1
|
Jeong JC, Gelman AE, Chong AS. Update on the immunological mechanisms of primary graft dysfunction and chronic lung allograft dysfunction. Curr Opin Organ Transplant 2024; 29:412-419. [PMID: 39422603 DOI: 10.1097/mot.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) are the leading causes of graft loss in lung transplant recipients. The development of mouse lung transplant models has allowed for the genetic dissection of cellular and molecular pathways that prevent graft survival. This review provides an overview into recent mechanistic insights into PGD and CLAD. RECENT FINDINGS Mouse orthotopic lung transplant models and investigations of human lung transplant recipeints have revealed new molecular and cellular targets that promote PGD and CLAD. Donor and recipient-derived innate immune cells promote PGD and CLAD. PGD is driven by communication between classical monocytes and tissue-resident nonclassical monocytes activating alveolar macrophages to release chemokines that recruit neutrophils. Products of cell damage trigger neutrophil NET release, which together with NK cells, antibodies and complement, that further promote PGD. The development of CLAD involves circuits that activate B cells, CD8 + T cells, classical monocytes, and eosinophils. SUMMARY Effective targeted management of PGD and CLAD in lung transplant recipient to improve their long-term outcome remains a critical unmet need. Current mechanistic studies and therapeutic studies in mouse models and humans identify new possibilities for prevention and treatment.
Collapse
Affiliation(s)
- Jong Cheol Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois
| | - Andrew E Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Bery AI, Belousova N, Hachem RR, Roux A, Kreisel D. Chronic Lung Allograft Dysfunction: Clinical Manifestations and Immunologic Mechanisms. Transplantation 2024:00007890-990000000-00842. [PMID: 39104003 DOI: 10.1097/tp.0000000000005162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The term "chronic lung allograft dysfunction" has emerged to describe the clinical syndrome of progressive, largely irreversible dysfunction of pulmonary allografts. This umbrella term comprises 2 major clinical phenotypes: bronchiolitis obliterans syndrome and restrictive allograft syndrome. Here, we discuss the clinical manifestations, diagnostic challenges, and potential therapeutic avenues to address this major barrier to improved long-term outcomes. In addition, we review the immunologic mechanisms thought to propagate each phenotype of chronic lung allograft dysfunction, discuss the various models used to study this process, describe potential therapeutic targets, and identify key unknowns that must be evaluated by future research strategies.
Collapse
Affiliation(s)
- Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Natalia Belousova
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
| | - Ramsey R Hachem
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
- Paris Transplant Group, INSERM U970s, Paris, France
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Terada Y, Li W, Shepherd HM, Takahashi T, Yokoyama Y, Bery AI, Mineura K, Bai YZ, Ritter JH, Hachem RR, Bharat A, Lavine KJ, Nava RG, Puri V, Krupnick AS, Gelman AE, Reed HO, Wong BW, Kreisel D. Smoking exposure-induced bronchus-associated lymphoid tissue in donor lungs does not prevent tolerance induction after transplantation. Am J Transplant 2024; 24:280-292. [PMID: 37619922 PMCID: PMC11088405 DOI: 10.1016/j.ajt.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The presence of bronchus-associated lymphoid tissue (BALT) in donor lungs has been suggested to accelerate graft rejection after lung transplantation. Although chronic smoke exposure can induce BALT formation, the impact of donor cigarette use on alloimmune responses after lung transplantation is not well understood. Here, we show that smoking-induced BALT in mouse donor lungs contains Foxp3+ T cells and undergoes dynamic restructuring after transplantation, including recruitment of recipient-derived leukocytes to areas of pre-existing lymphoid follicles and replacement of graft-resident donor cells. Our findings from mouse and human lung transplant data support the notion that a donor's smoking history does not predispose to acute cellular rejection or prevent the establishment of allograft acceptance with comparable outcomes to nonsmoking donors. Thus, our work indicates that BALT in donor lungs is plastic in nature and may have important implications for modulating proinflammatory or tolerogenic immune responses following transplantation.
Collapse
Affiliation(s)
- Yuriko Terada
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hailey M Shepherd
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsuyoshi Takahashi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yuhei Yokoyama
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amit I Bery
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katsutaka Mineura
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jon H Ritter
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramsey R Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ruben G Nava
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Varun Puri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Brian W Wong
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
4
|
Santos J, Wang P, Shemesh A, Liu F, Tsao T, Aguilar OA, Cleary SJ, Singer JP, Gao Y, Hays SR, Golden JA, Leard L, Kleinhenz ME, Kolaitis NA, Shah R, Venado A, Kukreja J, Weigt SS, Belperio JA, Lanier LL, Looney MR, Greenland JR, Calabrese DR. CCR5 drives NK cell-associated airway damage in pulmonary ischemia-reperfusion injury. JCI Insight 2023; 8:e173716. [PMID: 37788115 PMCID: PMC10721259 DOI: 10.1172/jci.insight.173716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Primary graft dysfunction (PGD) limits clinical benefit after lung transplantation, a life-prolonging therapy for patients with end-stage disease. PGD is the clinical syndrome resulting from pulmonary ischemia-reperfusion injury (IRI), driven by innate immune inflammation. We recently demonstrated a key role for NK cells in the airways of mouse models and human tissue samples of IRI. Here, we used 2 mouse models paired with human lung transplant samples to investigate the mechanisms whereby NK cells migrate to the airways to mediate lung injury. We demonstrate that chemokine receptor ligand transcripts and proteins are increased in mouse and human disease. CCR5 ligand transcripts were correlated with NK cell gene signatures independently of NK cell CCR5 ligand secretion. NK cells expressing CCR5 were increased in the lung and airways during IRI and had increased markers of tissue residency and maturation. Allosteric CCR5 drug blockade reduced the migration of NK cells to the site of injury. CCR5 blockade also blunted quantitative measures of experimental IRI. Additionally, in human lung transplant bronchoalveolar lavage samples, we found that CCR5 ligand was associated with increased patient morbidity and that the CCR5 receptor was increased in expression on human NK cells following PGD. These data support a potential mechanism for NK cell migration during lung injury and identify a plausible preventative treatment for PGD.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Surgery, UCSF - East Bay, Oakland, California, USA
| | - Ping Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Avishai Shemesh
- Department of Medicine, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Fengchun Liu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Tasha Tsao
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Simon J. Cleary
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Ying Gao
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven R. Hays
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Lorriana Leard
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | | | - Rupal Shah
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Aida Venado
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - S. Sam Weigt
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Lewis L. Lanier
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Department of Microbiology and Immunology, and
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John R. Greenland
- Department of Medicine, UCSF, San Francisco, California, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Daniel R. Calabrese
- Department of Medicine, UCSF, San Francisco, California, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
5
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Mak ML, Reid KT, Crome SQ. Protective and pathogenic functions of innate lymphoid cells in transplantation. Clin Exp Immunol 2023; 213:23-39. [PMID: 37119279 PMCID: PMC10324558 DOI: 10.1093/cei/uxad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a family of lymphocytes with essential roles in tissue homeostasis and immunity. Along with other tissue-resident immune populations, distinct subsets of ILCs have important roles in either promoting or inhibiting immune tolerance in a variety of contexts, including cancer and autoimmunity. In solid organ and hematopoietic stem cell transplantation, both donor and recipient-derived ILCs could contribute to immune tolerance or rejection, yet understanding of protective or pathogenic functions are only beginning to emerge. In addition to roles in directing or regulating immune responses, ILCs interface with parenchymal cells to support tissue homeostasis and even regeneration. Whether specific ILCs are tissue-protective or enhance ischemia reperfusion injury or fibrosis is of particular interest to the field of transplantation, beyond any roles in limiting or promoting allograft rejection or graft-versus host disease. Within this review, we discuss the current understanding of ILCs functions in promoting immune tolerance and tissue repair at homeostasis and in the context of transplantation and highlight where targeting or harnessing ILCs could have applications in novel transplant therapies.
Collapse
Affiliation(s)
- Martin L Mak
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
7
|
Li X, Wu J, Zhu S, Wei Q, Wang L, Chen J. Intragraft immune cells: accomplices or antagonists of recipient-derived macrophages in allograft fibrosis? Cell Mol Life Sci 2023; 80:195. [PMID: 37395809 DOI: 10.1007/s00018-023-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Organ fibrosis caused by chronic allograft rejection is a major concern in the field of transplantation. Macrophage-to-myofibroblast transition plays a critical role in chronic allograft fibrosis. Adaptive immune cells (such as B and CD4+ T cells) and innate immune cells (such as neutrophils and innate lymphoid cells) participate in the occurrence of recipient-derived macrophages transformed to myofibroblasts by secreting cytokines, which eventually leads to fibrosis of the transplanted organ. This review provides an update on the latest progress in understanding the plasticity of recipient-derived macrophages in chronic allograft rejection. We discuss here the immune mechanisms of allograft fibrosis and review the reaction of immune cells in allograft. The interactions between immune cells and the process of myofibroblast formulation are being considered for the potential therapeutic targets of chronic allograft fibrosis. Therefore, research on this topic seems to provide novel clues for developing strategies for preventing and treating allograft fibrosis.
Collapse
Affiliation(s)
- Xiaoping Li
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
- Department of Pediatrics, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jing Wu
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Qiuyu Wei
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Liyan Wang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China.
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China.
| |
Collapse
|
8
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
9
|
Biased IL-2 signals induce Foxp3-rich pulmonary lymphoid structures and facilitate long-term lung allograft acceptance in mice. Nat Commun 2023; 14:1383. [PMID: 36914624 PMCID: PMC10011523 DOI: 10.1038/s41467-023-36924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Transplantation of solid organs can be life-saving in patients with end-stage organ failure, however, graft rejection remains a major challenge. In this study, by pre-conditioning with interleukin-2 (IL-2)/anti-IL-2 antibody complex treatment biased toward IL-2 receptor α, we achieved acceptance of fully mismatched orthotopic lung allografts that remained morphologically and functionally intact for more than 90 days in immunocompetent mice. These allografts are tolerated by the actions of forkhead box p3 (Foxp3)+ regulatory T (Treg) cells that home to the lung allografts. Although counts of circulating Treg cells rapidly return to baseline following cessation of IL-2 treatment, Foxp3+ Treg cells persist in peribronchial and peribronchiolar areas of the grafted lungs, forming organized clusters reminiscent of inducible tertiary lymphoid structures (iTLS). These iTLS in lung allografts are made of Foxp3+ Treg cells, conventional T cells, and B cells, as evidenced by using microscopy-based distribution and neighborhood analyses. Foxp3-transgenic mice with inducible and selective deletion of Foxp3+ cells are unable to form iTLS in lung allografts, and these mice acutely reject lung allografts. Collectively, we report that short-term, high-intensity and biased IL-2 pre-conditioning facilitates acceptance of vascularized and ventilated lung allografts without the need of immunosuppression, by inducing Foxp3-controlled iTLS formation within allografts.
Collapse
|
10
|
The Value of Single-cell Technologies in Solid Organ Transplantation Studies. Transplantation 2022; 106:2325-2337. [PMID: 35876376 DOI: 10.1097/tp.0000000000004237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Single-cell technologies open up new opportunities to explore the behavior of cells at the individual level. For solid organ transplantation, single-cell technologies can provide in-depth insights into the underlying mechanisms of the immunological processes involved in alloimmune responses after transplantation by investigating the role of individual cells in tolerance and rejection. Here, we review the value of single-cell technologies, including cytometry by time-of-flight and single-cell RNA sequencing, in the context of solid organ transplantation research. Various applications of single-cell technologies are addressed, such as the characterization and identification of immune cell subsets involved in rejection or tolerance. In addition, we explore the opportunities for analyzing specific alloreactive T- or B-cell clones by linking phenotype data to T- or B-cell receptor data, and for distinguishing donor- from recipient-derived immune cells. Moreover, we discuss the use of single-cell technologies in biomarker identification and risk stratification, as well as the remaining challenges. Together, this review highlights that single-cell approaches contribute to a better understanding of underlying immunological mechanisms of rejection and tolerance, thereby potentially accelerating the development of new or improved therapies to avoid allograft rejection.
Collapse
|
11
|
Lynch TJ, Ahlers BA, Swatek AM, Ievlev V, Pai AC, Brooks L, Tang Y, Evans IA, Meyerholz DK, Engelhardt JF, Parekh KR. Ferret Lung Transplantation Models Differential Lymphoid Aggregate Morphology Between Restrictive and Obstructive Forms of Chronic Lung Allograft Dysfunction. Transplantation 2022; 106:1974-1989. [PMID: 35442232 PMCID: PMC9529760 DOI: 10.1097/tp.0000000000004148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Long-term survival after lung transplantation remains limited by chronic lung allograft dysfunction (CLAD). CLAD has 2 histologic phenotypes, namely obliterative bronchiolitis (OB) and restrictive alveolar fibroelastosis (AFE), which have distinct clinical presentations, pathologies, and outcomes. Understanding of OB versus AFE pathogenesis would improve with better animal models. METHODS We utilized a ferret orthotopic single-lung transplantation model to characterize allograft fibrosis as a histologic measure of CLAD. Native lobes and "No CLAD" allografts lacking aberrant histology were used as controls. We used morphometric analysis to evaluate the size and abundance of B-cell aggregates and tertiary lymphoid organs (TLOs) and their cell composition. Quantitative RNA expression of 47 target genes was performed simultaneously using a custom QuantiGene Plex Assay. RESULTS Ferret lung allografts develop the full spectrum of human CLAD histology including OB and AFE subtypes. While both OB and AFE allografts developed TLOs, TLO size and number were greater with AFE histology. More activated germinal center cells marked by B-cell lymphoma 6 Transcription Repressor, (B-cell lymphoma 6) expression and fewer cells expressing forkhead box P3 correlated with AFE, congruent with greater diffuse immunoglobulin, plasma cell abundance, and complement 4d staining. Furthermore, forkhead box P3 RNA induction was significant in OB allografts specifically. RNA expression changes were seen in native lobes of animals with AFE but not OB when compared with No CLAD native lobes. CONCLUSIONS The orthotopic ferret single-lung transplant model provides unique opportunities to better understand factors that dispose allografts to OB versus AFE. This will help develop potential immunomodulatory therapies and antifibrotic approaches for lung transplant patients.
Collapse
Affiliation(s)
- Thomas J. Lynch
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Bethany A. Ahlers
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Anthony M. Swatek
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Albert C. Pai
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leonard Brooks
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Idil A. Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kalpaj R. Parekh
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
12
|
Guo Y, Mei Z, Li D, Banerjee A, Khalil MA, Burke A, Ritter J, Lau C, Kreisel D, Gelman AE, Jacobsen E, Luzina IG, Atamas SP, Krupnick AS. Ischemia reperfusion injury facilitates lung allograft acceptance through IL-33-mediated activation of donor-derived IL-5 producing group 2 innate lymphoid cells. Am J Transplant 2022; 22:1963-1975. [PMID: 35510760 PMCID: PMC9357103 DOI: 10.1111/ajt.17084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023]
Abstract
Pathways regulating lung alloimmune responses differ from most other solid organs and remain poorly explored. Based on our recent work identifying the unique role of eosinophils in downregulating lung alloimmunity, we sought to define pathways contributing to eosinophil migration and homeostasis. Using a murine lung transplant model, we have uncovered that immunosuppression increases eosinophil infiltration into the allograft in an IL-5-dependent manner. IL-5 production depends on immunosuppression-mediated preservation of donor-derived group 2 innate lymphoid cells (ILC2). We further describe that ischemia reperfusion injury upregulates the expression of IL-33, which functions as the dominant and nonredundant mediator of IL-5 production by graft-resident ILC2. Our work thus identifies unique cellular mechanisms that contribute to lung allograft acceptance. Notably, ischemia reperfusion injury, widely considered to be solely deleterious to allograft survival, can also downregulate alloimmune responses by initiating unique pathways that promote IL-33/IL-5/eosinophil-mediated tolerance.
Collapse
Affiliation(s)
- Yizhan Guo
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Zhongcheng Mei
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Dongge Li
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Anirban Banerjee
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - May A. Khalil
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Allen Burke
- Department of Pathology, University of Maryland, Baltimore Maryland
| | - Jon Ritter
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
| | - Christine Lau
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Daniel Kreisel
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Andrew E. Gelman
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Elizabeth Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Irina G. Luzina
- Department of Medicine, University of Maryland, Baltimore Maryland
| | - Sergei P. Atamas
- Department of Surgery, University of Maryland, Baltimore Maryland
| | | |
Collapse
|
13
|
Albrecht M, Halle O, Gaedcke S, Pallenberg ST, Camargo Neumann J, Witt M, Roediger J, Schumacher M, Jirmo AC, Warnecke G, Jonigk D, Braubach P, DeLuca D, Hansen G, Dittrich AM. Interleukin-17A and interleukin-22 production by conventional and non-conventional lymphocytes in three different end-stage lung diseases. Clin Transl Immunology 2022; 11:e1398. [PMID: 35757569 PMCID: PMC9202301 DOI: 10.1002/cti2.1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives The contribution of adaptive vs. innate lymphocytes to IL-17A and IL-22 secretion at the end stage of chronic lung diseases remains largely unexplored. In order to uncover tissue- and disease-specific secretion patterns, we compared production patterns of IL-17A and IL-22 in three different human end-stage lung disease entities. Methods Production of IL-17A, IL-22 and associated cytokines was assessed in supernatants of re-stimulated lymphocytes by multiplex assays and multicolour flow cytometry of conventional T cells, iNKT cells, γδ T cells and innate lymphoid cells in bronchial lymph node and lung tissue from patients with emphysema (n = 19), idiopathic pulmonary fibrosis (n = 14) and cystic fibrosis (n = 23), as well as lung donors (n = 17). Results We detected secretion of IL-17A and IL-22 by CD4+ T cells, CD8+ T cells, innate lymphoid cells, γδ T cells and iNKT cells in all end-stage lung disease entities. Our analyses revealed disease-specific contributions of individual lymphocyte subpopulations to cytokine secretion patterns. We furthermore found the high levels of microbial detection in CF samples to associate with a more pronounced IL-17A signature upon antigen-specific and unspecific re-stimulation compared to other disease entities and lung donors. Conclusion Our results show that both adaptive and innate lymphocyte populations contribute to IL-17A-dependent pathologies in different end-stage lung disease entities, where they establish an IL-17A-rich microenvironment. Microbial colonisation patterns and cytokine secretion upon microbial re-stimulation suggest that pathogens drive IL-17A secretion patterns in end-stage lung disease.
Collapse
Affiliation(s)
- Melanie Albrecht
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Molecular Allergology Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines Langen Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Olga Halle
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Sophia T Pallenberg
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Julia Camargo Neumann
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marius Witt
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Johanna Roediger
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Marina Schumacher
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany
| | - Adan Chari Jirmo
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Department of Cardiac Surgery Heidelberg Medical School Heidelberg Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany.,Institute of Pathology Hannover Medical School Hannover Germany
| | - David DeLuca
- Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Gesine Hansen
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| | - Anna-Maria Dittrich
- Pediatric Pneumology, Allergology and Neonatology Hannover Medical School Hannover Germany.,Biomedical Research in Endstage and Obstructive Lung Diseases (BREATH), German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
14
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
15
|
Bennstein SB, Weinhold S, Degistirici Ö, Oostendorp RAJ, Raba K, Kögler G, Meisel R, Walter L, Uhrberg M. Efficient In Vitro Generation of IL-22-Secreting ILC3 From CD34 + Hematopoietic Progenitors in a Human Mesenchymal Stem Cell Niche. Front Immunol 2021; 12:797432. [PMID: 35003122 PMCID: PMC8739490 DOI: 10.3389/fimmu.2021.797432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) and in particular ILC3s have been described to be vital for mucosal barrier functions and homeostasis within the gastrointestinal (GI) tract. Importantly, IL-22-secreting ILC3 have been implicated in the control of inflammatory bowel disease (IBD) and were shown to reduce the incidence of graft-versus-host disease (GvHD) as well as the risk of transplant rejection. Unfortunately, IL-22-secreting ILC3 are primarily located in mucosal tissues and are not found within the circulation, making access to them in humans challenging. On this account, there is a growing desire for clinically applicable protocols for in vitro generation of effector ILC3. Here, we present an approach for faithful generation of functionally competent human ILC3s from cord blood-derived CD34+ hematopoietic progenitors on layers of human mesenchymal stem cells (MSCs) generated in good manufacturing practice (GMP) quality. The in vitro-generated ILC3s phenotypically, functionally, and transcriptionally resemble bona fide tissue ILC3 with high expression of the transcription factors (TF) RorγT, AHR, and ID2, as well as the surface receptors CD117, CD56, and NKp44. Importantly, the majority of ILC3 belonged to the desired effector subtype with high IL-22 and low IL-17 production. The protocol thus combines the advantages of avoiding xenogeneic components, which were necessary in previous protocols, with a high propensity for generation of IL-22-producing ILC3. The present approach is suitable for the generation of large amounts of ILC3 in an all-human system, which could facilitate development of clinical strategies for ILC3-based therapy in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Sabrina B. Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Özer Degistirici
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Robert A. J. Oostendorp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III – Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
17
|
Shepherd HM, Gauthier JM, Kreisel D. Tolerance, immunosuppression, and immune modulation: impacts on lung allograft survival. Curr Opin Organ Transplant 2021; 26:328-332. [PMID: 33782247 PMCID: PMC8523032 DOI: 10.1097/mot.0000000000000871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Immune responses following lung transplantation continue to result in high rates of allograft failure and rejection, and current immunosuppression does not address the unique immunologic properties of the lung. Here, we review recent studies on lung allograft tolerance and alloimmunity and discuss implications for immunosuppression. RECENT FINDINGS Processes governing tolerance and alloimmunity in lung allografts differ from other solid organs. Recent studies have suggested that allorecognition is regulated at the level of the lung graft. Furthermore, certain cell populations essential for lung allograft tolerance may facilitate rejection in other organs. Induction of lung allograft tolerance is associated with the formation of tertiary lymphoid organs, which are enriched in regulatory T cells and play an important role in preventing rejection. SUMMARY Recent discoveries regarding alloactivation and the regulation of tolerance following lung transplantation have introduced exciting potential avenues for the development of lung-specific immunosuppression.
Collapse
Affiliation(s)
- Hailey M. Shepherd
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Jason M. Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
18
|
Abstract
Since their relatively recent discovery, innate lymphoid cells (ILCs) have been shown to be tissue-resident lymphocytes that are critical mediators of tissue homeostasis, regeneration, and pathogen response. However, ILC dysregulation contributes to a diverse spectrum of human diseases, spanning virtually every organ system. ILCs rapidly respond to environmental cues by altering their own phenotype and function as well as influencing the behavior of other local tissue-resident cells. With a growing understanding of ILC biology, investigators continue to elucidate mechanisms that expand our ability to phenotype, isolate, target, and expand ILCs ex vivo. With mounting preclinical data and clinical correlates, the role of ILCs in both disease pathogenesis and resolution is evident, justifying ILC manipulation for clinical benefit. This Review will highlight areas of ongoing translational research and critical questions for future study that will enable us to harness the full therapeutic potential of these captivating cells.
Collapse
|
19
|
Hennessy C, Lewik G, Cross A, Hester J, Issa F. Recent advances in our understanding of the allograft response. Fac Rev 2021; 10:21. [PMID: 33718938 PMCID: PMC7946390 DOI: 10.12703/r/10-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Organ transplantation is a life-saving treatment for end-stage organ failure. However, despite advances in immunosuppression, donor matching, tissue typing, and organ preservation, many organs are still lost each year to rejection. Ultimately, tolerance in the absence of immunosuppression is the goal, and although this seldom occurs spontaneously, a deeper understanding of alloimmunity may provide avenues for future therapies which aid in its establishment. Here, we highlight the recent key advances in our understanding of the allograft response. On the innate side, recent work has highlighted the previously unrecognised role of innate lymphoid cells as well as natural killer cells in promoting the alloresponse. The two major routes of allorecognition have recently been joined by a third newly identified pathway, semi-direct allorecognition, which is proving to be a key active pathway in transplantation. Through this review, we detail these newly defined areas in the allograft response and highlight areas for potential future therapeutic intervention.
Collapse
Affiliation(s)
- Conor Hennessy
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Guido Lewik
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Amy Cross
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
20
|
Li W, Gauthier JM, Tong AY, Terada Y, Higashikubo R, Frye CC, Harrison MS, Hashimoto K, Bery AI, Ritter JH, Nava RG, Puri V, Wong BW, Lavine KJ, Bharat A, Krupnick AS, Gelman AE, Kreisel D. Lymphatic drainage from bronchus-associated lymphoid tissue in tolerant lung allografts promotes peripheral tolerance. J Clin Invest 2021; 130:6718-6727. [PMID: 33196461 DOI: 10.1172/jci136057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Tertiary lymphoid organs are aggregates of immune and stromal cells including high endothelial venules and lymphatic vessels that resemble secondary lymphoid organs and can be induced at nonlymphoid sites during inflammation. The function of lymphatic vessels within tertiary lymphoid organs remains poorly understood. During lung transplant tolerance, Foxp3+ cells accumulate in tertiary lymphoid organs that are induced within the pulmonary grafts and are critical for the local downregulation of alloimmune responses. Here, we showed that tolerant lung allografts could induce and maintain tolerance of heterotopic donor-matched hearts through pathways that were dependent on the continued presence of the transplanted lung. Using lung retransplantation, we showed that Foxp3+ cells egressed from tolerant lung allografts via lymphatics and were recruited into donor-matched heart allografts. Indeed, survival of the heart allografts was dependent on lymphatic drainage from the tolerant lung allograft to the periphery. Thus, our work indicates that cellular trafficking from tertiary lymphoid organs regulates immune responses in the periphery. We propose that these findings have important implications for a variety of disease processes that are associated with the induction of tertiary lymphoid organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jon H Ritter
- Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | | | - Andrew E Gelman
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Yoshiyasu N, Sato M. Chronic lung allograft dysfunction post-lung transplantation: The era of bronchiolitis obliterans syndrome and restrictive allograft syndrome. World J Transplant 2020; 10:104-116. [PMID: 32864356 PMCID: PMC7428788 DOI: 10.5500/wjt.v10.i5.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) following lung transplantation limits long-term survival considerably. The main reason for this is a lack of knowledge regarding the pathological condition and the establishment of treatment. The consensus statement from the International Society for Heart and Lung Transplantation on CLAD in 2019 classified CLAD into two main phenotypes: Bronchiolitis obliterans syndrome and restrictive allograft syndrome. Along with this clear classification, further exploration of the mechanisms and the development of appropriate prevention and treatment strategies for each phenotype are desired. In this review, we summarize the new definition of CLAD and update and summarize the existing knowledge on the underlying mechanisms of bronchiolitis obliterans syndrome and restrictive allograft syndrome, which have been elucidated from clinicopathological observations and animal experiments worldwide.
Collapse
Affiliation(s)
- Nobuyuki Yoshiyasu
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|