induce immune tolerance more rapidly. Among the different sizes and charged particles tested, 200-nm-NP-PVA and 3-μm-MP-PEMA induced the greatest immune tolerance. In addition, the combination of NPs with MPs can further improve the induction of immune tolerance. In particular, combining 200 nm-NP-PVA with 3 μm-MP-PEMA or combining 500 nm-NP-PEMA with 3 μm-MP-PVA had optimal therapeutic efficacy. This study offers a new perspective for treating diseases by combining NPs with MPs and applying different emulsifiers to prepare NPs and MPs.
Collapse
Affiliation(s)
- Baisong Li
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Lin Ma
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Xiwen Li
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China
| | - Zainab Suleman
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Changming Liu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Mi Liu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Suzhou Ersheng Biopharmaceutical Co., Ltd, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
4
|
Chen X, Wang K, Han Y, Pan Q, Jiang X, Yu Z, Zhang W, Wang Z, Yan H, Sun P, Liang J, Li H, Cheng Y. 3D printed VEGF-CPO biomaterial scaffold to promote subcutaneous vascularization and survival of transplanted islets for the treatment of diabetes. Int J Biol Macromol 2024; 271:132376. [PMID: 38750865 DOI: 10.1016/j.ijbiomac.2024.132376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
Diabetes is a complex metabolic disease and islet transplantation is a promising approach for the treatment of diabetes. Unfortunately, the transplanted islets at the subcutaneous site are also affected by various adverse factors such as poor vascularization and hypoxia. In this study, we utilize biocompatible copolymers l-lactide and D,l-lactide to manufacture a biomaterial scaffold with a mesh-like structure via 3D printing technology, providing a material foundation for encapsulating pancreatic islet cells. The scaffold maintains the sustained release of vascular endothelial growth factor (VEGF) and a slow release of oxygen from calcium peroxide (CPO), thereby regulating the microenvironment for islet survival. This helps to improve insufficient subcutaneous vascularization and reduce islet death due to hypoxia post-transplantation. By pre-implanting VEGF-CPO scaffolds subcutaneously into diabetic rats, a sufficiently vascularized site is formed, thereby ensuring early survival of transplanted islets. In a word, the VEGF-CPO scaffold shows good biocompatibility both in vitro and in vivo, avoids the adverse effects on the implanted islets, and displays promising clinical transformation prospects.
Collapse
Affiliation(s)
- Xuchun Chen
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Yang Han
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xinrui Jiang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zitong Yu
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Weichen Zhang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ziqi Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Haomin Yan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ping Sun
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Liang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ying Cheng
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Chand U, Kushawaha PK. Nano-immunomodulators: prospective applications to combat drug resistant bacterial infections and related complications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2577-2597. [PMID: 37938026 DOI: 10.1080/09205063.2023.2265619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Antimicrobial resistance (AMR) is a growing problem in our healthcare sector, it can make infections more difficult and expensive to treat and lead to treatment failure and increased risk of death. Currently, at least 700,000 people worldwide die each year from AMR. Alternative methods for mitigating drug-resistant bacterial infections are desperately needed because of the unacceptably low rate of conventional antibiotic discovery. Therefore, the implementation of various therapeutic strategies is necessary to deal with drug-resistant bacteria and immunomodulation is one of them which is highly encouraged through various studies. Immunomodulators are different biological or synthetic substances that possess the capability of inducing, suppressing, or overall modulating the innate and adaptive immune system. Some phytochemicals, including flavonoids, glycosides, polysaccharides, terpenoids, essential oils, peptides, synthetic molecules, and synthetic biomaterials, can play a crucial role in the fight against bacterial infections directly or indirectly by enhancing the activity of existing antibiotics or by boosting immunity. Nanotechnology can be used to modulate immune responses through various fabrication methods and strategies of design and for drug formulation by encapsulating potential compounds/molecules in the form of nanoparticles and by surface modification or capping of nanomaterials. This approach can improve drug solubility, stability, and bioavailability, reduce toxicity, and help to increase the effectiveness of drugs against resistant microorganisms. This review aims to provide current developments in the field of immunomodulators of different origins that can be combined with nanotechnology and exploited as potential future drugs or adjuvants to fight drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India
| |
Collapse
|
6
|
Chendke GS, Kharbikar BN, Ashe S, Faleo G, Sneddon JB, Tang Q, Hebrok M, Desai TA. Replenishable prevascularized cell encapsulation devices increase graft survival and function in the subcutaneous space. Bioeng Transl Med 2023; 8:e10520. [PMID: 37476069 PMCID: PMC10354771 DOI: 10.1002/btm2.10520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 07/22/2023] Open
Abstract
Beta cell replacement therapy (BCRT) for patients with type 1 diabetes (T1D) improves blood glucose regulation by replenishing the endogenous beta cells destroyed by autoimmune attack. Several limitations, including immune isolation, prevent this therapy from reaching its full potential. Cell encapsulation devices used for BCRT provide a protective physical barrier for insulin-producing beta cells, thereby protecting transplanted cells from immune attack. However, poor device engraftment posttransplantation leads to nutrient deprivation and hypoxia, causing metabolic strain on transplanted beta cells. Prevascularization of encapsulation devices at the transplantation site can help establish a host vascular network around the implant, increasing solute transport to the encapsulated cells. Here, we present a replenishable prevascularized implantation methodology (RPVIM) that allows for the vascular integration of replenishable encapsulation devices in the subcutaneous space. Empty encapsulation devices were vascularized for 14 days, after which insulin-producing cells were inserted without disrupting the surrounding vasculature. The RPVIM devices were compared with nonprevascularized devices (Standard Implantation Methodology [SIM]) and previously established prevascularized devices (Standard Prevascularization Implantation Methodology [SPVIM]). Results show that over 75% of RPVIM devices containing stem cell-derived insulin-producing beta cell clusters showed a signal after 28 days of implantation in subcutaneous space. Notably, not only was the percent of RPVIM devices showing signal significantly greater than SIM and SPVIM devices, but the intraperitoneal glucose tolerance tests and histological analyses showed that encapsulated stem-cell derived insulin-producing beta cell clusters retained their function in the RPVIM devices, which is crucial for the successful management of T1D.
Collapse
Affiliation(s)
- Gauree S. Chendke
- UC Berkeley ‐ UCSF Graduate Program in BioengineeringSan FranciscoCaliforniaUSA
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bhushan N. Kharbikar
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sudipta Ashe
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Gaetano Faleo
- Department of SurgeryUCSF Gladstone Institute of Genome ImmunologySan FranciscoCaliforniaUSA
| | - Julie B. Sneddon
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Cell and Tissue BiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchSan FranciscoCaliforniaUSA
| | - Qizhi Tang
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of SurgeryUCSF Gladstone Institute of Genome ImmunologySan FranciscoCaliforniaUSA
| | - Matthias Hebrok
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Organoid Systems, Technical University MunichGarchingGermany
- Institute for Diabetes Organoid Technology, Helmholtz Munich, Helmholtz Diabetes CenterNeuherbergGermany
| | - Tejal A. Desai
- UC Berkeley ‐ UCSF Graduate Program in BioengineeringSan FranciscoCaliforniaUSA
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Diabetes Center, University of California, San FranciscoSan FranciscoCaliforniaUSA
- School of Engineering, Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
7
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
8
|
Formulation, design and optimization of antidiabetic drug loaded microspheres. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Kuppan P, Kelly S, Seeberger K, Castro C, Rosko M, Pepper AR, Korbutt GS. Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets. Polymers (Basel) 2022; 14:polym14061120. [PMID: 35335450 PMCID: PMC8954444 DOI: 10.3390/polym14061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous space is currently being pursued as an alternative transplant site for ß-cell replacement therapies due to its retrievability, minimally invasive procedure and potential for graft imaging. However, implantation of ß-cells into an unmodified subcutaneous niche fails to reverse diabetes due to a lack of adequate blood supply. Herein, poly (ε-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA) polymers were used to make scaffolds and were functionalized with peptides (RGD (Arginine-glycine-aspartate), VEGF (Vascular endothelial growth factor), laminin) or gelatin to augment engraftment. PCL, PCL + RGD + VEGF (PCL + R + V), PCL + RGD + Laminin (PCL + R + L), PLGA and PLGA + Gelatin (PLGA + G) scaffolds were implanted into the subcutaneous space of immunodeficient Rag mice. After four weeks, neonatal porcine islets (NPIs) were transplanted within the lumen of the scaffolds or under the kidney capsule (KC). Graft function was evaluated by blood glucose, serum porcine insulin, glucose tolerance tests, graft cellular insulin content and histologically. PLGA and PLGA + G scaffold recipients achieved significantly superior euglycemia rates (86% and 100%, respectively) compared to PCL scaffold recipients (0% euglycemic) (* p < 0.05, ** p < 0.01, respectively). PLGA scaffolds exhibited superior glucose tolerance (* p < 0.05) and serum porcine insulin secretion (* p < 0.05) compared to PCL scaffolds. Functionalized PLGA + G scaffold recipients exhibited higher total cellular insulin contents compared to PLGA-only recipients (* p < 0.05). This study demonstrates that the bioabsorption of PLGA-based fibrous scaffolds is a key factor that facilitates the function of NPIs transplanted subcutaneously in diabetic mice.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mandy Rosko
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (P.K.); (S.K.); (K.S.); (C.C.); (M.R.)
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (A.R.P.); (G.S.K.)
| |
Collapse
|
10
|
Demko P, Hillebrandt KH, Napierala H, Haep N, Tang P, Gassner JMGV, Kluge M, Everwien H, Polenz D, Reutzel-Selke A, Raschzok N, Pratschke J, Sauer IM, Struecker B, Dobrindt EM. Perfusion-Based Recellularization of Rat Livers with Islets of Langerhans. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00697-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
Artificial organs might serve as alternative solutions for whole organ transplantation. Decellularization of a liver provides a non-immunogenic matrix with the advantage of three afferent systems, the portal vein, the hepatic artery and the bile duct. This study aims to evaluate the recellularization of rat livers with islets of Langerhans via the bile duct and the portal vein for the comparison of different perfusion routes.
Methods
Rat livers were decellularized in a pressure-controlled perfusion manner and repopulated with intact isolated islets of Langerhans via either the portal vein or the bile duct.
Results
Repopulation via the portal vein showed islet clusters stuck within the vascular system demonstrated by ellipsoid borders of thick reticular tissue around the islet cluster in Azan staining. After recellularization via the bile duct, islets were distributed close to the vessels within the parenchymal space and without a surrounding reticular layer. Large clusters of islets had a diameter of up to 1000 µm without clear shapes.
Conclusion
We demonstrated the bile duct to be superior to the portal vein for repopulation of a decellularized rat liver with islets of Langerhans. This technique may serve as a bioengineering platform to generate an implantable and functional endocrine neo-pancreas and provide scaffolds with the anatomic benefit of three afferent systems to facilitate co-population of cells.
Collapse
|
11
|
Liang JP, Accolla RP, Soundirarajan M, Emerson A, Coronel MM, Stabler CL. Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater 2021; 130:268-280. [PMID: 34087442 DOI: 10.1016/j.actbio.2021.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Insufficient oxygenation is a serious issue arising within cell-based implants, as the hypoxic period between implantation and vascularization of the graft is largely unavoidable. In situ oxygen supplementation at the implant site should significantly mitigate hypoxia-induced cell death and dysfunction, as well as improve transplant efficacy, particularly for highly metabolically active cells such as pancreatic islets. One promising approach is the use of an oxygen generating material created through the encapsulation of calcium peroxide within polydimethylsiloxane (PDMS), termed OxySite. In this study, OxySite microbeads were incorporated within a macroporous PDMS scaffold to create a single, streamlined, oxygen generating macroporous scaffold. The resulting OxySite scaffold generated sufficient local oxygenation for up to 20 days, with nontoxic levels of reaction intermediates or by-products. The benefit of local oxygen release on transplant efficacy was investigated in a diabetic Lewis rat syngeneic transplantation model using a clinically relevant islet dosage (10,000 IEQ/kg BW) with different isolation purities (80%, 90%, and 99%). Impure islet preparations containing pancreatic non-islet cells, which are common in the clinical setting, permit examination of the effect of increased overall oxygen demand. Our transplantation outcomes showed that elevating the oxygen demand of the graft with decreasing isolation purity resulted in decreased graft efficacy for control implants, while the integration of OxySite significantly mitigated this impact and resulted in improved graft outcomes. Results highlight the superior clinical translational potential of these off-the-shelf OxySite scaffolds, where islet purity and the overall oxygen demands of implants are increased and highly variable. The oxygen-generating porous scaffold further provides a broad platform for enhancing the survival and efficacy of cellular implants for numerous other applications. STATEMENT OF SIGNIFICANCE: Hypoxia is a serious issue within tissue engineered implants. To address this challenge, we developed a distinct macroporous scaffold platform containing oxygen-generating microbeads. This oxygen-generating scaffold showed the potential to support clinically relevant cell dosages for islet transplantation, leading to improved treatment efficacy. This platform can also be used to mitigate hypoxia for other biomedical applications.
Collapse
Affiliation(s)
- Jia-Pu Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Robert P Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | | | - Amy Emerson
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Maria M Coronel
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Olack BJ, Alexander M, Swanson CJ, Kilburn J, Corrales N, Flores A, Heng J, Arulmoli J, Omori K, Chlebeck PJ, Zitur L, Salgado M, Lakey JRT, Niland JC. Optimal Time to Ship Human Islets Post Tissue Culture to Maximize Islet. Cell Transplant 2021; 29:963689720974582. [PMID: 33231091 PMCID: PMC7885128 DOI: 10.1177/0963689720974582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Access to functional high-quality pancreatic human islets is critical to advance diabetes research. The Integrated Islet Distribution Program (IIDP), a major source for human islet distribution for over 15 years, conducted a study to evaluate the most advantageous times to ship islets postisolation to maximize islet recovery. For the evaluation, three experienced IIDP Islet Isolation Centers each provided samples from five human islet isolations, shipping 10,000 islet equivalents (IEQ) at four different time periods postislet isolation (no 37°C culture and shipped within 0 to 18 hours; or held in 37°C culture for 18 to 42, 48 to 96, or 144 to 192 hours). A central evaluation center compared samples for islet quantity, quality, and viability for each experimental condition preshipment and postshipment, as well as post 37°C culture 18 to 24 hours after shipment receipt. Additional evaluations included measures of functional potency by static glucose-stimulated insulin release (GSIR), represented as a stimulation index. Comparing the results of the four preshipment holding periods, the greatest IEQ loss postshipment occurred with the shortest preshipment times. Similar patterns emerged when comparing preshipment to postculture losses. In vitro islet function (GSIR) was not adversely impacted by increased tissue culture time. These data indicate that allowing time for islet recovery postisolation, prior to shipping, yields less islet loss during shipment without decreasing islet function.
Collapse
Affiliation(s)
- Barbara J Olack
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Carol J Swanson
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Julie Kilburn
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Antonio Flores
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | - Keiko Omori
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Peter J Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Zitur
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joyce C Niland
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| |
Collapse
|
13
|
Enck K, Tamburrini R, Deborah C, Gazia C, Jost A, Khalil F, Alwan A, Orlando G, Opara EC. Effect of alginate matrix engineered to mimic the pancreatic microenvironment on encapsulated islet function. Biotechnol Bioeng 2020; 118:1177-1185. [PMID: 33270214 DOI: 10.1002/bit.27641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/15/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Islet transplantation is emerging as a therapeutic option for type 1 diabetes, albeit, only a small number of patients meeting very stringent criteria are eligible for the treatment because of the side effects of the necessary immunosuppressive therapy and the relatively short time frame of normoglycemia that most patients achieve. The challenge of the immune-suppressive regimen can be overcome through microencapsulation of the islets in a perm-selective coating of alginate microbeads with poly-l-lysine or poly- l-ornithine. In addition to other issues including the nutrient supply challenge of encapsulated islets a critical requirement for these cells has emerged as the need to engineer the microenvironment of the encapsulation matrix to mimic that of the native pancreatic scaffold that houses islet cells. That microenvironment includes biological and mechanical cues that support the viability and function of the cells. In this study, the alginate hydrogel was modified to mimic the pancreatic microenvironment by incorporation of extracellular matrix (ECM). Mechanical and biological changes in the encapsulating alginate matrix were made through stiffness modulation and incorporation of decellularized ECM, respectively. Islets were then encapsulated in this new biomimetic hydrogel and their insulin production was measured after 7 days in vitro. We found that manipulation of the alginate hydrogel matrix to simulate both physical and biological cues for the encapsulated islets enhances the mechanical strength of the encapsulated islet constructs as well as their function. Our data suggest that these modifications have the potential to improve the success rate of encapsulated islet transplantation.
Collapse
Affiliation(s)
- Kevin Enck
- Wake Forest School of Medicine, Virginia Tech School of Biomedical Engineering & Sciences (SBES), Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| | - Riccardo Tamburrini
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Chaimov Deborah
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Carlo Gazia
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Alec Jost
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Fatma Khalil
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| | - Abdelrahman Alwan
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina.,Department of Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - Emmanuel C Opara
- Wake Forest School of Medicine, Virginia Tech School of Biomedical Engineering & Sciences (SBES), Wake Forest University, Winston-Salem, North Carolina.,Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
| |
Collapse
|
14
|
Li Y, Frei AW, Yang EY, Labrada-Miravet I, Sun C, Rong Y, Samojlik MM, Bayer AL, Stabler CL. In vitro platform establishes antigen-specific CD8 + T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 2020; 256:120182. [PMID: 32599358 PMCID: PMC7480933 DOI: 10.1016/j.biomaterials.2020.120182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
The curative potential of non-autologous cellular therapy is hindered by the requirement of anti-rejection therapy. Cellular encapsulation within nondegradable biomaterials has the potential to inhibit immune rejection, but the efficacy of this approach in robust preclinical and clinical models remains poor. While the responses of innate immune cells to the encapsulating material have been characterized, little attention has been paid to the contributions of adaptive immunity in encapsulated graft destabilization. Avoiding the limitations of animal models, we established an efficient, antigen-specific in vitro platform capable of delineating direct and indirect host T cell recognition to microencapsulated cellular grafts and evaluated their consequential impacts. Using ovalbumin (OVA) as a model antigen, we determined that alginate microencapsulation abrogates direct CD8+ T cell activation by interrupting donor-host interaction; however, indirect T cell activation, mediated by host antigen presenting cells (APCs) primed with shed donor antigens, still occurs. These activated T cells imparted cytotoxicity on the encapsulated cells, likely via diffusion of cytotoxic solutes. Overall, this platform delivers unique mechanistic insight into the impacts of hydrogel encapsulation on host adaptive immune responses, comprehensively addressing a long-standing hypothesis of the field. Furthermore, it provides an efficient benchtop screening tool for the investigation of new encapsulation methods and/or synergistic immunomodulatory agents.
Collapse
Affiliation(s)
- Ying Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Anthony W Frei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ethan Y Yang
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA
| | - Irayme Labrada-Miravet
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chuqiao Sun
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yanan Rong
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Allison L Bayer
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Gurlin RE, Giraldo JA, Latres E. 3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:238-252. [PMID: 32907514 DOI: 10.1089/ten.teb.2020.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which the body's own immune system selectively attacks beta cells within pancreatic islets resulting in insufficient insulin production and loss of the ability to regulate blood glucose (BG) levels. Currently, the standard of care consists of BG level monitoring and insulin administration, which are essential to avoid the consequences of dysglycemia and long-term complications. Although recent advances in continuous glucose monitoring and automated insulin delivery systems have resulted in improved clinical outcomes for users, nearly 80% of people with T1D fail to achieve their target hemoglobin A1c (HbA1c) levels defined by the American Diabetes Association. Intraportal islet transplantation into immunosuppressed individuals with T1D suffering from impaired awareness of hypoglycemia has resulted in lower HbA1c, elimination of severe hypoglycemic events, and insulin independence, demonstrating the unique potential of beta cell replacement therapy (BCRT) in providing optimal glycemic control and a functional cure for T1D. BCRTs need to maximize cell engraftment, long-term survival, and function in the absence of immunosuppression to provide meaningful clinical outcomes to all people living with T1D. One innovative technology that could enable widespread translation of this approach into the clinic is three-dimensional (3D) bioprinting. Herein, we review how bioprinting could facilitate translation of BCRTs as well as the current and forthcoming techniques used for bioprinting of a BCRT product. We discuss the strengths and weaknesses of 3D bioprinting in this context in addition to the road ahead for the development of BCRTs. Impact statement Significant research developments in beta cell replacement therapies show its promise in providing a functional cure for type 1 diabetes (T1D); yet, their widespread clinical use has been difficult to achieve. This review provides a brief overview of the requirements for a beta cell replacement product followed by a discussion on both the promise and limitations of three-dimensional bioprinting in facilitating the fabrication of such products to enable translation into the clinic. Advancements in this area could be a key component to unlocking the safety and effectiveness of beta cell therapy for T1D.
Collapse
Affiliation(s)
- Rachel E Gurlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
16
|
Alessandra G, Algerta M, Paola M, Carsten S, Cristina L, Paolo M, Elisa M, Gabriella T, Carla P. Shaping Pancreatic β-Cell Differentiation and Functioning: The Influence of Mechanotransduction. Cells 2020; 9:E413. [PMID: 32053947 PMCID: PMC7072458 DOI: 10.3390/cells9020413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Embryonic and pluripotent stem cells hold great promise in generating β-cells for both replacing medicine and novel therapeutic discoveries in diabetes mellitus. However, their differentiation in vitro is still inefficient, and functional studies reveal that most of these β-like cells still fail to fully mirror the adult β-cell physiology. For their proper growth and functioning, β-cells require a very specific environment, the islet niche, which provides a myriad of chemical and physical signals. While the nature and effects of chemical stimuli have been widely characterized, less is known about the mechanical signals. We here review the current status of knowledge of biophysical cues provided by the niche where β-cells normally live and differentiate, and we underline the possible machinery designated for mechanotransduction in β-cells. Although the regulatory mechanisms remain poorly understood, the analysis reveals that β-cells are equipped with all mechanosensors and signaling proteins actively involved in mechanotransduction in other cell types, and they respond to mechanical cues by changing their behavior. By engineering microenvironments mirroring the biophysical niche properties it is possible to elucidate the β-cell mechanotransductive-regulatory mechanisms and to harness them for the promotion of β-cell differentiation capacity in vitro.
Collapse
Affiliation(s)
- Galli Alessandra
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marku Algerta
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marciani Paola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Schulte Carsten
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lenardi Cristina
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Milani Paolo
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Tedeschi Gabriella
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Perego Carla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
17
|
Najdahmadi A, Smink AM, de Vos P, Lakey JR, Botvinick E. Non-Invasive Monitoring of Oxygen Tension and Oxygen Transport Inside Subcutaneous Devices After H 2S Treatment. Cell Transplant 2020; 29:963689719893936. [PMID: 32024377 PMCID: PMC7444232 DOI: 10.1177/0963689719893936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Medical devices for cell therapy can be improved through prevascularization. In this work we study the vascularization of a porous polymer device, previously used by our group for pancreatic islet transplantation with results indicating improved glycemic control. Oxygen partial pressure within such devices was monitored non-invasively using an optical technique. Oxygen-sensitive tubes were fabricated and placed inside devices prior to subcutaneous implantation in nude mice. We tested the hypothesis that vascularization will be enhanced by administration of the pro-angiogenic factor hydrogen sulfide (H2S). We found that oxygen dynamics were unique to each implant and that the administration of H2S does not result in significant changes in perfusion of the devices as compared with control. These observations suggest that vascular perfusion and density are not necessarily correlated, and that the rate of vascularization was not enhanced by the pro-angiogenic agent.
Collapse
Affiliation(s)
- Avid Najdahmadi
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jonathan R.T. Lakey
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| | - Elliot Botvinick
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| |
Collapse
|
18
|
Research Highlights. Transplantation 2020. [DOI: 10.1097/tp.0000000000003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Wu J, Guo N, Zhang X, Xiong C, Liu J, Xu Y, Fan J, Yu J, Zhao X, Liu B, Wang W, Zhang J, Cao H, Li L. HEV-LF S : A novel scoring model for patients with hepatitis E virus-related liver failure. J Viral Hepat 2019; 26:1334-1343. [PMID: 31294523 DOI: 10.1111/jvh.13174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
Abstract
A noninvasive assessment method for acute or acute-on-chronic liver failure in patients with hepatitis E virus (HEV) infection is urgently needed. We aimed to develop a scoring model for diagnosing HEV patients who developed liver failure (HEV-LF) at different stages. A cross-sectional set of 350 HEV-LF patients were identified and enrolled, and the Guidelines for Diagnosis and Treatment of Liver Failure in China and the Asian Pacific Association for the Study of the Liver were adopted as references. HEV-LFS , a novel scoring model that incorporates data on cholinesterase (CHE), urea nitrogen (UREA), platelets and international normalized ratio was developed using a derived dataset. For diagnosing HEV-LF stages F1 to F3, the HEV-LFS scoring model (F1: 0.87; F2: 0.90; F3: 0.92) had a significantly higher AUROC than did the CLIF-C-ACLFs (F1: 0.65; F2: 0.56; F3: 0.51) and iMELD (F1: 0.70; F2: 0.57; F3: 0.51) scoring models, of which the HEV-LFS scoring model had the best sensitivity and specificity. In addition, the HEV-LFS scoring model was correlated with mortality, length of hospitalization and ICU stay. As the GDTLF score increased, the CHE level decreased and the UREA increased gradually. Encouragingly, a calibration curve showed good agreement between the derivation and validation sets. Notably, we also established a nomogram to facilitate the practical operability of the HEV-LFS scoring model in clinical settings. In conclusion, both CHE and UREA may be indicators for HEV-LF patients. The HEV-LFS scoring model is an efficient and accessible model for classifying HEV-LF at different stages.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Naizhou Guo
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Xueyan Zhang
- Department of Public Health, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Cunquan Xiong
- Department of Public Health, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jun Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Fan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinguo Zhao
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, China
| | - Bin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, China
| | - Wei Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Jinrong Zhang
- Department of Laboratory Medicine, The People's Hospital of Dafeng City, Yancheng, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
21
|
Minardi S, Guo M, Zhang X, Luo X. An elastin-based vasculogenic scaffold promotes marginal islet mass engraftment and function at an extrahepatic site. JOURNAL OF IMMUNOLOGY AND REGENERATIVE MEDICINE 2019; 3:1-12. [PMID: 31681866 PMCID: PMC6824601 DOI: 10.1016/j.regen.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In islet transplantation, one of the major obstacles to optimal engraftment is the loss of islet natural vascularization and islet-specific extracellular matrix (ECM) during the islet isolation process. Thus, transplanted islets must re-establish nutritional and physical support through formation of new blood vessels and new ECM. To promote this critical process, we developed an elastin-based vasculogenic and ECM-promoting scaffold engineered for extrahepatic islet transplantation. The scaffold by design consisted of type I collagen (Coll) blended with 20wt% of elastin (E) shown to promote angiogenesis as well as de novo ECM deposition. The resulting "CollE" scaffolds h ad interconnected pores with a size distribution tailored to accommodate seeding of islets as well as growth of new blood vessels. In vitro, CollE scaffolds enabled prolonged culture of murine islets for up to one week while preserving their integrity, viability and function. In vivo, after only four weeks post-transplant of a marginal islet mass, CollE scaffolds demonstrated enhanced vascularization of the transplanted islets in the epididymal fat pad and promoted a prompt reversal of hyperglycemia in previously diabetic recipients. This outcome was comparable to that of kidney capsular (KC) islet transplantation, and superior to that of islets transplanted on the control collagen-only scaffolds (Coll). Crucial genes associated with angiogenesis (VEGFA, PDGFB, FGF1, and COL3A1) as well as de novo islet-specific matrix deposition (COL6A1, COL4A1, LAMA2 and FN1) were all significantly upregulated in islets on CollE scaffolds in comparison to those on Coll scaffolds. Finally, CollE scaffolds were also able to support human islet culture in vitro. In conclusion, CollE scaffolds have the potential to improve the clinical outcome of marginal islet transplantation at extrahepatic sites by promoting angiogenesis and islet-specific ECM deposition.
Collapse
Affiliation(s)
- Silvia Minardi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michelle Guo
- Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
| | - Xiaomin Zhang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|