1
|
Mulley WR, Hughes PD, Collins MG, Pilmore HL, Clayton PA, Wyld ML, Lee D, van der Jeugd J, Fernando SC, Kuo SF, Tan S, Jahan S, Lim WH. Defining causes of death-censored kidney allograft failure: A 5-year multicentre ANZDATA and clinical cross-sectional study. Nephrology (Carlton) 2024; 29:930-940. [PMID: 39349052 PMCID: PMC11579561 DOI: 10.1111/nep.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024]
Abstract
AIM Determining specific causes of allograft failure allows a focus on understanding and treating these conditions. Previous studies highlight chronic antibody-mediated rejection as a leading cause of late allograft failure. We sought to define causes of allograft failure in a large cohort of kidney transplant recipients across multiple centres in Australia and New Zealand, including cases previously attributed to chronic allograft nephropathy (CAN). METHODS All death-censored allograft failures at 9 participating centres between 1 January 2014 to 31 December 2018 were included. Available clinical and biopsy data were reviewed and the "most likely" cause assigned. RESULTS There were 642 death-censored allograft failures in the study period. Of these, 495 (77.1%) had an informative biopsy performed a median of 13.4 months (IQR 2.5-39.1 months) prior to allograft failure. Rejection of any type was the leading cause of allograft failure (47.5%), comprised chiefly of chronic antibody-mediated rejection (37.4%) and chronic T-cell mediated rejection (6.4%). Other leading causes were undifferentiated interstitial fibrosis and tubular atrophy (10.8%), late medical and surgical complications (8.1%) and recurrent or de novo glomerulonephritis (7.0%). Polyoma viral nephropathy and calcineurin inhibitor toxicity each contributed to <2%. Causes of allograft failure previously attributed to CAN (n = 419, 65.3%) had a similar distribution to the overall cohort, with 43.9% attributed to chronic antibody-mediated rejection. CONCLUSION To prolong allograft survival, improved strategies are needed to curtail alloimmune responses. Greater understanding of the causes of undifferentiated interstitial fibrosis and tubular atrophy and potential treatments would also be of considerable benefit.
Collapse
Affiliation(s)
- William R. Mulley
- Department of NephrologyMonash Medical CentreClaytonVictoriaAustralia
- Centre for Inflammatory Diseases, Department of MedicineMonash UniversityClaytonVictoriaAustralia
| | - Peter D. Hughes
- Department of NephrologyThe Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of MedicineThe University of MelbourneMelbourneVictoriaAustralia
| | - Michael G. Collins
- Department of Renal MedicineAuckland City HospitalAucklandNew Zealand
- Central Northern Adelaide Renal and Transplantation ServiceRoyal Adelaide HospitalAdelaideAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideAustralia
| | - Helen L. Pilmore
- Department of Renal MedicineAuckland City HospitalAucklandNew Zealand
- Department of MedicineUniversity of AucklandAucklandNew Zealand
| | - Philip A. Clayton
- Central Northern Adelaide Renal and Transplantation ServiceRoyal Adelaide HospitalAdelaideAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideAustralia
- Australia & New Zealand Dialysis and Transplant (ANZDATA) RegistryAdelaideAustralia
| | - Melanie L. Wyld
- Department of Renal and Transplant MedicineWestmead HospitalWestmeadNew South WalesAustralia
- School of Public Health, Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Darren Lee
- Department of Renal MedicineEastern HealthBox HillVictoriaAustralia
- Eastern Health Clinical SchoolMonash UniversityClaytonVictoriaAustralia
- Department of NephrologyAustin HealthHeidelbergVictoriaAustralia
| | | | - Sanduni C. Fernando
- Department of NephrologyMonash Medical CentreClaytonVictoriaAustralia
- Centre for Inflammatory Diseases, Department of MedicineMonash UniversityClaytonVictoriaAustralia
| | - Stephanie Fang‐Tzu Kuo
- Department of NephrologyThe Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of MedicineThe University of MelbourneMelbourneVictoriaAustralia
| | - Sarah Tan
- Department of NephrologyFlinders Medical CentreAdelaideAustralia
| | - Sadia Jahan
- Central Northern Adelaide Renal and Transplantation ServiceRoyal Adelaide HospitalAdelaideAustralia
| | - Wai H. Lim
- Department of Renal MedicineSir Charles Gairdner HospitalPerthAustralia
- Medical SchoolUniversity of Western AustraliaPerthAustralia
| |
Collapse
|
2
|
Benning L, Bestard O. Shedding Light on Microvascular Inflammation: Understanding Outcomes, But What Sparks the Flame? Transpl Int 2024; 37:14032. [PMID: 39659965 PMCID: PMC11628253 DOI: 10.3389/ti.2024.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Oriol Bestard
- Department of Nephrology and Kidney Transplantation, Vall d’Hebrón University Hospital, Barcelona, Spain
| |
Collapse
|
3
|
Belčič Mikič T, Arnol M. The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications. Diagnostics (Basel) 2024; 14:2482. [PMID: 39594148 PMCID: PMC11592658 DOI: 10.3390/diagnostics14222482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Kidney allograft rejection is one of the main limitations to long-term kidney transplant survival. The diagnostic gold standard for detecting rejection is a kidney biopsy, an invasive procedure that can often give imprecise results due to complex diagnostic criteria and high interobserver variability. In recent years, several additional diagnostic approaches to rejection have been investigated, some of them with the aid of machine learning (ML). In this review, we addressed studies that investigated the detection of kidney allograft rejection over the last decade using various ML algorithms. Various ML techniques were used in three main categories: (a) histopathologic assessment of kidney tissue with the aim to improve the diagnostic accuracy of a kidney biopsy, (b) assessment of gene expression in rejected kidney tissue or peripheral blood and the development of diagnostic classifiers based on these data, (c) radiologic assessment of kidney tissue using diffusion-weighted magnetic resonance imaging and the construction of a computer-aided diagnostic system. In histopathology, ML algorithms could serve as a support to the pathologist to avoid misclassifications and overcome interobserver variability. Diagnostic platforms based on biopsy-based transcripts serve as a supplement to a kidney biopsy, especially in cases where histopathologic diagnosis is inconclusive. ML models based on radiologic evaluation or gene signature in peripheral blood may be useful in cases where kidney biopsy is contraindicated in addition to other non-invasive biomarkers. The implementation of ML-based diagnostic methods is usually slow and undertaken with caution considering ethical and legal issues. In summary, the approach to the diagnosis of rejection should be individualized and based on all available diagnostic tools (including ML-based), leaving the responsibility for over- and under-treatment in the hands of the clinician.
Collapse
Affiliation(s)
- Tanja Belčič Mikič
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Diebold M, Mayer KA, Hidalgo L, Kozakowski N, Budde K, Böhmig GA. Chronic Rejection After Kidney Transplantation. Transplantation 2024:00007890-990000000-00858. [PMID: 39192468 DOI: 10.1097/tp.0000000000005187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In kidney transplantation, ongoing alloimmune processes-commonly triggered by HLA incompatibilities-can trigger chronic transplant rejection, affecting the microcirculation and the tubulointerstitium. Continuous inflammation may lead to progressive, irreversible graft injury, culminating in graft dysfunction and accelerated transplant failure. Numerous experimental and translational studies have delineated a complex interplay of different immune mechanisms driving rejection, with antibody-mediated rejection (AMR) being an extensively studied rejection variant. In microvascular inflammation, a hallmark lesion of AMR, natural killer (NK) cells have emerged as pivotal effector cells. Their essential role is supported by immunohistologic evidence, bulk and spatial transcriptomics, and functional genetics. Despite significant research efforts, a substantial unmet need for approved rejection therapies persists, with many trials yielding negative outcomes. However, several promising therapies are currently under investigation, including felzartamab, a monoclonal antibody targeting the surface molecule CD38, which is highly expressed in NK cells and antibody-producing plasma cells. In an exploratory phase 2 trial in late AMR, this compound has demonstrated potential in resolving molecular and morphologic rejection activity and injury, predominantly by targeting NK cell effector function. These findings inspire hope for effective treatments and emphasize the necessity of further pivotal trials focusing on chronic transplant rejection.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Luis Hidalgo
- HLA Laboratory, Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Chauveau B, Couzi L, Merville P. The Microscope and Beyond: Current Trends in the Characterization of Kidney Allograft Rejection From Tissue Samples. Transplantation 2024:00007890-990000000-00841. [PMID: 39436268 DOI: 10.1097/tp.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The Banff classification is regularly updated to integrate recent advances in the characterization of kidney allograft rejection, gathering novel diagnostic, prognostic, and theragnostic data into a diagnostic and pathogenesis-based framework. Despite ongoing research on noninvasive biomarkers of kidney rejection, the Banff classification remains, to date, biopsy-centered, primarily relying on a semiquantitative histological scoring system that overall lacks reproducibility and granularity. Besides, the ability of histopathological injuries and transcriptomics analyses from bulk tissue to accurately infer the pathogenesis of rejection is questioned. This review discusses findings from past, current, and emerging innovative tools that have the potential to enhance the characterization of allograft rejection from tissue samples. First, the digitalization of pathological workflows and the rise of deep learning should yield more reproducible and quantitative results from routine slides. Additionally, novel histomorphometric features of kidney rejection could be discovered with an overall genuine clinical implementation perspective. Second, multiplex immunohistochemistry enables in-depth in situ phenotyping of cells from formalin-fixed samples, which can decipher the heterogeneity of the immune infiltrate during kidney allograft rejection. Third, transcriptomics from bulk tissue is gradually integrated into the Banff classification, and its specific context of use is currently under extensive consideration. Finally, single-cell transcriptomics and spatial transcriptomics from formalin-fixed and paraffin-embedded samples are emerging techniques capable of producing up to genome-wide data with unprecedented precision levels. Combining all these approaches gives us hope for novel advances that will address the current blind spots of the Banff system.
Collapse
Affiliation(s)
- Bertrand Chauveau
- Department of Pathology, Bordeaux University Hospital, Pellegrin Hospital, Place Amélie Raba Léon, Bordeaux, France
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Lionel Couzi
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| | - Pierre Merville
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| |
Collapse
|
6
|
Rabant M, Adam BA, Aubert O, Böhmig GA, Clahsen Van-Groningen M, Cornell LD, de Vries APJ, Huang E, Kozakowski N, Perkowska-Ptasinska A, Riella LV, Rosales IA, Schinstock C, Simmonds N, Thaunat O, Willicombe M. Banff 2022 Kidney Commentary: Reflections and Future Directions. Transplantation 2024:00007890-990000000-00793. [PMID: 38886879 DOI: 10.1097/tp.0000000000005112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In September 2022, in Banff, Alberta, Canada, the XVIth Banff meeting, corresponding to the 30th anniversary of the Banff classification, was held, leading to 2 recent publications. Discussions at the Banff meeting focused on proposing improvements to the Banff process as a whole. In line with this, a unique opportunity was offered to a selected group of 16 representatives from the pathology and transplant nephrology community, experts in the field of kidney transplantation, to review these 2 Banff manuscripts. The aim was to provide an insightful commentary, to gauge any prospective influence the proposed changes may have, and to identify any potential areas for future enhancement within the Banff classification. The group expressed its satisfaction with the incorporation of 2 new entities, namely "microvascular inflammation/injury donor-specific antibodies-negative and C4d negative" and "probable antibody-mediated rejection," into category 2. These changes expand the classification, facilitating the capture of more biopsies and providing an opportunity to explore the clinical implications of these lesions further. However, we found that the Banff classification remains complex, potentially hindering its widespread utilization, even if a degree of complexity may be unavoidable given the intricate pathophysiology of kidney allograft pathology. Addressing the histomorphologic diagnosis of chronic active T cell-mediated rejection (CA TCMR), potentially reconsidering a diagnostic-agnostic approach, as for category 2, to inflammation in interstitial fibrosis and tubular atrophy and chronic active T cell-mediated rejection was also an important objective. Furthermore, we felt a need for more evidence before molecular diagnostics could be routinely integrated and emphasized the need for clinical and histologic context determination and the substantiation of its clinical impact through rigorous clinical trials. Finally, our discussions stressed the ongoing necessity for multidisciplinary decision-making regarding patient care.
Collapse
Affiliation(s)
- Marion Rabant
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Olivier Aubert
- Kidney Transplant Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Georg A Böhmig
- Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marian Clahsen Van-Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC Transplant Institute, Rotterdam, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lynn D Cornell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Aiko P J de Vries
- Division of Nephrology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Edmund Huang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | - Leonardo V Riella
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Carrie Schinstock
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Naomi Simmonds
- Department of Pathology, Guys and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Michelle Willicombe
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
7
|
de Nattes T, Beadle J, Roufosse C. Biopsy-based transcriptomics in the diagnosis of kidney transplant rejection. Curr Opin Nephrol Hypertens 2024; 33:273-282. [PMID: 38411022 PMCID: PMC10990030 DOI: 10.1097/mnh.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW The last year has seen considerable progress in translational research exploring the clinical utility of biopsy-based transcriptomics of kidney transplant biopsies to enhance the diagnosis of rejection. This review will summarize recent findings with a focus on different platforms, potential clinical applications, and barriers to clinical adoption. RECENT FINDINGS Recent literature has focussed on using biopsy-based transcriptomics to improve diagnosis of rejection, in particular antibody-mediated rejection. Different techniques of gene expression analysis (reverse transcriptase quantitative PCR, microarrays, probe-based techniques) have been used either on separate samples with ideally preserved RNA, or on left over tissue from routine biopsy processing. Despite remarkable consistency in overall patterns of gene expression, there is no consensus on acceptable indications, or whether biopsy-based transcriptomics adds significant value at reasonable cost to current diagnostic practice. SUMMARY Access to biopsy-based transcriptomics will widen as regulatory approvals for platforms and gene expression models develop. Clinicians need more evidence and guidance to inform decisions on how to use precious biopsy samples for biopsy-based transcriptomics, and how to integrate results with standard histology-based diagnosis.
Collapse
Affiliation(s)
- Tristan de Nattes
- Univ Rouen Normandie, INSERM U1234, CHU Rouen, Department of Nephrology, Rouen, France
| | - Jack Beadle
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Candice Roufosse
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
8
|
Roufosse C, Naesens M, Haas M, Lefaucheur C, Mannon RB, Afrouzian M, Alachkar N, Aubert O, Bagnasco SM, Batal I, Bellamy COC, Broecker V, Budde K, Clahsen-Van Groningen M, Coley SM, Cornell LD, Dadhania D, Demetris AJ, Einecke G, Farris AB, Fogo AB, Friedewald J, Gibson IW, Horsfield C, Huang E, Husain SA, Jackson AM, Kers J, Kikić Ž, Klein A, Kozakowski N, Liapis H, Mangiola M, Montgomery RA, Nankinvell B, Neil DAH, Nickerson P, Rabant M, Randhawa P, Riella LV, Rosales I, Royal V, Sapir-Pichhadze R, Sarder P, Sarwal M, Schinstock C, Stegall M, Solez K, van der Laak J, Wiebe C, Colvin RB, Loupy A, Mengel M. The Banff 2022 Kidney Meeting Work Plan: Data-driven refinement of the Banff Classification for renal allografts. Am J Transplant 2024; 24:350-361. [PMID: 37931753 PMCID: PMC11135910 DOI: 10.1016/j.ajt.2023.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell-mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.
Collapse
Affiliation(s)
- Candice Roufosse
- Department of Immunology and Inflammation, Faculty Medicine, Imperial College London, London, UK.
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carmen Lefaucheur
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Nephrology and Transplantation, Saint-Louis Hospital, Paris, France
| | - Roslyn B Mannon
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Marjan Afrouzian
- Department of Pathology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Nada Alachkar
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olivier Aubert
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Serena M Bagnasco
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ibrahim Batal
- Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA
| | | | - Verena Broecker
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin, Berlin, Germany
| | - Marian Clahsen-Van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Shana M Coley
- Transplant Translational Research, Arkana Laboratories, Arkansas, USA
| | - Lynn D Cornell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Darshana Dadhania
- Department Medicine, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Anthony J Demetris
- UPMC Hepatic and Transplantation Pathology, Pittsburg, Pennsylvania, USA
| | - Gunilla Einecke
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Germany
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Friedewald
- Comprehensive Transplant Center, Northwestern University, USA
| | - Ian W Gibson
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | | | - Edmund Huang
- Department of Medicine, Division of Nephrology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Syed A Husain
- Division of Nephrology, Columbia University, New York, New York, USA
| | | | - Jesper Kers
- Department of Pathology, Leiden University Medical Center, Netherlands; Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Željko Kikić
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | | | | - Helen Liapis
- Ludwig Maximillian University Munich, Nephrology Center, Germany
| | | | | | - Brian Nankinvell
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Desley A H Neil
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham and Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Peter Nickerson
- Department of Medicine and Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Marion Rabant
- Pathology department, Necker-Enfants Malades Hospital, Paris, France
| | - Parmjeet Randhawa
- Pathology, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leonardo V Riella
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Immunopathology Research Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Virginie Royal
- Maisonneuve-Rosemont Hospital, University of Montreal, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Division of Nephrology & Multiorgan Transplant Program, McGill University, Montreal, Quebec, Canada
| | - Pinaki Sarder
- Department of Medicine-Quantitative Health, University of Florida College of Medicine, Florida, USA
| | - Minnie Sarwal
- Division of MultiOrgan Transplantation, UCSF, San Francisco, California, USA
| | - Carrie Schinstock
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Stegall
- Department Transplantation Surgery, Mayo Clinic, Rochester, Massachusetts, USA
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | | | - Chris Wiebe
- Department of Medicine and Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandre Loupy
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Mubarak M, Raza A, Rashid R, Shakeel S. Evolution of human kidney allograft pathology diagnostics through 30 years of the Banff classification process. World J Transplant 2023; 13:221-238. [PMID: 37746037 PMCID: PMC10514746 DOI: 10.5500/wjt.v13.i5.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
The second half of the previous century witnessed a tremendous rise in the number of clinical kidney transplants worldwide. This activity was, however, accompanied by many issues and challenges. An accurate diagnosis and appropriate management of causes of graft dysfunction were and still are, a big challenge. Kidney allograft biopsy played a vital role in addressing the above challenge. However, its interpretation was not standardized for many years until, in 1991, the Banff process was started to fill this void. Thereafter, regular Banff meetings took place every 2 years for the past 30 years. Marked changes have taken place in the interpretation of kidney allograft biopsies, diagnosis, and classification of rejection and other non-rejection pathologies from the original Banff 93 classification. This review attempts to summarize those changes for increasing the awareness and understanding of kidney allograft pathology through the eyes of the Banff process. It will interest the transplant surgeons, physicians, pathologists, and allied professionals associated with the care of kidney transplant patients.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Amber Raza
- Department of Nephrology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Rahma Rashid
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Shaheera Shakeel
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
10
|
Shi T, Burg AR, Caldwell JT, Roskin KM, Castro-Rojas CM, Chukwuma PC, Gray GI, Foote SG, Alonso JA, Cuda CM, Allman DA, Rush JS, Regnier CH, Wieczorek G, Alloway RR, Shields AR, Baker BM, Woodle ES, Hildeman DA. Single-cell transcriptomic analysis of renal allograft rejection reveals insights into intragraft TCR clonality. J Clin Invest 2023; 133:e170191. [PMID: 37227784 PMCID: PMC10348771 DOI: 10.1172/jci170191] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding of how rejection occurs despite immunosuppression (IS). We performed combined single-cell RNA transcriptomic and TCR-α/β sequencing on rBx from patients with ACR under differing IS drugs: tacrolimus, iscalimab, and belatacept. We found distinct CD8+ T cell phenotypes (e.g., effector, memory, exhausted) depending upon IS type, particularly within expanded CD8+ T cell clonotypes (CD8EXP). Gene expression of CD8EXP identified therapeutic targets that were influenced by IS type. TCR analysis revealed a highly restricted number of CD8EXP, independent of HLA mismatch or IS type. Subcloning of TCR-α/β cDNAs from CD8EXP into Jurkat 76 cells (TCR-/-) conferred alloreactivity by mixed lymphocyte reaction. Analysis of sequential rBx samples revealed persistence of CD8EXP that decreased, but were not eliminated, after successful antirejection therapy. In contrast, CD8EXP were maintained in treatment-refractory rejection. Finally, most rBx-derived CD8EXP were also observed in matching urine samples, providing precedent for using urine-derived CD8EXP as a surrogate for those found in the rejecting allograft. Overall, our data define the clonal CD8+ T cell response to ACR, paving the next steps for improving detection, assessment, and treatment of rejection.
Collapse
Affiliation(s)
- Tiffany Shi
- Division of Immunobiology and
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program and
| | - Ashley R. Burg
- Division of Immunobiology and
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Krishna M. Roskin
- Division of Immunobiology and
- Divison of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - P. Chukwunalu Chukwuma
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - George I. Gray
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sara G. Foote
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jesus A. Alonso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Carla M. Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, Illinois, USA
| | - David A. Allman
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James S. Rush
- Novartis Institutes for Biomedical Research, Immunology Disease Area, Basel, Switzerland
| | - Catherine H. Regnier
- Novartis Institutes for Biomedical Research, Immunology Disease Area, Basel, Switzerland
| | - Grazyna Wieczorek
- Novartis Institutes for Biomedical Research, Immunology Disease Area, Basel, Switzerland
| | - Rita R. Alloway
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Adele R. Shields
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David A. Hildeman
- Division of Immunobiology and
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Madill-Thomsen KS, Böhmig GA, Bromberg J, Einecke G, Eskandary F, Gupta G, Myslak M, Viklicky O, Perkowska-Ptasinska A, Solez K, Halloran PF. Relating Molecular T Cell-mediated Rejection Activity in Kidney Transplant Biopsies to Time and to Histologic Tubulitis and Atrophy-fibrosis. Transplantation 2023; 107:1102-1114. [PMID: 36575574 PMCID: PMC10125115 DOI: 10.1097/tp.0000000000004396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND We studied the variation in molecular T cell-mediated rejection (TCMR) activity in kidney transplant indication biopsies and its relationship with histologic lesions (particularly tubulitis and atrophy-fibrosis) and time posttransplant. METHODS We examined 175 kidney transplant biopsies with molecular TCMR as defined by archetypal analysis in the INTERCOMEX study ( ClinicalTrials.gov #NCT01299168). TCMR activity was defined by a molecular classifier. RESULTS Archetypal analysis identified 2 TCMR classes, TCMR1 and TCMR2: TCMR1 had higher TCMR activity and more antibody-mediated rejection ("mixed") activity and arteritis but little hyalinosis, whereas TCMR2 had less TCMR activity but more atrophy-fibrosis. TCMR1 and TCMR2 had similar levels of molecular injury and tubulitis. Both TCMR1 and TCMR2 biopsies were uncommon after 2 y posttransplant and were rare after 10 y, particularly TCMR1. Within late TCMR biopsies, TCMR classifier activity and activity molecules such as IFNG fell progressively with time, but tubulitis and molecular injury were sustained. Atrophy-fibrosis was increased in TCMR biopsies, even in the first year posttransplant, and rose with time posttransplant. TCMR1 and TCMR2 both reduced graft survival, but in random forests, the strongest determinant of survival after biopsies with TCMR was molecular injury, not TCMR activity. CONCLUSIONS TCMR varies in intensity but is always strongly related to molecular injury and atrophy-fibrosis, which ultimately explains its effect on survival. We hypothesize, based on the reciprocal relationship with hyalinosis, that the TCMR1-TCMR2 gradient reflects calcineurin inhibitor drug underexposure, whereas the time-dependent decline in TCMR activity and frequency after the first year reflects T-cell exhaustion.
Collapse
Affiliation(s)
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ Hospital, Pomeranian Medical University, Szczecin, Poland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Kim Solez
- Department of Laboratory Medicine and Pathology, Division of Anatomical Pathology, University of Alberta, Edmonton, Canada
| | - Philip F. Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Yamamoto I, Kawabe M, Hayashi A, Kobayashi A, Yamamoto H, Yokoo T. Challenges Posed by the Banff Classification: Diagnosis and Treatment of Chronic Active T-Cell-Mediated Rejection. Nephron Clin Pract 2023; 147 Suppl 1:74-79. [PMID: 36928337 DOI: 10.1159/000530158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The three primary sites of acute T-cell-mediated rejection (TCMR) in transplanted kidneys are the tubular epithelial cells, interstitium, and the vascular endothelial cells. The pathology of acute lesions is characterized by inflammatory cell infiltration; the final diagnosis suggested by the Banff 2019 classification is guided by grading of tubulitis (the t score), interstitial inflammation (the i score), and endarteritis (the v score). Consistent major issues when using the Banff classification are the etiological classifications of interstitial fibrosis and tubular atrophy (IFTA). From 2015 to 2019, technological advances (i.e., genetic analysis in paraffin sections) increased our understanding of IFTA status in patients with smoldering acute TCMR and the roles played by inflammatory cell infiltration (the i-IFTA score) and tubulitis (the t-IFTA score) in IFTA. These two scores were introduced when establishing the diagnostic criteria for chronic active TCMR. Despite the increase in complexity and the lack of a consensus treatment for chronic active TCMR, the Banff classification may evolve as new techniques (i.e., genetic analysis in paraffin sections and deep learning of renal pathology) are introduced. The Banff conference proceeded as follows. First, lesions were defined. Next, working groups were established to better understand the lesions and to derive better classification methods. Finally, the new Banff classification was developed. This approach will continue to evolve; the Banff classification will become a very useful diagnostic standard. This paper overviews the history of TCMR diagnosis using the Banff classification, and the clinical importance, treatment, and prospects for acute and chronic active TCMR.
Collapse
Affiliation(s)
- Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mayuko Kawabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayaka Hayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akimitsu Kobayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyasu Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Shi T, Burg AR, Caldwell JT, Roskin K, Castro-Rojas CM, Chukwuma PC, Gray GI, Foote SG, Alonso J, Cuda CM, Allman DA, Rush JS, Regnier CH, Wieczorek G, Alloway RR, Shields AR, Baker BM, Woodle ES, Hildeman DA. Single cell transcriptomic analysis of renal allograft rejection reveals novel insights into intragraft TCR clonality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.524808. [PMID: 36798151 PMCID: PMC9934650 DOI: 10.1101/2023.02.08.524808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding. We performed combined single cell RNA transcriptomic and TCRα/β sequencing on rBx from patients with ACR under differing immunosuppression (IS): tacrolimus, iscalimab, and belatacept. TCR analysis revealed a highly restricted CD8 + T cell clonal expansion (CD8 EXP ), independent of HLA mismatch or IS type. Subcloning of TCRα/β cDNAs from CD8 EXP into Jurkat76 cells (TCR -/- ) conferred alloreactivity by mixed lymphocyte reaction. scRNAseq analysis of CD8 EXP revealed effector, memory, and exhausted phenotypes that were influenced by IS type. Successful anti-rejection treatment decreased, but did not eliminate, CD8 EXP , while CD8 EXP were maintained during treatment-refractory rejection. Finally, most rBx-derived CD8 EXP were also observed in matching urine samples. Overall, our data define the clonal CD8 + T cell response to ACR, providing novel insights to improve detection, assessment, and treatment of rejection.
Collapse
|
14
|
Haas M, Mirocha J, Huang E, Najjar R, Peng A, Sethi S, Vo A, Anglicheau D, Jordan SC, Rabant M. A Banff-based histologic chronicity index is associated with graft loss in patients with a kidney transplant and antibody-mediated rejection. Kidney Int 2023; 103:187-195. [PMID: 36332728 PMCID: PMC11466365 DOI: 10.1016/j.kint.2022.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
Abstract
Antibody-mediated rejection (AMR) is the major cause of graft loss in kidney transplant recipients. The Banff classification defines two classes of AMR, active and chronic active but over time this classification has become increasingly complex. To simplify the approach to AMR, we developed activity and chronicity indices based on kidney transplant biopsy findings and examined their association with graft survival in 147 patients with active or chronic active AMR, all of whom had donor-specific antibodies and were treated for AMR. The activity index was determined as the sum of Banff glomerulitis (g), peritubular capillaritis (ptc), arteritis (v) and C4d scores, with a maximum score of 12. The chronicity index was the sum of interstitial fibrosis (ci), tubular atrophy (ct), chronic vasculopathy (cv), and chronic glomerulopathy (cg) scores, the latter doubled, with a maximum score of 15. While the activity index was generally not associated with graft loss, the chronicity index was significantly associated with graft loss with an optimal threshold value of 4 or greater for predicting graft loss. The association of the chronicity index of 4 or greater with graft loss was independent of other parameters associated with graft loss, including the estimated glomerular filtration rate at the time of biopsy, chronic active (versus active) AMR, AMR with de novo (versus persistent/rebound) donor-specific antibodies, Banff (g+ptc) scores, concurrent T cell-mediated rejection and donor-specific antibody reduction post-biopsy. The association of the chronicity index of 4 or greater with graft loss was confirmed in an independent cohort of 61 patients from Necker Hospital, Paris. Thus, our findings suggest that the chronicity index may be valuable as a simplified approach to decision-making in patients with AMR.
Collapse
Affiliation(s)
- Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - James Mirocha
- General Clinical Research Center, Clinical & Translational Science Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Edmund Huang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reiad Najjar
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alice Peng
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Supreet Sethi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ashley Vo
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dany Anglicheau
- Deparment of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, AP-HP, INSERM U1151, Université Paris Cite, Paris, France
| | - Stanley C Jordan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marion Rabant
- Department of Pathology, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cite, Paris, France
| |
Collapse
|
15
|
Rosales IA, Mahowald GK, Tomaszewski K, Hotta K, Iwahara N, Otsuka T, Tsuji T, Takada Y, Acheampong E, Araujo-Medina M, Bruce A, Rios A, Cosimi AB, Elias N, Kawai T, Gilligan H, Safa K, Riella LV, Tolkoff-Rubin NE, Williams WW, Smith RN, Colvin RB. Banff Human Organ Transplant Transcripts Correlate with Renal Allograft Pathology and Outcome: Importance of Capillaritis and Subpathologic Rejection. J Am Soc Nephrol 2022; 33:2306-2319. [PMID: 36450597 PMCID: PMC9731628 DOI: 10.1681/asn.2022040444] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND To seek insights into the pathogenesis of chronic active antibody-mediated rejection (CAMR), we performed mRNA analysis and correlated transcripts with pathologic component scores and graft outcomes. METHODS We utilized the NanoString nCounter platform and the Banff Human Organ Transplant gene panel to quantify transcripts on 326 archived renal allograft biopsy samples. This system allowed correlation of transcripts with Banff pathology scores from the same tissue block and correlation with long-term outcomes. RESULTS The only pathology score that correlated with AMR pathways in CAMR was peritubular capillaritis (ptc). C4d, cg, g, v, i, t, or ci scores did not correlate. DSA-negative CAMR had lower AMR pathway scores than DSA-positive CAMR. Transcript analysis in non-CAMR biopsies yielded evidence of increased risk of later CAMR. Among 108 patients without histologic CAMR, 23 developed overt biopsy-documented CAMR within 5 years and as a group had higher AMR pathway scores (P=3.4 × 10-5). Random forest analysis correlated 3-year graft loss with elevated damage, innate immunity, and macrophage pathway scores in CAMR and TCMR. Graft failure in CAMR was associated with TCMR transcripts but not with AMR transcripts, and graft failure in TCMR was associated with AMR transcripts but not with TCMR transcripts. CONCLUSIONS Peritubular capillary inflammation and DSA are the primary drivers of AMR transcript elevation. Transcripts revealed subpathological evidence of AMR, which often preceded histologic CAMR and subpathological evidence of TCMR that predicted graft loss in CAMR.
Collapse
Affiliation(s)
- Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Grace K. Mahowald
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kristen Tomaszewski
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Hokkaido, Japan
| | - Naoya Iwahara
- Department of Urology, Hokkaido University Hospital, Hokkaido, Japan
| | - Takuya Otsuka
- Department of Surgical Pathology, Hokkaido University Hospital, Hokkaido, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Hokkaido, Japan
| | - Yusuke Takada
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Hokkaido, Japan
| | - Ellen Acheampong
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Milagros Araujo-Medina
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy Bruce
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrea Rios
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anthony Benedict Cosimi
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nahel Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tatsuo Kawai
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah Gilligan
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kassem Safa
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nina E. Tolkoff-Rubin
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Winfred W. Williams
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rex Neal Smith
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert B. Colvin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Assessing the Relationship Between Molecular Rejection and Parenchymal Injury in Heart Transplant Biopsies. Transplantation 2022; 106:2205-2216. [PMID: 35968995 DOI: 10.1097/tp.0000000000004231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The INTERHEART study (ClinicalTrials.gov #NCT02670408) used genome-wide microarrays to detect rejection in endomyocardial biopsies; however, many heart transplants with no rejection have late dysfunction and impaired survival. We used the microarray measurements to develop a molecular classification of parenchymal injury. METHODS In 1320 endomyocardial biopsies from 645 patients previously studied for rejection-associated transcripts, we measured the expression of 10 injury-induced transcript sets: 5 induced by recent injury; 2 reflecting macrophage infiltration; 2 normal heart transcript sets; and immunoglobulin transcripts, which correlate with time. We used archetypal clustering to assign injury groups. RESULTS Injury transcript sets correlated with impaired function. Archetypal clustering based on the expression of injury transcript sets assigned each biopsy to 1 of 5 injury groups: 87 Severe-injury, 221 Late-injury, and 3 with lesser degrees of injury, 376 No-injury, 526 Mild-injury, and 110 Moderate-injury. Severe-injury had extensive loss of normal transcripts (dedifferentiation) and increase in macrophage and injury-induced transcripts. Late-injury was characterized by high immunoglobulin transcript expression. In Severe- and Late-injury, function was depressed, and short-term graft failure was increased, even in hearts with no rejection. T cell-mediated rejection almost always had parenchymal injury, and 85% had Severe- or Late-injury. In contrast, early antibody-mediated rejection (ABMR) had little injury, but late ABMR often had the Late-injury state. CONCLUSION Characterizing heart transplants for their injury state provides new understanding of dysfunction and outcomes and demonstrates the differential impact of T cell-mediated rejection versus ABMR on the parenchyma. Slow deterioration from ABMR emerges as a major contributor to late dysfunction.
Collapse
|
17
|
Baboudjian M, Gondran-Tellier B, Boissier R, Ancel P, Marjollet J, Lyonnet L, François P, Sabatier F, Lechevallier E, Dutour A, Paul P. An enhanced level of VCAM in transplant preservation fluid is an independent predictor of early kidney allograft dysfunction. Front Immunol 2022; 13:966951. [PMID: 36032101 PMCID: PMC9403542 DOI: 10.3389/fimmu.2022.966951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background We aimed to evaluate whether donor-related inflammatory markers found in kidney transplant preservation fluid can associate with early development of kidney allograft dysfunction. Methods Our prospective study enrolled 74 consecutive donated organs who underwent kidney transplantation in our center between September 2020 and June 2021. Kidneys from 27 standard criteria donors were allocated to static cold storage and kidneys from 47 extended criteria donors to hypothermic machine perfusion. ELISA assessment of inflammatory biomarkers (IL-6, IL6-R, ICAM, VCAM, TNFα, IFN-g, CXCL1 and Fractalkine) was analyzed in view of a primary endpoint defined as the occurrence of delayed graft function or slow graft function during the first week following transplantation. Results Soluble VCAM levels measured in transplant conservation fluid were significantly associated with recipient serum creatinine on day 7. Multivariate stepwise logistic regression analysis identified VCAM as an independent non-invasive predictor of early graft dysfunction, both at 1 week (OR: 3.57, p = .04, 95% CI: 1.06-12.03) and 3 Months (OR: 4.039, p = .034, 95% CI: 1.11-14.73) after transplant surgery. Conclusions This prospective pilot study suggests that pre-transplant evaluation of VCAM levels could constitute a valuable indicator of transplant health and identify the VCAM-CD49d pathway as a target to limit donor-related vascular injury of marginal transplants.
Collapse
Affiliation(s)
- Michael Baboudjian
- Department of Urology and Transplantation, La Conception Hospital, Assistance Publique-Hôpitaux Marseille, Marseille, France
- Department of Urology, Assistance Publique-Hôpitaux de Marseille, Hopital Nord, Aix-Marseille University, Marseille, France
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
| | - Bastien Gondran-Tellier
- Department of Urology and Transplantation, La Conception Hospital, Assistance Publique-Hôpitaux Marseille, Marseille, France
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
| | - Romain Boissier
- Department of Urology and Transplantation, La Conception Hospital, Assistance Publique-Hôpitaux Marseille, Marseille, France
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
| | - Patricia Ancel
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
| | - Juline Marjollet
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
| | - Luc Lyonnet
- Department of Hematology, Hopital de la Conception, Assistance Publique-Hôpitaux Marseille, Marseille, France
| | - Pauline François
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
| | - Florence Sabatier
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Cell Therapy Laboratory, Centre d'Investigation Clinique (CIC)-149, La Conception Hospital, Assistance Publique-Hôpitaux Marseille, Marseille, France
| | - Eric Lechevallier
- Department of Urology and Transplantation, La Conception Hospital, Assistance Publique-Hôpitaux Marseille, Marseille, France
| | - Anne Dutour
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Endocrinology, Metabolic Diseases and Nutrition Department, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Pascale Paul
- Institut national de la santé et de la recherche médicale (INSERM) 1263, Aix Marseille University, French national research institute for agriculture, food and the environment (INRAE), Centre de recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Department of Hematology, Hopital de la Conception, Assistance Publique-Hôpitaux Marseille, Marseille, France
- Institut national de la santé et de la recherche médicale (INSERM) unité mixte de recherche (UMR)_1090, Aix Marseille University, TAGC Theories and Approaches of Genomic Complexity, Parc Scientifique de Luminy Case 928, Marseille, France
- *Correspondence: Pascale Paul,
| |
Collapse
|
18
|
Halloran PF, Böhmig GA, Bromberg J, Einecke G, Eskandary FA, Gupta G, Myslak M, Viklicky O, Perkowska-Ptasinska A, Madill-Thomsen KS. Archetypal Analysis of Injury in Kidney Transplant Biopsies Identifies Two Classes of Early AKI. Front Med (Lausanne) 2022; 9:817324. [PMID: 35463013 PMCID: PMC9021747 DOI: 10.3389/fmed.2022.817324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 01/07/2023] Open
Abstract
All transplanted kidneys are subjected to some degree of injury as a result of the donation-implantation process and various post-transplant stresses such as rejection. Because transplants are frequently biopsied, they present an opportunity to explore the full spectrum of kidney response-to-wounding from all causes. Defining parenchymal damage in transplanted organs is important for clinical management because it determines function and survival. In this study, we classified the scenarios associated with parenchymal injury in genome-wide microarray results from 1,526 kidney transplant indication biopsies collected during the INTERCOMEX study. We defined injury groups by using archetypal analysis (AA) of scores for gene sets and classifiers previously identified in various injury states. Six groups and their characteristics were defined in this population: No injury, minor injury, two classes of acute kidney injury ("AKI," AKI1, and AKI2), chronic kidney disease (CKD), and CKD combined with AKI. We compared the two classes of AKI, namely, AKI1 and AKI2. AKI1 had a poor function and increased parenchymal dedifferentiation but minimal response-to-injury and inflammation, instead having increased expression of PARD3, a gene previously characterized as being related to epithelial polarity and adherens junctions. In contrast, AKI2 had a poor function and increased response-to-injury, significant inflammation, and increased macrophage activity. In random forest analysis, the most important predictors of function (estimated glomerular filtration rate) and graft loss were injury-based molecular scores, not rejection scores. AKI1 and AKI2 differed in 3-year graft survival, with better survival in the AKI2 group. Thus, injury archetype analysis of injury-induced gene expression shows new heterogeneity in kidney response-to-wounding, revealing AKI1, a class of early transplants with a poor function but minimal inflammation or response to injury, a deviant response characterized as PC3, and an increased risk of failure. Given the relationship between parenchymal injury and kidney survival, further characterization of the injury phenotypes in kidney transplants will be important for an improved understanding that could have implications for understanding native kidney diseases (ClinicalTrials.gov #NCT01299168).
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jonathan Bromberg
- Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Farsad A Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA, United States
| | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation Samodzielny Publiczny Wojewódzki Szpital Zespolony (SPWSZ) Hospital, Pomeranian Medical University, Szczecin, Poland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Agnieszka Perkowska-Ptasinska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
19
|
Loupy A, Mengel M, Haas M. 30 years of the International Banff Classification for Allograft Pathology: The Past, Present and Future of Kidney Transplant Diagnostics. Kidney Int 2021; 101:678-691. [DOI: 10.1016/j.kint.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
|
20
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Halloran PF, Madill-Thomsen KS, Böhmig GA, Myslak M, Gupta G, Kumar D, Viklicky O, Perkowska-Ptasinska A, Famulski KS. A 2-fold Approach to Polyoma Virus (BK) Nephropathy in Kidney Transplants: Distinguishing Direct Virus Effects From Cognate T Cell-mediated Inflammation. Transplantation 2021; 105:2374-2384. [PMID: 34310102 DOI: 10.1097/tp.0000000000003884] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND BK nephropathy (BKN) in kidney transplants diagnosed by histology is challenging because it involves damage from both virus activity and cognate T cell-mediated inflammation, directed against alloantigens (rejection) or viral antigens. The present study of indication biopsies from the Integrated Diagnostic System in the International Collaborative Microarray Study Extension study measured major capsid viral protein 2 (VP2) mRNA to assess virus activity and a T cell-mediated rejection (TCMR) classifier to assess cognate T cell-mediated inflammation. METHODS Biopsies were assessed by local standard-of-care histology and by genome-wide microarrays and Molecular Microscope Diagnostic System (MMDx) algorithms to detect rejection and injury. In a subset of 102 biopsies (50 BKN and 52 BKN-negative biopsies with various abnormalities), we measured VP2 transcripts by real-time polymerase chain reaction. RESULTS BKN was diagnosed in 55 of 1679 biopsies; 30 had cognate T cell-mediated activity assessed by by MMDx and TCMR lesions, but only 3 of 30 were histologically diagnosed as TCMR. We developed a BKN probability classifier that predicted histologic BKN (area under the curve = 0.82). Virus activity (VP2 expression) was highly selective for BKN (area under the curve = 0.94) and correlated with acute injury, atrophy-fibrosis, macrophage activation, and the BKN classifier, but not with the TCMR classifier. BKN with molecular TCMR had more tubulitis and inflammation than BKN without molecular TCMR. In 5 BKN cases with second biopsies, VP2 mRNA decreased in second biopsies, whereas in 4 of 5 TCMR classifiers, scores increased. Genes and pathways associated with BKN and VP2 mRNA were similar, reflecting injury, inflammation, and macrophage activation but none was selective for BKN. CONCLUSIONS Risk-benefit decisions in BKN may be assisted by quantitative assessment of the 2 major pathologic processes, virus activity and cognate T cell-mediated inflammation.
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marek Myslak
- Department of Nephrology and Kidney Transplantation, SPWSZ Hospital in Szczecin, Pomeranian Medical University, Szczecin, Poland
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Dhiren Kumar
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | |
Collapse
|
22
|
Coemans M, Verbeke G, Naesens M. A joint transition model for evaluating eGFR as biomarker for rejection after kidney transplantation. STAT MODEL 2021. [DOI: 10.1177/1471082x211048695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The estimated glomerular filtration rate (eGFR) quantifies kidney graft function and is measured repeatedly after transplantation. Kidney graft rejection is diagnosed by performing biopsies on a regular basis (protocol biopsies at time of stable eGFR) or by performing biopsies due to clinical cause (indication biopsies at time of declining eGFR). The diagnostic value of the eGFR evolution as biomarker for rejection is not well established. To this end, we built a joint model which combines characteristics of transition models and shared parameter models to carry over information from one biopsy to the next, taking into account the longitudinal information of eGFR collected in between. From our model, applied to data of University Hospitals Leuven (870 transplantations, 2 635 biopsies), we conclude that a negative deviation from the mean eGFR slope increases the probability of rejection in indication biopsies, but that, on top of the biopsy history, there is little benefit in using the eGFR profile for diagnosing rejection. Methodologically, our model fills a gap in the biomarker literature by relating a frequently (repeatedly) measured continuous outcome with a less frequently (repeatedly) measured binary indicator. The developed joint transition model is flexible and applicable to multiple other research settings.
Collapse
Affiliation(s)
- Maarten Coemans
- L-Biostat, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Geert Verbeke
- I-Biostat, Universiteit Hasselt & KU Leuven, Hasselt & Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Bloom RD, Augustine JJ. Beyond the Biopsy: Monitoring Immune Status in Kidney Recipients. Clin J Am Soc Nephrol 2021; 16:1413-1422. [PMID: 34362810 PMCID: PMC8729582 DOI: 10.2215/cjn.14840920] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Improved long-term kidney allograft survival is largely related to better outcomes at 12 months, in association with declining acute rejection rates and more efficacious immunosuppression. Finding the right balance between under- and overimmunosuppression or rejection versus immunosuppression toxicity remains one of transplant's holy grails. In the absence of precise measures of immunosuppression burden, transplant clinicians rely on nonspecific, noninvasive tests and kidney allograft biopsy generally performed for cause. This review appraises recent advances of conventional monitoring strategies and critically examines the plethora of emerging tests utilizing tissue, urine, and blood samples to improve upon the diagnostic precision of allograft surveillance.
Collapse
Affiliation(s)
- Roy D Bloom
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua J Augustine
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| |
Collapse
|
24
|
Buscher K, Heitplatz B, van Marck V, Song J, Loismann S, Rixen R, Hüchtmann B, Kurian S, Ehinger E, Wolf D, Ley K, Pavenstädt H, Reuter S. Data-Driven Kidney Transplant Phenotyping as a Histology-Independent Framework for Biomarker Discovery. J Am Soc Nephrol 2021; 32:1933-1945. [PMID: 34078665 PMCID: PMC8455252 DOI: 10.1681/asn.2020121685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In transplant medicine, clinical decision making largely relies on histology of biopsy specimens. However, histology suffers from low specificity, sensitivity, and reproducibility, leading to suboptimal stratification of patients. We developed a histology-independent immune framework of kidney graft homeostasis and rejection. METHODS We applied tailored RNA deconvolution for leukocyte enumeration and coregulated gene network analysis to published bulk human kidney transplant RNA transcriptomes as input for unsupervised, high-dimensional phenotype clustering. We used framework-based graft survival analysis to identify a biomarker that was subsequently characterized in independent transplant biopsy specimens. RESULTS We found seven immune phenotypes that confirm known rejection types and uncovered novel signatures. The molecular phenotypes allow for improved graft survival analysis compared with histology, and identify a high-risk group in nonrejecting transplants. Two fibrosis-related phenotypes with distinct immune features emerged with reduced graft survival. We identified lysyl oxidase-like 2 (LOXL2)-expressing peritubular CD68+ macrophages as a framework-derived biomarker of impaired allograft function. These cells precede graft fibrosis, as demonstrated in longitudinal biopsy specimens, and may be clinically useful as a biomarker for early fibrogenesis. CONCLUSIONS This study provides a comprehensive, data-driven atlas of human kidney transplant phenotypes and demonstrates its utility to identify novel clinical biomarkers.
Collapse
Affiliation(s)
- Konrad Buscher
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany,Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California
| | - Barbara Heitplatz
- Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Veerle van Marck
- Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Rebecca Rixen
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| | - Birte Hüchtmann
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| | - Sunil Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Erik Ehinger
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California,Department of Cardiology and Angiology I, University Heart Center, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California
| | - Hermann Pavenstädt
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
25
|
Kung VL, Sandhu R, Haas M, Huang E. Chronic active T cell–mediated rejection is variably responsive to immunosuppressive therapy. Kidney Int 2021; 100:391-400. [DOI: 10.1016/j.kint.2021.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
|
26
|
Donor-derived Cell-free DNA in Solid-organ Transplant Diagnostics: Indications, Limitations, and Future Directions. Transplantation 2021; 105:1203-1211. [PMID: 33534526 DOI: 10.1097/tp.0000000000003651] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last few years have seen an explosion in clinical research focusing on the use of donor-derived cell-free DNA (dd-cfDNA) in solid-organ transplants (SOT). Although most of the literature published so far focuses on kidney transplants, there are several recent as well as ongoing research studies on heart, lung, pancreas, and liver transplants. Though initially studied as a noninvasive means of identifying subclinical or acute rejection in SOT, it is rapidly becoming clear that instead of being a specific marker for allograft rejection, dd-cfDNA is more appropriately described as a marker of severe injury, although the most common cause of this injury is allograft rejection. Multiple studies in kidney transplants have shown that although sensitivity for the diagnosis of antibody-mediated rejection is excellent, it is less so for T-cell-mediated rejection. It is possible that combining dd-cfDNA with other novel urine- or blood-based biomarkers may increase the sensitivity for the diagnosis of rejection. Irrespective of the cause, though, elevated dd-cfDNA seems to portend adverse allograft prognosis and formation of de novo donor-specific antibody. Although current data do not lend themselves to a clear conclusion, ongoing studies may reveal the utility of serial surveillance for the management of SOT as following levels of dd-cfDNA over time may provide windows of opportunity to intervene early and before irreversible allograft injury. Finally, cost-effectiveness studies will be needed to guide the ideal incorporation of dd-cfDNA into routine clinical practice.
Collapse
|
27
|
Seyahi N, Ozcan SG. Artificial intelligence and kidney transplantation. World J Transplant 2021; 11:277-289. [PMID: 34316452 PMCID: PMC8290997 DOI: 10.5500/wjt.v11.i7.277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence and its primary subfield, machine learning, have started to gain widespread use in medicine, including the field of kidney transplantation. We made a review of the literature that used artificial intelligence techniques in kidney transplantation. We located six main areas of kidney transplantation that artificial intelligence studies are focused on: Radiological evaluation of the allograft, pathological evaluation including molecular evaluation of the tissue, prediction of graft survival, optimizing the dose of immunosuppression, diagnosis of rejection, and prediction of early graft function. Machine learning techniques provide increased automation leading to faster evaluation and standardization, and show better performance compared to traditional statistical analysis. Artificial intelligence leads to improved computer-aided diagnostics and quantifiable personalized predictions that will improve personalized patient care.
Collapse
Affiliation(s)
- Nurhan Seyahi
- Department of Nephrology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul 34098, Fatih, Turkey
| | - Seyda Gul Ozcan
- Department of Internal Medicine, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul 34098, Fatih, Turkey
| |
Collapse
|
28
|
Halloran PF, Böhmig GA, Bromberg JS, Budde K, Gupta G, Einecke G, Eskandary F, Madill-Thomsen K, Reeve J. Discovering novel injury features in kidney transplant biopsies associated with TCMR and donor aging. Am J Transplant 2021; 21:1725-1739. [PMID: 33107191 DOI: 10.1111/ajt.16374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023]
Abstract
We previously characterized the molecular changes in acute kidney injury (AKI) and chronic kidney disease (CKD) in kidney transplant biopsies, but parenchymal changes selective for specific types of injury could be missed by such analyses. The present study searched for injury changes beyond AKI and CKD related to specific scenarios, including correlations with donor age. We defined injury using previously defined gene sets and classifiers and used principal component analysis to discover new injury dimensions. As expected, Dimension 1 distinguished normal vs. injury, and Dimension 2 separated early AKI from late CKD, correlating with time posttransplant. However, Dimension 3 was novel, distinguishing a set of genes related to epithelial polarity (e.g., PARD3) that were increased in early AKI and decreased in T cell-mediated rejection (TCMR) but not in antibody-mediated rejection. Dimension 3 was increased in kidneys from older donors and was particularly important in survival of early kidneys. Thus high Dimension 3 scores emerge as a previously unknown element in the kidney response-to-injury that affects epithelial polarity genes and is increased in AKI but depressed in TCMR, indicating that in addition to general injury elements, certain injury elements are selective for specific pathologic mechanisms. (ClinicalTrials.gov NCT01299168).
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Klemens Budde
- Charite-Medical University of Berlin, Berlin, Germany
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Jeff Reeve
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
| | | |
Collapse
|
29
|
Naesens M, Haas M, Loupy A, Roufosse C, Mengel M. Does the definition of chronic active T cell-mediated rejection need revisiting? Am J Transplant 2021; 21:1689-1690. [PMID: 33249773 DOI: 10.1111/ajt.16419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexandre Loupy
- Paris Translational Research Centre for Organ Transplantation, Université de Paris, INSERM U970, University of Paris, Paris and Necker Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Candice Roufosse
- Department of Immunology and Inflammation, Imperial College London and North West London Pathology, London, UK
| | - Michael Mengel
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Helgeson ES, Mannon R, Grande J, Gaston RS, Cecka MJ, Kasiske BL, Rush D, Gourishankar S, Cosio F, Hunsicker L, Connett J, Matas AJ. i-IFTA and chronic active T cell-mediated rejection: A tale of 2 (DeKAF) cohorts. Am J Transplant 2021; 21:1866-1877. [PMID: 33052625 DOI: 10.1111/ajt.16352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023]
Abstract
Inflammation in areas of fibrosis (i-IFTA) in posttransplant biopsies is part of the diagnostic criteria for chronic active TCMR (CA TCMR -- i-IFTA ≥ 2, ti ≥ 2, t ≥ 2). We evaluated i-IFTA and CA TCMR in the DeKAF indication biopsy cohorts: prospective (n = 585, mean time to biopsy = 1.7 years); cross-sectional (n = 458, mean time to biopsy = 7.8 years). Grouped by i-IFTA scores, the 3-year postbiopsy DC-GS is similar across cohorts. Although a previous acute rejection episode (AR) was more common in those with i-IFTA on biopsy, the majority of those with i-IFTA had not had previous AR. There was no association between type of previous AR (AMR, TCMR) and presence of i-IFTA. In both cohorts, i-IFTA was associated with markers of both cellular (increased Banff i, t, ti) and humoral (increased g, ptc, C4d, DSA) activity. Biopsies with i-IFTA = 1 and i-IFTA ≥ 2 with concurrent t ≥ 2 and ti ≥ 2 had similar DC-GS. These results suggest that (a) i-IFTA≥1 should be considered a threshold for diagnoses incorporating i-IFTA, ti, and t; (b) given that i-IFTA ≥ 2,t ≥ 2, ti ≥ 2 can occur in the absence of preceding TCMR and that the component histologic scores (i-IFTA,t,ti) each indicate an acute change (albeit i-IFTA on the nonspecific background of IFTA), the diagnostic category "CA TCMR" should be reconsidered.
Collapse
Affiliation(s)
- Erika S Helgeson
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Roslyn Mannon
- University of Nebraska Medical Center and Nebraska-Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska
| | | | - Robert S Gaston
- University of Nebraska Medical Center and Nebraska-Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska
| | - Michael J Cecka
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California
| | | | - David Rush
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sita Gourishankar
- Department of Medicine, Division of Nephrology, Univeristy of Alberta, Edmonton, Alberta, Canada
| | | | | | - John Connett
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Arthur J Matas
- Department of Surgery, Transplantation Division, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
31
|
Kim MY, Brennan DC. Therapies for Chronic Allograft Rejection. Front Pharmacol 2021; 12:651222. [PMID: 33935762 PMCID: PMC8082459 DOI: 10.3389/fphar.2021.651222] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Remarkable advances have been made in the pathophysiology, diagnosis, and treatment of antibody-mediated rejection (ABMR) over the past decades, leading to improved graft outcomes. However, long-term failure is still high and effective treatment for chronic ABMR, an important cause of graft failure, has not yet been identified. Chronic ABMR has a relatively different phenotype from active ABMR and is a slowly progressive disease in which graft injury is mainly caused by de novo donor specific antibodies (DSA). Since most trials of current immunosuppressive therapies for rejection have focused on active ABMR, treatment strategies based on those data might be less effective in chronic ABMR. A better understanding of chronic ABMR may serve as a bridge in establishing treatment strategies to improve graft outcomes. In this in-depth review, we focus on the pathophysiology and characteristics of chronic ABMR along with the newly revised Banff criteria in 2017. In addition, in terms of chronic ABMR, we identify the reasons for the resistance of current immunosuppressive therapies and look at ongoing research that could play a role in setting better treatment strategies in the future. Finally, we review non-invasive biomarkers as tools to monitor for rejection.
Collapse
Affiliation(s)
| | - Daniel C. Brennan
- Department of Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
32
|
Einecke G, Reeve J, Gupta G, Böhmig GA, Eskandary F, Bromberg JS, Budde K, Halloran PF. Factors associated with kidney graft survival in pure antibody-mediated rejection at the time of indication biopsy: Importance of parenchymal injury but not disease activity. Am J Transplant 2021; 21:1391-1401. [PMID: 32594646 DOI: 10.1111/ajt.16161] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 01/25/2023]
Abstract
We studied the relative association of clinical, histologic, and molecular variables with risk of kidney transplant failure after an indication biopsy, both in all kidneys and in kidneys with pure antibody-mediated rejection (ABMR). From a prospective study of 1679 biopsies with histologic and molecular testing, we selected one random biopsy per patient (N = 1120), including 321 with pure molecular ABMR. Diagnoses were associated with actuarial survival differences but not good predictions. Therefore we concentrated on clinical (estimated GFR [eGFR], proteinuria, time posttransplant, donor-specific antibody [DSA]) and molecular and histologic features reflecting injury (acute kidney injury [AKI] and atrophy-fibrosis [chronic kidney disease (CKD)] and rejection. For all biopsies, univariate analysis found that failure was strongly associated with low eGFR, AKI, CKD, and glomerular deterioration, but not with rejection activity. In molecular ABMR, the findings were similar: Molecular and histologic activity and DSA were not important compared with injury. Survival in DSA-negative and DSA-positive molecular ABMR was similar. Multivariate survival analysis confirmed the dominance of molecular AKI, CKD, and eGFR. Thus, at indication biopsy, the dominant predictors of failure, both in all kidneys and in ABMR, were related to molecular AKI and CKD and to eGFR, not rejection activity, presumably because rejection confers risk via injury.
Collapse
Affiliation(s)
- Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-University Hospital Berlin, Berlin, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
33
|
Molecular Analysis of Renal Allograft Biopsies: Where Do We Stand and Where Are We Going? Transplantation 2021; 104:2478-2486. [PMID: 32150035 DOI: 10.1097/tp.0000000000003220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A renal core biopsy for histological evaluation is the gold standard for diagnosing renal transplant pathology. However, renal biopsy interpretation is subjective and can render insufficient precision, making it difficult to apply a targeted therapeutic regimen for the individual patient. This warrants a need for additional methods assessing disease state in the renal transplant. Significant research activity has been focused on the role of molecular analysis in the diagnosis of renal allograft rejection. The identification of specific molecular expression patterns in allograft biopsies related to different types of allograft injury could provide valuable information about the processes underlying renal transplant dysfunction and can be used for the development of molecular classifier scores, which could improve our diagnostic and prognostic ability and could guide treatment. Molecular profiling has the potential to be more precise and objective than histological evaluation and may identify injury even before it becomes visible on histology, making it possible to start treatment at the earliest time possible. Combining conventional diagnostics (histology, serology, and clinical data) and molecular evaluation will most likely offer the best diagnostic approach. We believe that the use of state-of-the-art molecular analysis will have a significant impact in diagnostics after renal transplantation. In this review, we elaborate on the molecular phenotype of both acute and chronic T cell-mediated rejection and antibody-mediated rejection and discuss the additive value of molecular profiling in the setting of diagnosing renal allograft rejection and how this will improve transplant patient care.
Collapse
|
34
|
Chamoun B, Torres IB, Gabaldón A, Sellarés J, Perelló M, Castellá E, Guri X, Salcedo M, Toapanta NG, Cidraque I, Moreso F, Seron D. Progression of Interstitial Fibrosis and Tubular Atrophy in Low Immunological Risk Renal Transplants Monitored by Sequential Surveillance Biopsies: The Influence of TAC Exposure and Metabolism. J Clin Med 2021; 10:jcm10010141. [PMID: 33406589 PMCID: PMC7796060 DOI: 10.3390/jcm10010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of tacrolimus (TAC) and mycophenolate is the most widely employed maintenance immunosuppression in renal transplants. Different surrogates of tacrolimus exposure or metabolism such as tacrolimus trough levels (TAC-C0), coefficient of variation of tacrolimus (CV-TAC-C0), time in therapeutic range (TTR), and tacrolimus concentration dose ratio (C/D) have been associated with graft outcomes. We explore in a cohort of low immunological risk renal transplants (n = 85) treated with TAC, mycophenolate mofetil (MMF), and steroids and then monitored by paired surveillance biopsies the association between histological lesions and TAC-C0 at the time of biopsy as well as CV-TAC-C0, TTR, and C/D during follow up. Interstitial inflammation (i-Banff score ≥ 1) in the first surveillance biopsy was associated with TAC-C0 (odds ratio (OR): 0.69, 95% confidence interval (CI): 0.50–0.96; p = 0.027). In the second surveillance biopsy, inflammation was associated with time below the therapeutic range (OR: 1.05 and 95% CI: 1.01–1.10; p = 0.023). Interstitial inflammation in scarred areas (i-IFTA score ≥ 1) was not associated with surrogates of TAC exposure/metabolism. Progression of interstitial fibrosis/tubular atrophy (IF/TA) was observed in 35 cases (41.2%). Multivariate regression logistic analysis showed that mean C/D (OR: 0.48; 95% CI: 0.25–0.92; p = 0.026) and IF/TA in the first biopsy (OR: 0.43, 95% CI: 0.24–0.77, p = 0.005) were associated with IF/TA progression between biopsies. A low C/D ratio is associated with IF/TA progression, suggesting that TAC nephrotoxicity may contribute to fibrosis progression in well immunosuppressed patients. Our data support that TAC exposure is associated with inflammation in healthy kidney areas but not in scarred tissue.
Collapse
Affiliation(s)
- Betty Chamoun
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
| | - Irina B. Torres
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
| | - Alejandra Gabaldón
- Pathology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (A.G.); (M.S.)
| | - Joana Sellarés
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
| | - Manel Perelló
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
| | - Eva Castellá
- Radiology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (E.C.); (X.G.)
| | - Xavier Guri
- Radiology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (E.C.); (X.G.)
| | - Maite Salcedo
- Pathology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (A.G.); (M.S.)
| | - Nestor G. Toapanta
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
| | - Ignacio Cidraque
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
| | - Francesc Moreso
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
- Department of Medicine, Autonomous University of Barcelona, 08035 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-274-46-66
| | - Daniel Seron
- Nephrology Departments, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.C.); (I.B.T.); (J.S.); (M.P.); (N.G.T.); (I.C.); (D.S.)
- Department of Medicine, Autonomous University of Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
35
|
Loupy A, Haas M, Roufosse C, Naesens M, Adam B, Afrouzian M, Akalin E, Alachkar N, Bagnasco S, Becker JU, Cornell LD, Clahsen‐van Groningen MC, Demetris AJ, Dragun D, Duong van Huyen J, Farris AB, Fogo AB, Gibson IW, Glotz D, Gueguen J, Kikic Z, Kozakowski N, Kraus E, Lefaucheur C, Liapis H, Mannon RB, Montgomery RA, Nankivell BJ, Nickeleit V, Nickerson P, Rabant M, Racusen L, Randhawa P, Robin B, Rosales IA, Sapir‐Pichhadze R, Schinstock CA, Seron D, Singh HK, Smith RN, Stegall MD, Zeevi A, Solez K, Colvin RB, Mengel M. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am J Transplant 2020; 20:2318-2331. [PMID: 32463180 PMCID: PMC7496245 DOI: 10.1111/ajt.15898] [Citation(s) in RCA: 495] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
The XV. Banff conference for allograft pathology was held in conjunction with the annual meeting of the American Society for Histocompatibility and Immunogenetics in Pittsburgh, PA (USA) and focused on refining recent updates to the classification, advances from the Banff working groups, and standardization of molecular diagnostics. This report on kidney transplant pathology details clarifications and refinements to the criteria for chronic active (CA) T cell-mediated rejection (TCMR), borderline, and antibody-mediated rejection (ABMR). The main focus of kidney sessions was on how to address biopsies meeting criteria for CA TCMR plus borderline or acute TCMR. Recent studies on the clinical impact of borderline infiltrates were also presented to clarify whether the threshold for interstitial inflammation in diagnosis of borderline should be i0 or i1. Sessions on ABMR focused on biopsies showing microvascular inflammation in the absence of C4d staining or detectable donor-specific antibodies; the potential value of molecular diagnostics in such cases and recommendations for use of the latter in the setting of solid organ transplantation are presented in the accompanying meeting report. Finally, several speakers discussed the capabilities of artificial intelligence and the potential for use of machine learning algorithms in diagnosis and personalized therapeutics in solid organ transplantation.
Collapse
|
36
|
Mengel M, Loupy A, Haas M, Roufosse C, Naesens M, Akalin E, Clahsen‐van Groningen MC, Dagobert J, Demetris AJ, Duong van Huyen J, Gueguen J, Issa F, Robin B, Rosales I, Von der Thüsen JH, Sanchez‐Fueyo A, Smith RN, Wood K, Adam B, Colvin RB. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation-Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. Am J Transplant 2020; 20:2305-2317. [PMID: 32428337 PMCID: PMC7496585 DOI: 10.1111/ajt.16059] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
This meeting report from the XV Banff conference describes the creation of a multiorgan transplant gene panel by the Banff Molecular Diagnostics Working Group (MDWG). This Banff Human Organ Transplant (B-HOT) panel is the culmination of previous work by the MDWG to identify a broadly useful gene panel based on whole transcriptome technology. A data-driven process distilled a gene list from peer-reviewed comprehensive microarray studies that discovered and validated their use in kidney, liver, heart, and lung transplant biopsies. These were supplemented by genes that define relevant cellular pathways and cell types plus 12 reference genes used for normalization. The 770 gene B-HOT panel includes the most pertinent genes related to rejection, tolerance, viral infections, and innate and adaptive immune responses. This commercially available panel uses the NanoString platform, which can quantitate transcripts from formalin-fixed paraffin-embedded samples. The B-HOT panel will facilitate multicenter collaborative clinical research using archival samples and permit the development of an open source large database of standardized analyses, thereby expediting clinical validation studies. The MDWG believes that a pathogenesis and pathway based molecular approach will be valuable for investigators and promote therapeutic decision-making and clinical trials.
Collapse
Affiliation(s)
- Michael Mengel
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
| | - Alexandre Loupy
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Mark Haas
- Department of Pathology and Laboratory MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Candice Roufosse
- Department of Immunology and InflammationImperial College London and North West London PathologyLondonUK
| | - Maarten Naesens
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium,Department of NephrologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Enver Akalin
- Montefiore‐Einstein Center for TransplantationMontefiore Medical CenterBronxNew YorkUSA
| | | | - Jessy Dagobert
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Anthony J. Demetris
- Department of PathologyUniversity of Pittsburgh Medical CenterMontefiore, PittsburghPennsylvaniaUSA
| | - Jean‐Paul Duong van Huyen
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Juliette Gueguen
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Fadi Issa
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Blaise Robin
- Paris Translational Research Center for Organ TransplantationINSERM U970 and Necker HospitalUniversity of ParisParisFrance
| | - Ivy Rosales
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Rex N. Smith
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kathryn Wood
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Benjamin Adam
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
| | - Robert B. Colvin
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
37
|
Madill-Thomsen K, Abouljoud M, Bhati C, Ciszek M, Durlik M, Feng S, Foroncewicz B, Francis I, Grąt M, Jurczyk K, Klintmalm G, Krasnodębski M, McCaughan G, Miquel R, Montano-Loza A, Moonka D, Mucha K, Myślak M, Pączek L, Perkowska-Ptasińska A, Piecha G, Reichman T, Sanchez-Fueyo A, Tronina O, Wawrzynowicz-Syczewska M, Więcek A, Zieniewicz K, Halloran PF. The molecular diagnosis of rejection in liver transplant biopsies: First results of the INTERLIVER study. Am J Transplant 2020; 20:2156-2172. [PMID: 32090446 DOI: 10.1111/ajt.15828] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 01/25/2023]
Abstract
Molecular diagnosis of rejection is emerging in kidney, heart, and lung transplant biopsies and could offer insights for liver transplant biopsies. We measured gene expression by microarrays in 235 liver transplant biopsies from 10 centers. Unsupervised archetypal analysis based on expression of previously annotated rejection-related transcripts identified 4 groups: normal "R1normal " (N = 129), T cell-mediated rejection (TCMR) "R2TCMR " (N = 37), early injury "R3injury " (N = 61), and fibrosis "R4late " (N = 8). Groups differed in median time posttransplant, for example, R3injury 99 days vs R4late 3117 days. R2TCMR biopsies expressed typical TCMR-related transcripts, for example, intense IFNG-induced effects. R3injury displayed increased expression of parenchymal injury transcripts (eg, hypoxia-inducible factor EGLN1). R4late biopsies showed immunoglobulin transcripts and injury-related transcripts. R2TCMR correlated with histologic rejection although with many discrepancies, and R4late with fibrosis. R2TCMR , R3injury , and R4late correlated with liver function abnormalities. Supervised classifiers trained on histologic rejection showed less agreement with histology than unsupervised R2TCMR scores. No confirmed cases of clinical antibody-mediated rejection (ABMR) were present in the population, and strategies that previously revealed ABMR in kidney and heart transplants failed to reveal a liver ABMR phenotype. In conclusion, molecular analysis of liver transplant biopsies detects rejection, has the potential to resolve ambiguities, and could assist with immunosuppressive management.
Collapse
Affiliation(s)
| | | | - Chandra Bhati
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michał Ciszek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sandy Feng
- University of California San Francisco, San Francisco, California, USA
| | - Bartosz Foroncewicz
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Jurczyk
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | | | - Maciej Krasnodębski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Geoff McCaughan
- Centenary Research Institute, Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Myślak
- Department of Clinical Interventions, Department of Nephrology and Kidney, Transplantation, SPWSZ Hospital, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | | | | | - Olga Tronina
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wawrzynowicz-Syczewska
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Halloran K, Parkes MD, Timofte IL, Snell GI, Westall GP, Hachem R, Kreisel D, Levine D, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Hirji A, Weinkauf J, Halloran PF. Molecular phenotyping of rejection-related changes in mucosal biopsies from lung transplants. Am J Transplant 2020; 20:954-966. [PMID: 31679176 DOI: 10.1111/ajt.15685] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/06/2019] [Accepted: 10/21/2019] [Indexed: 01/25/2023]
Abstract
Diagnosing lung transplant rejection currently depends on histologic assessment of transbronchial biopsies (TBB) with limited reproducibility and considerable risk of complications. Mucosal biopsies are safer but not histologically interpretable. Microarray-based diagnostic systems for TBBs and other transplants suggest such systems could assess mucosal biopsies as well. We studied 243 mucosal biopsies from the third bronchial bifurcation (3BMBs) collected from seven centers and classified them using unsupervised machine learning algorithms. Using the expression of a set of rejection-associated transcripts annotated in kidneys and validated in hearts and lung transplant TBBs, the algorithms identified and scored major rejection and injury-related phenotypes in 3BMBs without need for labeled training data. No rejection or injury, rejection, late inflammation, and recent injury phenotypes were thus scored in new 3BMBs. The rejection phenotype correlated with IFNG-inducible transcripts, the hallmarks of rejection. Progressive atrophy-related changes reflected by the late inflammation phenotype in 3BMBs suggest widespread time-dependent airway deterioration, which was especially pronounced after two years posttransplant. Thus molecular assessment of 3BMBs can detect rejection in a previously unusable biopsy format with potential utility in patients with severe lung dysfunction where TBB is not possible and provide unique insights into airway deterioration. ClinicalTrials.gov NCT02812290.
Collapse
Affiliation(s)
- Kieran Halloran
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michael D Parkes
- Alberta Transplant Applied Genomics Center, Edmonton, Alberta, Canada
| | - Irina L Timofte
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland, Baltimore, Maryland
| | - Gregory I Snell
- Lung Transplant Service, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Glen P Westall
- Lung Transplant Service, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Ramsey Hachem
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Stephen Juvet
- Toronto Lung Transplant Program, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University of Toronto, Toronto, Ontario, Canada
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alim Hirji
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Weinkauf
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Philip F Halloran
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Alberta Transplant Applied Genomics Center, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Moreso F, Sellarès J, Soler MJ, Serón D. Transcriptome Analysis in Renal Transplant Biopsies Not Fulfilling Rejection Criteria. Int J Mol Sci 2020; 21:ijms21062245. [PMID: 32213927 PMCID: PMC7139324 DOI: 10.3390/ijms21062245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 01/02/2023] Open
Abstract
The clinical significance of renal transplant biopsies displaying borderline changes suspicious for T-cell mediated rejection (TCMR) or interstitial fibrosis and tubular atrophy (IFTA) with interstitial inflammation has not been well defined. Molecular profiling to evaluate renal transplant biopsies using microarrays has been shown to be an objective measurement that adds precision to conventional histology. We review the contribution of transcriptomic analysis in surveillance and indication biopsies with borderline changes and IFTA associated with variable degrees of inflammation. Transcriptome analysis applied to biopsies with borderline changes allows to distinguish patients with rejection from those in whom mild inflammation mainly represents a response to injury. Biopsies with IFTA and inflammation occurring in unscarred tissue display a molecular pattern similar to TCMR while biopsies with IFTA and inflammation in scarred tissue, apart from T-cell activation, also express B cell, immunoglobulin and mast cell-related genes. Additionally, patients at risk for IFTA progression can be identified by genes mainly reflecting fibroblast dysregulation and immune activation. At present, it is not well established whether the expression of rejection gene transcripts in patients with fibrosis and inflammation is the consequence of an alloimmune response, tissue damage or a combination of both.
Collapse
|
40
|
Trailin A, Hruba P, Viklicky O. Molecular Assessment of Kidney Allografts: Are We Closer to a Daily Routine? Physiol Res 2020; 69:215-226. [PMID: 32199018 DOI: 10.33549/physiolres.934278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidney allograft pathology assessment has been traditionally based on clinical and histological criteria. Despite improvements in Banff histological classification, the diagnostics in particular cases is problematic reflecting a complex pathogenesis of graft injuries. With the advent of molecular techniques, polymerase-chain reaction, oligo- and microarray technologies allowed to study molecular phenotypes of graft injuries, especially acute and chronic rejections. Moreover, development of the molecular microscope diagnostic system (MMDx) to assess kidney graft biopsies, represents the first clinical application of a microarray-based method in transplantation. Whether MMDx may replace conventional pathology is the subject of ongoing research, however this platform is particularly useful in complex histological findings and may help clinicians to guide the therapy.
Collapse
Affiliation(s)
- A Trailin
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
41
|
|