1
|
Adams AB, Faber D, Lovasik BP, Matar AJ, Kim SC, Burlak C, Tector M, Tector AJ. Iscalimab Combined With Transient Tesidolumab Prolongs Survival in Pig-to-Rhesus Monkey Renal Xenografts. Xenotransplantation 2024; 31:e12880. [PMID: 39185772 DOI: 10.1111/xen.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE To evaluate the clinically relevant anti-CD40 antibody iscalimab for baseline immunosuppression in a preclinical pig-to-rhesus renal xenograft model. SUMMARY BACKGROUND DATA CD40/CD40L co-stimulation blockade-based immunosuppression has been more successful than calcineurin-based protocols in prolonging xenograft survival in preclinical models. METHODS GGTA1 knockout/CD55 transgenic pig kidneys were transplanted into rhesus monkeys (n = 6) receiving an iscalimab-based immunosuppressive regimen. RESULTS Two grafts were lost early (22 and 26 days) because of ectatic donor ureters with otherwise normal histology. The other recipients survived 171, 315, 422, and 439 days with good renal function throughout the posttransplant course. None of the recipients experienced serious infectious morbidity. CONCLUSIONS It may be reasonable to evaluate an iscalimab-based immunosuppressive regimen in clinical renal xenotransplantation.
Collapse
Affiliation(s)
- Andrew B Adams
- Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - David Faber
- Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Brendan P Lovasik
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Abraham J Matar
- Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Steven C Kim
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Burlak
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | | | - Alfred J Tector
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Reams V, Emtiazjoo AM, Gries C, Rackauskas M, Saha BK. Does Intravenous Immunoglobulin Administration Affect the Clearance of Monoclonal Antibodies in Transplant Recipients? Transplantation 2024; 108:e69-e71. [PMID: 38277265 DOI: 10.1097/tp.0000000000004921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Victoria Reams
- Division of Pharmacy, University of Florida, Gainesville, FL
| | - Amir M Emtiazjoo
- Lung Transplant and ECMO Program, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL
| | - Cynthia Gries
- Lung Transplant and ECMO Program, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL
| | | | - Biplab K Saha
- Lung Transplant and ECMO Program, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
3
|
Vo A, Ammerman N, Jordan SC. Advances in desensitization for human leukocyte antigen incompatible kidney transplantation. Curr Opin Organ Transplant 2024; 29:104-120. [PMID: 38088373 DOI: 10.1097/mot.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Human leukocyte antigen (HLA) sensitization is a major barrier to kidney transplantation induced by exposure to alloantigens through pregnancy, blood product exposure and previous transplantations. Desensitization strategies are undertaken to improve the chances of finding compatible organ offers. Standard approaches to desensitization include the use of plasmapheresis/low dose intravenous immunoglobulin (IVIG) or high dose IVIG plus anti-CD20. However, current methods to reduce HLA antibodies are not always successful, especially in those with calculated panel reactive antibody 99-100%. RECENT FINDINGS Newer desensitization strategies such as imlifidase [immunoglobulin G (IgG) endopeptidase] rapidly inactivates IgG molecules and creates an "antibody-free zone", representing an important advancement in desensitization. However, pathogenic antibodies rebound, increasing allograft injury that is not addressed by imlifidase. Here, use of anti-IL-6R (tocilizumab) or anti-interleukin-6 (clazakizumab) could offer long-term control of B-memory and plasma cell DSA responses to limit graft injury. Agents aimed at long-lived plasma cells (anti-CD38 and anti-BCMAxCD3) could reduce or eliminate HLA-producing plasma cells from marrow niches. Other agents such as complement inhibitors and novel agents inhibiting the Fc neonatal receptor (FcRn) mediated IgG recycling will likely find important roles in desensitization. SUMMARY Use of these agents alone or in combination will likely improve the efficacy and durability of desensitization therapies, improving access to kidney transplantation for immunologically disadvantaged patients.
Collapse
Affiliation(s)
- Ashley Vo
- Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | | |
Collapse
|
4
|
de Weerd AE, Roelen DL, van de Wetering J, Betjes MGH, Heidt S, Reinders MEJ. Imlifidase Desensitization in HLA-incompatible Kidney Transplantation: Finding the Sweet Spot. Transplantation 2024; 108:335-345. [PMID: 37340532 DOI: 10.1097/tp.0000000000004689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Imlifidase, derived from a Streptococcus pyogenes enzyme, cleaves the entire immunoglobulin G pool within hours after administration in fully cleaved antigen-binding and crystallizable fragments. These cleaved fragments can no longer exert their antibody-dependent cytotoxic functions, thereby creating a window to permit HLA-incompatible kidney transplantation. Imlifidase is labeled, in Europe only, for deceased donor kidney transplantation in highly sensitized patients, whose chances for an HLA-compatible transplant are negligible. This review discusses outcomes of preclinical and clinical studies on imlifidase and describes the phase III desensitization trials that are currently enrolling patients. A comparison is made with other desensitization methods. The review discusses the immunological work-up of imlifidase candidates and especially the "delisting strategy" of antigens that shift from unacceptable to acceptable with imlifidase desensitization. Other considerations for clinical implementation, such as adaptation of induction protocols, are also discussed. Imlifidase cleaves most of the currently used induction agents except for horse antithymocyte globulin, and rebound of donor-specific antibodies should be managed. Another consideration is the timing and interpretation of (virtual) crossmatches when bringing this novel desensitization agent into the clinic.
Collapse
Affiliation(s)
- Annelies E de Weerd
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| | - Dave L Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacqueline van de Wetering
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Habibabady Z, McGrath G, Kinoshita K, Maenaka A, Ikechukwu I, Elias GF, Zaletel T, Rosales I, Hara H, Pierson RN, Cooper DKC. Antibody-mediated rejection in xenotransplantation: Can it be prevented or reversed? Xenotransplantation 2023; 30:e12816. [PMID: 37548030 PMCID: PMC11101061 DOI: 10.1111/xen.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.
Collapse
Affiliation(s)
- Zahra Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ileka Ikechukwu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela F. Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Tjasa Zaletel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Nguyen AT, Cotteret C, Durrleman C, Barnerias C, Hully M, Gitiaux C, Mesples B, Bustamante J, Chhun S, Fayard C, Cisternino S, Treluyer JM, Desguerre I, Aubart M. Indications and Safety of Rituximab in Pediatric Neurology: A 10-Year Retrospective Study. Pediatr Neurol 2022; 137:41-48. [PMID: 36228496 DOI: 10.1016/j.pediatrneurol.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND RTX is used off-label in several neurological inflammatory diseases in adults children patients. We conducted a study to assess indications and safety of rituximab (RTX) for children and to identify risk factors for early B-cell repopulation. METHODS A single-center retrospective study of children treated with RTX for a neurological disease between May 31, 2010, and May 31, 2020, was performed. RESULTS A total of 77 children (median age, 8.9 years) were included. RTX was mostly used as second-line therapy in all groups of diseases (68%). Median dose was 1500 mg/m2 for each patient. There were 13 clinical relapses (17%), 5 when B-cell depletion was complete. Adverse events were present in 6% of the cases. The factors influencing early B-cell repopulation were the recent infusion of intravenous Ig (P < 0.01) and the administration of less than 1500 mg/m2 during the first RTX treatment (P = 0.04). The median time to B-cell repopulation seemed to be shorter (160 vs 186 days) when patients had plasmapheresis even when a 48-hour delay was observed with RTX infusions. CONCLUSIONS This study confirms the good tolerance of RTX in the treatment of specific neurological disorders in a pediatric population. It also highlights risk factors for early B-cell repopulation and underlines the importance of B-cell monitoring.
Collapse
Affiliation(s)
- Ai Tien Nguyen
- Department of Pediatric Neurology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Camille Cotteret
- Department of Clinical Pharmacy, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Chloé Durrleman
- Department of Pediatric Neurology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Christine Barnerias
- Department of Pediatric Neurology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Marie Hully
- Department of Pediatric Neurology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Cyril Gitiaux
- Department of Pediatric Neurology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Bettina Mesples
- Department of Pediatrics, Louis Mourier Hospital, University of Paris, AP-HP, Paris, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France; Human Genetics of Infectious Diseases, INSERM UMR 1163, University of Paris, Institut Imagine, Paris, France
| | - Stéphanie Chhun
- Laboratory of Immunology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Claire Fayard
- Department of Clinical Pharmacy, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Salvatore Cisternino
- Department of Clinical Pharmacy, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Jean-Marc Treluyer
- Clinical Research Unit, Necker-Enfants maladies Hospital, University of Paris, AP-HP, Paris, France
| | - Isabelle Desguerre
- Department of Pediatric Neurology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Mélodie Aubart
- Department of Pediatric Neurology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France; Human Genetics of Infectious Diseases, INSERM UMR 1163, University of Paris, Institut Imagine, Paris, France.
| |
Collapse
|
7
|
Novel Complement C5 Small-interfering RNA Lipid Nanoparticle Prolongs Graft Survival in a Hypersensitized Rat Kidney Transplant Model. Transplantation 2022; 106:2338-2347. [PMID: 35749284 DOI: 10.1097/tp.0000000000004207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prophylaxis of antibody-mediated rejection (AMR) caused by donor-specific antibodies remains challenging. Given the critical roles of complement activity in antibody-mediated graft injury, we developed a lipid nanoparticle (LNP) formulation of small-interfering RNA against complement C5 (C5 siRNA-LNP) and investigated whether C5 siRNA-LNP could downregulate the complement activity and act as an effective treatment for AMR. METHODS Lewis recipient rats were sensitized by skin grafting from Brown Norway donor rats. Kidney transplantation was performed at 4 wk post-skin grafting.C5 siRNA- or control siRNA-LNP was administered intravenously, and the weekly injections were continued until the study's conclusion. Cyclosporin (CsA) and/or deoxyspergualin (DSG) were used as adjunctive immunosuppressants. Complement activity was evaluated using hemolysis assays. The deposition of C5b9 in the grafts was evaluated using immunohistochemical analysis on day 7 posttransplantation. RESULTS C5 siRNA-LNP completely suppressed C5 expression and complement activity (hemolytic activity ≤ 20%) 7 d postadministration. C5 siRNA-LNP in combination with CsA and DSG (median survival time: 56.0 d) prolonged graft survival compared with control siRNA-LNP in combination with CsA and DSG (median survival time: 21.0 d; P = 0.0012; log-rank test). Immunohistochemical analysis of the grafts revealed that downregulation of C5 expression was associated with a reduction in C5b9-positive area ( P = 0.0141, Steel-Dwass test). CONCLUSIONS C5 siRNA-LNP combined with immunosuppressants CsA and DSG downregulated C5 activity and significantly prolonged graft survival compared with control siRNA-LNP with CsA and DSG. Downregulation of C5 expression using C5 siRNA-LNP may be an effective therapeutic approach for AMR.
Collapse
|
8
|
Salerno SN, Deng R, Kakkar T. Physiologically-based pharmacokinetic modeling of immunoglobulin and antibody coadministration in patients with primary human immunodeficiency. CPT Pharmacometrics Syst Pharmacol 2022; 11:1316-1327. [PMID: 35860862 PMCID: PMC9574734 DOI: 10.1002/psp4.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) (2000 mg/kg) increased the clearance of the mouse monoclonal antibody 7E3, directed against platelet integrin IIb/IIIa (alpha IIb beta 3, CD41/CD61) in rodents. We wanted to investigate the effect of IVIG on clearance of monoclonal antibodies in humans as there is extremely limited data regarding this interaction in the literature. Using the tyrosine protein kinase KIT anti-cluster of differentiation 117 (c-Kit) humanized monoclonal antibody (JSP191) as a case study, we used physiologically-based pharmacokinetic (PBPK) modeling to evaluate the pharmacokinetic interaction between monoclonal antibodies and IVIG at doses (300-600 mg/kg) administered to patients with primary human immunodeficiency (PI). We first characterized the interaction between monoclonal antibodies and IVIG in PK-Sim®/MoBi® using published literature data, including the following: IVIG plus 7E3 in mice and rats and IVIG plus the human anti-C5 monoclonal antibody tesidolumab in adults with end-stage renal disease. We next developed a PBPK model using digitized data for JSPI91 alone in older adults with myelodysplastic syndrome and acute myeloid leukemia and in pediatric patients with severe combined immunodeficiency (SCID). Finally, we simulated the impact of IVIG (300-2000 mg/kg) coadministration with JSP191 on the area under the curve of JSP191 in patients with SCID. Model predictions were within 1.5-fold of observed values for 7E3 plus IVIG and tesidolumab plus IVIG as well as for JSP191 administered alone. Based on our simulations, IVIG doses ≥500 mg exceeded the 80%-125% no-effect boundaries. IVIG treatment with monoclonal antibodies in patients with PI may result in a clinically significant interaction depending on the IVIG dose administered and the exposure-response relationship for the specific monoclonal antibody.
Collapse
Affiliation(s)
| | - Rong Deng
- Gilead Sciences, Inc.Foster CityCaliforniaUSA,R&D Q‐Pharm Consulting LLCPleasantonCaliforniaUSA
| | | |
Collapse
|
9
|
Fernandez-Ruiz R, Belmont HM. The role of anticomplement therapy in lupus nephritis. Transl Res 2022; 245:1-17. [PMID: 35158097 DOI: 10.1016/j.trsl.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
The complement system plays crucial roles in homeostasis and host defense against microbes. Deficiency of early complement cascade components has been associated with increased susceptibility to systemic lupus erythematosus (SLE), whereas excessive complement consumption is a hallmark of this disease. Although enhanced classical pathway activation by immune complexes was initially thought to be the main contributor to lupus nephritis (LN) pathogenesis, an increasing body of evidence has suggested the alternative and the lectin pathways are also involved. Therapeutic agents targeting complement activation have been used in LN patients and clinical trials are ongoing. We review the mechanisms by which complement system dysregulation contributes to renal injury in SLE and summarize the latest evidence on the use of anticomplement agents to manage this condition.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, NYU Grossman School of Medicine, New York, New York
| | | |
Collapse
|
10
|
Hang Z, Wei J, Zheng M, Gui Z, Chen H, Sun L, Fei S, Han Z, Tao J, Wang Z, Tan R, Gu M. Iguratimod Attenuates Macrophage Polarization and Antibody-Mediated Rejection After Renal Transplant by Regulating KLF4. Front Pharmacol 2022; 13:865363. [PMID: 35614941 PMCID: PMC9125033 DOI: 10.3389/fphar.2022.865363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: This study aimed to explore the effect and mechanism of iguratimod (IGT) on M1 macrophage polarization and antibody-mediated rejection (ABMR) after renal transplant.Methods: Bioinformatics analysis was performed using three public databases derived from the GEO database. Sprague–Dawley (SD) rats were pre-sensitized with donors of Wistar rats in skin transplantation and a rat renal transplant ABMR model was established from the donors to skin pre-sensitized recipients. Subsequently, IGT was treated on the ABMR model. Routine staining and immunofluorescence (IF) staining were performed to observe the pathological changes in each group and flow cytometry was performed to detect the changes of DSA titers in peripheral blood. In addition, bone-marrow-derived macrophage (BMDM) was extracted and interfered with IGT to explore the effect of IGT in vivo. PCR, IF staining, and Western blot were used to detect the expression of related genes and proteins.Results: Bioinformatics analysis revealed that several immune cells were significantly infiltrated in the ABMR allograft, while M1 macrophage was noticed with the most significance. Results of IF staining and PCR proved the findings of the bioinformatics analysis. Based on this, IGT was observed to significantly attenuate the degree of peritubular capillary vasculitis and arteriolitis in the rat renal transplant ABMR model, whereas it decreases the expression of C4d and reduces the titer of DSA. Results in vitro suggested that M1 macrophage-related transcripts and proteins were significantly reduced by the treatment of IGT in a dose- and time-dependent manner. Furthermore, IGT intervention could remarkably decrease the expression of KLF4.Conclusion: Polarization of M1 macrophages may aggravate ABMR after renal transplant by promoting DSA-mediated endothelial cell injury, and IGT may attenuate the pathogenesis of ABMR by targeting KLF4.
Collapse
Affiliation(s)
- Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Wei
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Wang, ; Min Gu, ; Ruoyun Tan,
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Wang, ; Min Gu, ; Ruoyun Tan,
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Wang, ; Min Gu, ; Ruoyun Tan,
| |
Collapse
|
11
|
Vo AA, Huang E, Ammerman N, Toyoda M, Ge S, Haas M, Zhang X, Peng A, Najjar R, Williamson S, Myers C, Sethi S, Lim K, Choi J, Gillespie M, Tang J, Jordan SC. Clazakizumab for desensitization in highly sensitized patients awaiting transplantation. Am J Transplant 2022; 22:1133-1144. [PMID: 34910841 DOI: 10.1111/ajt.16926] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 01/25/2023]
Abstract
Alloantibodies are a significant barrier to successful transplantation. While desensitization has emerged, efficacy is limited. Interleukin-6 (IL-6) is an important mediator of inflammation and immune cell activation. Persistent IL-6 production increases the risk for alloantibody production. Here we report our experience with clazakizumab (anti-IL-6) for desensitization of highly HLA-sensitized patients (HS). From March 2018 to September 2020, 20 HS patients were enrolled in an open label pilot study to assess safety and limited efficacy of clazakizumab desensitization. Patients received PLEX, IVIg, and clazakizumab 25 mg monthly X6. If transplanted, graft function, pathology, HLA antibodies and regulatory immune cells were monitored. Transplanted patients received standard immunosuppression and clazakizumab 25 mg monthly posttransplant. Clazakizumab was well tolerated and associated with significant reductions in class I and class II antibodies allowing 18 of 20 patients to receive transplants with no DSA rebound in most. Significant increases in Treg and Breg cells were seen posttransplant. Antibody-mediated rejection occurred in three patients. The mean estimated glomerular filtration rate at 12 months was 58 ± 29 ml/min/1.73 m2 . Clazakizumab was generally safe and associated with significant reductions in HLA alloantibodies and high transplant rates for highly-sensitized patients. However, confirmation of efficacy for desensitization requires assessment in randomized controlled trials.
Collapse
Affiliation(s)
- Ashley A Vo
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Edmund Huang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Noriko Ammerman
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mieko Toyoda
- Department of Transplant Immunology and Laboratory, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shili Ge
- Department of Transplant Immunology and Laboratory, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mark Haas
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaohai Zhang
- Department of HLA & Immunogenetics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alice Peng
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Reiad Najjar
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Summer Williamson
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Catherine Myers
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Supreet Sethi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kathlyn Lim
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jua Choi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Matthew Gillespie
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jacqueline Tang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stanley C Jordan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
12
|
Huang E, Maldonado AQ, Kjellman C, Jordan SC. Imlifidase for the treatment of anti-HLA antibody-mediated processes in kidney transplantation. Am J Transplant 2022; 22:691-697. [PMID: 34467625 PMCID: PMC9293130 DOI: 10.1111/ajt.16828] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 01/25/2023]
Abstract
The IgG-degrading enzyme derived from Streptococcus pyogenes (Imlifidase, Hansa Biopharma) is a novel agent that cleaves all four human subclasses of IgG and has therapeutic potential for HLA desensitization in kidney transplantation and antibody-mediated rejection. Data from clinical trials in kidney transplantation demonstrated rapid degradation of anti-HLA donor-specific antibodies facilitating HLA-incompatible transplantation, which led to conditional approval of imlifidase by the European Medicines Agency for desensitization in kidney transplant recipients of a deceased donor with a positive cross match. Important considerations arising from the early experiences with imilfidase on kinetics of donor-specific antibodies after administration, timing of complementary therapeutic monoclonal or polyclonal IgG antibodies, and interference with cross match assays should be recognized as imlifidase emerges as a therapeutic agent for clinical transplantation.
Collapse
Affiliation(s)
- Edmund Huang
- Department of MedicineDivision of NephrologyTransplant Immunotherapy ProgramCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | - Stanley C. Jordan
- Department of MedicineDivision of NephrologyTransplant Immunotherapy ProgramCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Adams AB, Lovasik BP, Faber DA, Burlak C, Breeden C, Estrada JL, Reyes LM, Vianna RM, Tector MF, Tector AJ. Anti-C5 Antibody Tesidolumab Reduces Early Antibody-mediated Rejection and Prolongs Survival in Renal Xenotransplantation. Ann Surg 2021; 274:473-480. [PMID: 34238812 PMCID: PMC8915445 DOI: 10.1097/sla.0000000000004996] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pig-to-primate renal xenotransplantation is plagued by early antibody-mediated graft loss which precludes clinical application of renal xenotransplantation. We evaluated whether temporary complement inhibition with anti-C5 antibody Tesidolumab could minimize the impact of early antibody-mediated rejection in rhesus monkeys receiving pig kidneys receiving costimulatory blockade-based immunosuppression. METHODS Double (Gal and Sda) and triple xenoantigen (Gal, Sda, and SLA I) pigs were created using CRISPR/Cas. Kidneys from DKO and TKO pigs were transplanted into rhesus monkeys that had the least reactive crossmatches. Recipients received anti-C5 antibody weekly for 70 days, and T cell depletion, anti-CD154, mycophenolic acid, and steroids as baseline immunosuppression (n = 7). Control recipients did not receive anti-C5 therapy (n = 10). RESULTS Temporary anti-C5 therapy reduced early graft loss secondary to antibody-mediated rejection and improved graft survival (P < 0.01). Deleting class I MHC (SLA I) in donor pigs did not ameliorate early antibody-mediated rejection (table). Anti-C5 therapy did not allow for the use of tacrolimus instead of anti-CD154 (table), prolonging survival to a maximum of 62 days. CONCLUSION Inhibition of the C5 complement subunit prolongs renal xenotransplant survival in a pig to non-human primate model.
Collapse
Affiliation(s)
- Andrew B Adams
- University of Minnesota School of Medicine, Minneapolis MN
| | | | | | | | | | | | - Luz M Reyes
- University of Miami School of Medicine, Miami, FL
| | | | | | | |
Collapse
|
14
|
Habal MV. Current Desensitization Strategies in Heart Transplantation. Front Immunol 2021; 12:702186. [PMID: 34504489 PMCID: PMC8423343 DOI: 10.3389/fimmu.2021.702186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Heart transplant candidates sensitized to HLA antigens wait longer for transplant, are at increased risk of dying while waiting, and may not be listed at all. The increasing prevalence of HLA sensitization and limitations of current desensitization strategies underscore the urgent need for a more effective approach. In addition to pregnancy, prior transplant, and transfusions, patients with end-stage heart failure are burdened with unique factors placing them at risk for HLA sensitization. These include homograft material used for congenital heart disease repair and left ventricular assist devices (LVADs). Moreover, these risks are often stacked, forming a seemingly insurmountable barrier in some cases. While desensitization protocols are typically implemented uniformly, irrespective of the mode of sensitization, the heterogeneity in success and post-transplant outcomes argues for a more tailored approach. Achieving this will require progress in our understanding of the immunobiology underlying the innate and adaptive immune response to these varied allosensitizing exposures. Further attention to B cell activation, memory, and plasma cell differentiation is required to establish methods that durably abrogate the anti-HLA antibody response before and after transplant. The contribution of non-HLA antibodies to the net state of sensitization and the potential implications for graft longevity also remain to be comprehensively defined. The aim of this review is to first bring forth select issues unique to the sensitized heart transplant candidate. The current literature on desensitization in heart transplantation will then be summarized providing context within the immune response. Building on this, newer approaches with therapeutic potential will be discussed emphasizing the importance of not only addressing the short-term pathogenic consequences of circulating HLA antibodies, but also the need to modulate alloimmune memory.
Collapse
Affiliation(s)
- Marlena V. Habal
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| |
Collapse
|
15
|
Novel Insights into the Molecular Mechanisms of Ischemia/Reperfusion Injury in Kidney Transplantation. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most important mechanisms involved in delayed or reduced graft function after kidney transplantation. It is a complex pathophysiological process, followed by a pro-inflammatory response that enhances the immunogenicity of the graft and the risk of acute rejection. Many biologic processes are involved in its development, such as transcriptional reprogramming, the activation of apoptosis and cell death, endothelial dysfunction and the activation of the innate and adaptive immune response. Recent evidence has highlighted the importance of complement activation in IRI cascade, which expresses a pleiotropic action on tubular cells, on vascular cells (pericytes and endothelial cells) and on immune system cells. The effects of IRI in the long term lead to interstitial fibrosis and tubular atrophy, which contribute to chronic graft dysfunction and subsequently graft failure. Furthermore, several metabolic alterations occur upon IRI. Metabolomic analyses of IRI detected a “metabolic profile” of this process, in order to identify novel biomarkers that may potentially be useful for both early diagnosis and monitoring the therapeutic response. The aim of this review is to update the most relevant molecular mechanisms underlying IRI, and also to discuss potential therapeutic targets in future clinical practice.
Collapse
|
16
|
Chouaki Benmansour N, Carvelli J, Vivier É. [Involvement of the complement cascade in severe forms of COVID-19]. Med Sci (Paris) 2021; 37:333-341. [PMID: 33835019 DOI: 10.1051/medsci/2021021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The complement system is an essential component of the innate immune system. Its excessive activation during COVID-19 contributes to cytokine storm, disease-specific endothelial inflammation (endotheliitis) and thrombosis that comes with the disease. Targeted therapies of complement inhibition in COVID-19, in particular blocking the C5a-C5aR1 axis have to be taken into account in the establishment of potential biomarkers and development of therapeutic strategies in the most severe forms of the disease.
Collapse
Affiliation(s)
- Nassima Chouaki Benmansour
- Assistance Publique des Hôpitaux de Marseille, 80 rue Brochier, 13005 Marseille, France - Département universitaire de médecine générale, Aix-Marseille Université, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France - Institut Paoli Calmettes, 232 boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - Julien Carvelli
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Réanimation des urgences, 264 rue Saint-Pierre, 13005 Marseille, France - Aix-Marseille Université, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Éric Vivier
- Innate Pharma, 117 avenue de Luminy, BP 30191, 13276 Marseille Cedex 9, France - Aix Marseille Université, CNRS, Inserm, CIML, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille Cedex 09, France - Assistance Publique des Hôpitaux de Marseille, Marseille Immunopole, Hôpital de la Timone, 264 rue Saint Pierre, 13385 Marseille Cedex 5, France
| |
Collapse
|
17
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Agostinis C, Balduit A, Mangogna A, Zito G, Romano F, Ricci G, Kishore U, Bulla R. Immunological Basis of the Endometriosis: The Complement System as a Potential Therapeutic Target. Front Immunol 2021; 11:599117. [PMID: 33505394 PMCID: PMC7829336 DOI: 10.3389/fimmu.2020.599117] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis (EM) is a chronic disease characterized by the presence and proliferation of functional endometrial glands and stroma outside the uterine cavity. Ovaries and pelvic peritoneum are the most common locations for endometrial ectopic tissue, followed by deep infiltrating EM sites. The cyclic and recurrent bleeding, the progressive fibrosis and the peritoneal adhesions of ectopic endometrial glands, may cause different symptoms depending on the origin involved. EM is a frequent clinical condition affecting around 10% of women of mainly reproductive age, as well as in post-menopausal women and adolescents, especially with uterine anomalies. The risk of developing EM depends on a complex interaction between genetic, immunological, hormonal, and environmental factors. It is largely considered to arise due to a dysfunction of immunological surveillance. In fact, women with EM exhibit altered functions of peritoneal macrophages, lymphocytes and natural killer cells, as well as levels of inflammatory mediators and growth factors in the peritoneal fluid. In EM patients, peritoneal macrophages are preponderant and highly active compared to healthy women. Peritoneal macrophages are able to regulate the events that determine the production of cytokines, prostaglandins, growth factors and complement components. Several studies have shown alteration in the regulation of the complement activation, leading to chronic inflammation characteristic of EM. Aberrant regulation/activation of the complement system has been observed in the peritoneal cavity of women affected by EM. Thus, complement inhibition may represent a new approach for the treatment of EM, given that a number of complement inhibitors are under pre-clinical and clinical development. Such an intervention may provide a broader therapeutic control of complement-mediated inflammatory damage in EM patients. This review will focus on our current understanding of the role of complement activation in EM and possible modalities available for complement-based therapy.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Andrea Balduit
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
19
|
Ort M, Dingemanse J, van den Anker J, Kaufmann P. Treatment of Rare Inflammatory Kidney Diseases: Drugs Targeting the Terminal Complement Pathway. Front Immunol 2020; 11:599417. [PMID: 33362783 PMCID: PMC7758461 DOI: 10.3389/fimmu.2020.599417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The complement system comprises the frontline of the innate immune system. Triggered by pathogenic surface patterns in different pathways, the cascade concludes with the formation of a membrane attack complex (MAC; complement components C5b to C9) and C5a, a potent anaphylatoxin that elicits various inflammatory signals through binding to C5a receptor 1 (C5aR1). Despite its important role in pathogen elimination, priming and recruitment of myeloid cells from the immune system, as well as crosstalk with other physiological systems, inadvertent activation of the complement system can result in self-attack and overreaction in autoinflammatory diseases. Consequently, it constitutes an interesting target for specialized therapies. The paradigm of safe and efficacious terminal complement pathway inhibition has been demonstrated by the approval of eculizumab in paroxysmal nocturnal hematuria. In addition, complement contribution in rare kidney diseases, such as lupus nephritis, IgA nephropathy, atypical hemolytic uremic syndrome, C3 glomerulopathy, or antineutrophil cytoplasmic antibody-associated vasculitis has been demonstrated. This review summarizes the involvement of the terminal effector agents of the complement system in these diseases and provides an overview of inhibitors for complement components C5, C5a, C5aR1, and MAC that are currently in clinical development. Furthermore, a link between increased complement activity and lung damage in severe COVID-19 patients is discussed and the potential for use of complement inhibitors in COVID-19 is presented.
Collapse
Affiliation(s)
- Marion Ort
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
| | - Priska Kaufmann
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
20
|
Ram Kumar Pandian S, Arunachalam S, Deepak V, Kunjiappan S, Sundar K. Targeting complement cascade: an alternative strategy for COVID-19. 3 Biotech 2020; 10:479. [PMID: 33088671 PMCID: PMC7571295 DOI: 10.1007/s13205-020-02464-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system is a stakeholder of the innate and adaptive immune system and has evolved as a crucial player of defense with multifaceted biological effects. Activation of three complement pathways leads to consecutive enzyme reactions resulting in complement components (C3 and C5), activation of mast cells and neutrophils by anaphylatoxins (C3a and C5a), the formation of membrane attack complex (MAC) and end up with opsonization. However, the dysregulation of complement cascade leads to unsolicited cytokine storm, inflammation, deterioration of alveolar lining cells, culminating in acquired respiratory destructive syndrome (ARDS). Similar pathogenesis is observed with the middle east respiratory syndrome (MERS), severe acquired respiratory syndrome (SARS), and SARS-CoV-2. Activation of the lectin pathway via mannose-binding lectin associated serine protease 2 (MASP2) is witnessed under discrete viral infections including COVID-19. Consequently, the spontaneous activation and deposits of complement components were traced in animal models and autopsy of COVID-19 patients. Pre-clinical and clinical studies evidence that the inhibition of complement components results in reduced complement deposits on target and non-target tissues, and aid in recovery from the pathological conditions of ARDS. Complement inhibitors (monoclonal antibody, protein, peptide, small molecules, etc.) exhibit great promise in blocking the activity of complement components and its downstream effects under various pathological conditions including SARS-CoV. Therefore, we hypothesize that targeting the potential complement inhibitors and complement cascade to counteract lung inflammation would be a better strategy to treat COVID-19.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Venkataraman Deepak
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
- Department of Human Sciences, University of Derby, London, United Kingdom
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| |
Collapse
|