1
|
Zhang Z, Yuan Z, Wang Y, Zhang YH, Li Q, Zeng X, Guan Z, Bahabayi A, Wang P, Liu C. Upregulation of granzyme B and C-X3-C motif receptor 1 in circulating plasmablasts was negatively regulated by Notch signal in patients with systemic lupus erythematosus. J Leukoc Biol 2024; 116:1061-1071. [PMID: 38833584 DOI: 10.1093/jleuko/qiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/31/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
As one molecule related to cytotoxicity, surface expression of C-X3-C motif receptor 1 (CX3CR1) was highly correlated with intracellular granzyme B (GZMB) in natural killer and cytolytic T cells. However, the expression of CX3CR1 and GZMB in B cells has not been clarified, and their clinical significance in systemic lupus erythematosus (SLE) remains unclear. This study aimed to clarify the changes and clinical significance of peripheral blood B cells expressing GZMB and/or CX3CR1 in SLE. Peripheral blood was collected from 39 patients with SLE and 48 healthy controls. We found that GZMB and CX3CR1 expression varied in different B-cell subsets, with plasmablasts possessing the highest positive percentages, consistent with bioinformatics prediction. GZMB+ and CX3CR1+ percentages in circulating B cells and plasmablasts were increased in patients with SLE. CX3CR1 was upregulated on B cells after in vitro stimulation. Notch intracellular domain expression was significantly decreased in plasmablasts of patients with SLE, and CX3CR1 in plasmablasts was downregulated with the addition of JAG1. In conclusion, GZMB and CX3CR1 were increased in B cells and in plasmablasts of patients with SLE and CX3CR1 was negatively regulated by Notch signal in plasmablasts, which may be involved in SLE pathogenesis.
Collapse
Affiliation(s)
- Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Yiying Wang
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Ya-Hui Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
- Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| |
Collapse
|
2
|
Yang F, Zhang X, Xie Y, Yuan J, Gao J, Chen H, Li X. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics. J Nutr Biochem 2024; 128:109593. [PMID: 38336123 DOI: 10.1016/j.jnutbio.2024.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Food allergy is a global food safety concern, with an increasing prevalence in recent decades. However, the immunological and cellular mechanisms involved in allergic reactions remain incompletely understood, which impedes the development of effective prevention and treatment strategies. Current evidence supports those epigenetic modifications regulate the activation of immune cells, and their dysregulation can contribute to the development of food allergies. Patients with food allergy show epigenetic alterations that lead to the onset, duration and recovery of allergic disease. Moreover, many preclinical studies have shown that certain dietary components exert nutriepigenetic effects in changing the course of food allergies. In this review, we provide an up-to-date overview of DNA methylation, noncoding RNA and histone modification, with a focus on their connections to food allergies. Following this, we discuss the epigenetic mechanisms that regulate the activation and differentiation of innate and adapted immune cell in the context of food allergies. Subsequently, this study specifically focuses on the multidimensional epigenetic effects of dietary components in modulating the immune response, which holds promise for preventing food allergies in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yanhai Xie
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Koksal BT, Barıs Z, Sencelikel T, Ozcay F, Ozbek OY. Food protein-induced allergic proctocolitis in infants is associated with low serum levels of macrophage inflammatory protein-3a. J Pediatr Gastroenterol Nutr 2024; 78:211-216. [PMID: 38374573 DOI: 10.1002/jpn3.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Food protein-induced allergic proctocolitis (FPIAP) is a nonimmunoglobulin (IgE)-mediated food hypersensitivity and the exact mechanisms that cause FPIAP are unknown. Chemokines play crucial roles in the development of allergic diseases. OBJECTIVE To examine serum levels of a group of chemokines in infants with FPIAP. METHODS In 67 infants with FPIAP and 65 healthy infants, we measured serum levels of mucosa-associated epithelial chemokine (MEC/CCL28), thymus-expressed chemokine (TECK/CCL25), CX3CL1 and macrophage inflammatory protein (MIP)-3a/CCL20. RESULTS Infants with FPIAP had a lower median value of MIP3a/CCL20 than healthy infants [0.7 (0-222) vs. 4 (0-249) pg/mL, respectively] (p < 0.001). Infants with MIP3a/CCL20 levels ≤0.95 pg/mL have 13.93 times more risk of developing FPIAP than infants with MIP3a/CCL20 levels >0.95 pg/mL. Serum MEC/CCL28, TECK/CCL25, and CX3CL1 levels were similar between the infants with FPIAP and the control group. CONCLUSION MIP3a/CCL20 serum levels were reduced in infants with FPIAP compared with healthy controls. Whether this finding has a role in pathogenesis remains to be determined.
Collapse
Affiliation(s)
- Burcu Tahire Koksal
- Department of Pediatric Allergy, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Zeren Barıs
- Department of Pediatric Gastroenterology and Hepatology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Tugce Sencelikel
- Department of Biostatistics, Ankara Medipol University, Ankara, Turkey
| | - Figen Ozcay
- Department of Pediatric Gastroenterology and Hepatology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Ozlem Yılmaz Ozbek
- Department of Pediatric Allergy, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Dang M, Yu J, Galant-Swafford J, Karam SD. The dichotomy of regulatory B cells in cancer versus allergic disease. Mol Carcinog 2024; 63:11-21. [PMID: 37712547 PMCID: PMC10994235 DOI: 10.1002/mc.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Regulatory B cells (Bregs) are an immunosuppressive cell phenotype that affects the immune system by limiting the inflammatory cascade. Dysregulation of Bregs can interestingly play a dichotomous role in the pathophysiology of many diseases and is especially highlighted when examining cancer pathology compared to allergic disease. This study reviews the existing literature on Bregs and compares their role in allergic disease in contrast to cancer development. Upregulation of Bregs in cancer states has been associated with poor prognostic outcomes across various cancer types, and Breg proliferation was associated with chronic interferon signaling, activation of the BCR-BTK (B cell receptor-Bruton's tyrosine kinase) pathway, and release of C-X-C motif ligand 13. In contrast, Breg dysfunction has been identified as a key mechanism in many allergic diseases, such as allergic asthma, allergic rhinitis, atopic dermatitis, and contact dermatitis. Development of Breg-targeted immunotherapies is currently at the preclinical level, but strategies differentially focus on Breg depletion in cancer versus Breg stimulation in allergy. Our review highlights the divergent functions that Bregs play in cancer compared to allergy. We conclude that natural homeostasis hinges on a fine balance between the dichotomous role of Bregs-over or underactivation can result in a pathological state.
Collapse
Affiliation(s)
- Melissa Dang
- Department of Internal Medicine, Sky Ridge Medical Center, Lone Tree, Colorado, USA
| | - Justin Yu
- Department of Otolaryngology—Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Chen Y, Liu Z, Lin Z, Lu M, Fu Y, Liu G, Yu B. The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front Immunol 2023; 14:1219895. [PMID: 37744377 PMCID: PMC10517662 DOI: 10.3389/fimmu.2023.1219895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Osteomyelitis is a chronic inflammatory bone disease caused by infection of open fractures or post-operative implants. Particularly in patients with open fractures, the risk of osteomyelitis is greatly increased as the soft tissue damage and bacterial infection are often more severe. Staphylococcus aureus, one of the most common pathogens of osteomyelitis, disrupts the immune response through multiple mechanisms, such as biofilm formation, virulence factor secretion, and metabolic pattern alteration, which attenuates the effectiveness of antibiotics and surgical debridement toward osteomyelitis. In osteomyelitis, immune cells such as neutrophils, macrophages and T cells are activated in response to pathogenic bacteria invasion with excessive inflammatory factor secretion, immune checkpoint overexpression, and downregulation of immune pathway transcription factors, which enhances osteoclastogenesis and results in bone destruction. Therefore, the study of the mechanisms of abnormal immunity will be a new breakthrough in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Yingqi Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zixian Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zexin Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Mincheng Lu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Yong Fu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Guanqiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| |
Collapse
|
6
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
7
|
van Olst L, Kamermans A, van der Pol SMA, Rodríguez E, Hulshof LA, van Dijk RE, Vonk DN, Schouten M, Witte ME, de Vries HE, Middeldorp J. Age-associated systemic factors change central and peripheral immunity in adult male mice. Brain Behav Immun 2023; 111:395-411. [PMID: 37169133 DOI: 10.1016/j.bbi.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Aging coincides with major changes in brain immunity that aid in a decline in neuronal function. Here, we postulate that systemic, pro-aging factors contribute to immunological changes that occur within the brain during aging. To investigate this hypothesis, we comprehensively characterized the central and peripheral immune landscape of 20-month-old male mice using cytometry by time-of-flight (CyTOF) and investigated the role of age-associated circulating factors. We found that CD8+ T cells expressing programmed cell death protein 1 (PD1) and tissue-resident memory CD8+ T cells accumulated in the aged brain while levels of memory T cells rose in the periphery. Injections of plasma derived from 20-month-old mice into 5-month-old receiving mice decreased the frequency of splenic and circulating naïve T cells, increased memory CD8+ T cells, and non-classical, patrolling monocytes in the spleen, and elevated levels of regulatory T cells and non-classical monocytes in the blood. Notably, CD8+ T cells accumulated within white matter areas of plasma-treated mice, which coincided with the expression of vascular cell adhesion molecule 1 (VCAM-1), a mediator of immune cell trafficking, on the brain vasculature. Taken together, we here describe age-related immune cell changes in the mouse brain and circulation and show that age-associated systemic factors induce the expansion of CD8+ T cells in the aged brain.
Collapse
Affiliation(s)
- L van Olst
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - A Kamermans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - S M A van der Pol
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - E Rodríguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - L A Hulshof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - D N Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - M Schouten
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M E Witte
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| |
Collapse
|
8
|
Douna H, de Mol J, Amersfoort J, Schaftenaar FH, Kiss MG, Suur BE, Kroner MJ, Binder CJ, Bot I, Van Puijvelde GHM, Kuiper J, Foks AC. IFNγ-Stimulated B Cells Inhibit T Follicular Helper Cells and Protect Against Atherosclerosis. Front Cardiovasc Med 2022; 9:781436. [PMID: 35187121 PMCID: PMC8847680 DOI: 10.3389/fcvm.2022.781436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
B and T cells are interconnected in the T follicular helper—germinal center B cell (TFH-GC B cell) axis, which is hyperactive during atherosclerosis development and loss of control along this axis results in exacerbated atherosclerosis. Inhibition of the TFH–GC B cell axis can be achieved by providing negative co-stimulation to TFH cells through the PD-1/PD-L1 pathway. Therefore, we investigated a novel therapeutic strategy using PD-L1-expressing B cells to inhibit atherosclerosis. We found that IFNγ-stimulated B cells significantly enhanced PD-L1 expression and limited TFH cell development. To determine whether IFNγ-B cells can reduce collar-induced atherosclerosis, apoE−/− mice fed a Western-type diet were treated with PBS, B cells or IFNγ-B cells for a total of 5 weeks following collar placement. IFNγ-B cells significantly increased PD-L1hi GC B cells and reduced plasmablasts. Interestingly, IFNγ-B cells–treated mice show increased atheroprotective Tregs and T cell-derived IL-10. In line with these findings, we observed a significant reduction in total lesion volume in carotid arteries of IFNγ-B cells-treated mice compared to PBS-treated mice and a similar trend was observed compared to B cell-treated mice. In conclusion, our data show that IFNγ-stimulated B cells strongly upregulate PD-L1, inhibit TFH cell responses and protect against atherosclerosis.
Collapse
Affiliation(s)
- Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - J. de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Mate G. Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bianca E. Suur
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Mara J. Kroner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Gijs H. M. Van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
- *Correspondence: Amanda C. Foks
| |
Collapse
|
9
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
10
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Huai G, Markmann JF, Deng S, Rickert CG. TGF-β-secreting regulatory B cells: unsung players in immune regulation. Clin Transl Immunology 2021; 10:e1270. [PMID: 33815797 PMCID: PMC8017464 DOI: 10.1002/cti2.1270] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/25/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory B cells contribute to the regulation of immune responses in cancer, autoimmune disorders, allergic conditions and inflammatory diseases. Although most studies focus on regulatory B lymphocytes expressing interleukin-10, there is growing evidence that B cells producing transforming growth factor β (TGF-β) can also regulate T-cell immunity in inflammatory diseases and promote the emergence of regulatory T cells that contribute to the induction and maintenance of natural and induced immune tolerance. Most research on TGF-β+ regulatory B cells has been conducted in models of allergy, cancer and autoimmune diseases, but there has, as yet, been limited scrutiny of their role in the transplant setting. Herein, we review recent investigations seeking to understand how TGF-β-producing B cells direct the immune response in various inflammatory diseases and whether these regulatory cells may have a role in fostering tolerance in transplantation.
Collapse
Affiliation(s)
- Guoli Huai
- Organ Transplantation Center Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China.,Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - James F Markmann
- Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Shaoping Deng
- Organ Transplantation Center Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Charles Gerard Rickert
- Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| |
Collapse
|
12
|
Campbell E, Hesser LA, Nagler CR. B cells and the microbiota: a missing connection in food allergy. Mucosal Immunol 2021; 14:4-13. [PMID: 33106585 DOI: 10.1038/s41385-020-00350-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
Food allergies are a major public health concern due to their widespread and rising prevalence. The increase in food allergy is partially due to Western lifestyle habits which deplete protective commensal microbiota. These microbial perturbations can result in adverse host-microbe interactions, altering the phenotype of various immune cells and instigating allergic sensitization. Although B cells are critical to allergic pathology, microbial influences on B cells have been somewhat overlooked. Here, we focus on direct and indirect interactions between bacteria and B cells and how such interactions regulate B-cell phenotype, namely antibody production (IgA, IgE, IgG1, and IgG4) and regulatory B-cell (Breg) function. Understanding how microbes modulate B-cell activity in the context of food allergies is critical to both tracing the development of disease and assessing future treatment options.
Collapse
Affiliation(s)
- Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL, USA.,Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, USA. .,Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Boyman O, Caramori G, Cari L, Fan Chung K, Diamant Z, Eguiluz-Gracia I, Knol EF, Kolios A, Levi-Schaffer F, Nocentini G, Palomares O, Redegeld F, Van Esch B, Stellato C. Immune modulation via T regulatory cell enhancement: Disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases-An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021; 76:90-113. [PMID: 32593226 DOI: 10.1111/all.14478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Therapeutic advances using targeted biologicals and small-molecule drugs have achieved significant success in the treatment of chronic allergic, autoimmune, and inflammatory diseases particularly for some patients with severe, treatment-resistant forms. This has been aided by improved identification of disease phenotypes. Despite these achievements, not all severe forms of chronic inflammatory and autoimmune diseases are successfully targeted, and current treatment options, besides allergen immunotherapy for selected allergic diseases, fail to change the disease course. T cell-based therapies aim to cure diseases through the selective induction of appropriate immune responses following the delivery of engineered, specific cytotoxic, or regulatory T cells (Tregs). Adoptive cell therapies (ACT) with genetically engineered T cells have revolutionized the oncology field, bringing curative treatment for leukemia and lymphoma, while therapies exploiting the suppressive functions of Tregs have been developed in nononcological settings, such as in transplantation and autoimmune diseases. ACT with Tregs are also being considered in nononcological settings such as cardiovascular disease, obesity, and chronic inflammatory disorders. After describing the general features of T cell-based approaches and current applications in autoimmune diseases, this position paper reviews the experimental models testing or supporting T cell-based approaches, especially Treg-based approaches, in severe IgE-mediated responses and chronic respiratory airway diseases, such as severe asthma and COPD. Along with an assessment of challenges and unmet needs facing the application of ACT in these settings, this article underscores the potential of ACT to offer curative options for patients with severe or treatment-resistant forms of these immune-driven disorders.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Ian M Adcock
- Molecular Cell Biology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence Center, Lund University, Lund, Sweden
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), Respiratory Medicine Unit, University of Messina, Messina, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute, Imperial College London & Royal Brompton & Harefield NHS Trust, London, UK
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy & Pharmacology, University Groningen, University Medical Center Groningen and QPS-NL, Groningen, Netherlands
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Málaga-Instituto de Investigación Biomédica de Málaga (IBIMA)-ARADyAL, Málaga, Spain
| | - Edward F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Betty Van Esch
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
14
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
15
|
Habener A, Happle C, Grychtol R, Skuljec J, Busse M, Dalüge K, Obernolte H, Sewald K, Braun A, Meyer-Bahlburg A, Hansen G. Regulatory B cells control airway hyperreactivity and lung remodeling in a murine asthma model. J Allergy Clin Immunol 2020; 147:2281-2294.e7. [PMID: 33249168 DOI: 10.1016/j.jaci.2020.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asthma is a widespread, multifactorial chronic airway disease. The influence of regulatory B cells on airway hyperreactivity (AHR) and remodeling in asthma is poorly understood. OBJECTIVE Our aim was to analyze the role of B cells in a house dust mite (HDM)-based murine asthma model. METHODS The influence of B cells on lung function, tissue remodeling, and the immune response were analyzed by using wild-type and B-cell-deficient (μMT) mice and transfer of IL-10-proficient and IL-10-deficient B cells to μMT mice. RESULTS After HDM-sensitization, both wild-type and μMT mice developed AHR, but the AHR was significantly stronger in μMT mice, as confirmed by 2 independent techniques: invasive lung function measurement in vivo and examination of precision-cut lung slices ex vivo. Moreover, airway remodeling was significantly increased in allergic μMT mice, as shown by enhanced collagen deposition in the airways, whereas the numbers of FoxP3+ and FoxP3- IL-10-secreting regulatory T cells were reduced. Adoptive transfer of IL-10-proficient but not IL-10-deficient B cells into μMT mice before HDM-sensitization attenuated AHR and lung remodeling. In contrast, FoxP3+ regulatory T cells were equally upregulated by transfer of IL-10-proficient and IL-10-deficient B cells. CONCLUSION Our data in a murine asthma model illustrate a central role of regulatory B cells in the control of lung function and airway remodeling and may support future concepts for B-cell-targeted prevention and treatment strategies for allergic asthma.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Christine Happle
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Ruth Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Department of Neurology, University Medicine Essen, Essen, Germany
| | - Mandy Busse
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Kathleen Dalüge
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Helena Obernolte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Katherina Sewald
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
16
|
Karim MR, Wang YF. Phenotypic identification of CD19 +CD5 +CD1d + regulatory B cells that produce interleukin 10 and transforming growth factor β 1 in human peripheral blood. Arch Med Sci 2019; 15:1176-1183. [PMID: 31572462 PMCID: PMC6764295 DOI: 10.5114/aoms.2018.77772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Regulatory B cells (Bregs), a novel subpopulation of B cells, are a significant area of research due to their immune regulatory function in the immunological response. Bregs have been reported to regulate acute inflammation and immunity through the production of anti-inflammatory cytokines. MATERIAL AND METHODS A B cell subpopulation was identified using flow cytometric analysis in two different processes: 1) after preparation and storage of peripheral blood mononuclear cells (PBMCs) using Ficoll density gradient centrifugation from a human blood sample, 2) followed by isolation and storage of B cells through magnetic separation using a B cell isolation kit and MS column. ELISA assays were performed to observe the cytokine production of interkleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1) by this novel B cell subpopulation. RESULTS Double positive staining of CD5+CD1d+ Bregs represents (19.27 ±1.52) from PBMCs, (33.32 ±2.95) from B cells accordingly (n = 40). Through ELISA assays, it has been found that B cell subpopulation produces IL-10 (0.56 ±0.08) and TGF-β1 (0.90 ±0.12) (n = 40). CONCLUSIONS These methods should be able to facilitate progress in research on Bregs through the following steps: 1) the regulatory role may be observed in comparison with particular autoimmune diseases, inflammation, cancer, and immunologic responses to find out whether Breg alteration and/or cytokine production is altered as well in these disorders or conditions. 2) If the alteration of Bregs and cytokine production is significant along with the clinical correlation, a further in vitro study can be initiated with exposure of certain drugs to overcome the alteration of the cytokine production; then, an in vivo study can be initiated.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute of Hubei University of Medicine, Shiyan, China
| | - Yun-Fu Wang
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute of Hubei University of Medicine, Shiyan, China
| |
Collapse
|
17
|
Moore DK, Loxton AG. Regulatory B lymphocytes: development and modulation of the host immune response during disease. Immunotherapy 2019; 11:691-704. [DOI: 10.2217/imt-2018-0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of B lymphocytes (B cells) in immunogenic responses has become increasingly important over the past decade, focusing on a new B-cell subtype: regulatory B-cells (Bregs). These Bregs have been shown to possess potent immunosuppressive activities and have identified as key players in disease control and immune tolerance. In this review, the occurrence of Breg type in various conditions, along with evidence supporting discovered functions and proposed purposes will be explored. An example of such regulatory functions includes the induction or suppression of various T lymphocyte phenotypes in response to a particular stimulus. Should Bregs prove effective in mediating immune responses, and correlate with favorable disease outcome, they may serve as a novel therapeutic to combat disease and prevent infection. However, the induction, function and stability of these cells remain unclear and further investigation is needed to better understand their role and therapeutic efficacy.
Collapse
Affiliation(s)
- Dannielle K Moore
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| | - Andre G Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| |
Collapse
|
18
|
Suzuki M, Matsumoto T, Toyoda K, Nakamura Y, Murakami S. Impacts of CD40- and CD86-Silenced Antigen-Specific B Cells on the Control of Allergies. Am J Rhinol Allergy 2019; 33:513-523. [PMID: 31064207 DOI: 10.1177/1945892419848188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background We previously reported that CD40-silenced B cells inhibited allergic responses and symptoms. However, more potent therapies are needed. To our knowledge, the effects of CD86-silenced B cells and synergic effects of gene silencing in B cells by 2 small interfering RNAs (siRNAs) on allergic disease control have not been reported. Objective To investigate the effects of CD86-silenced B cells and synergic effects of gene silencing in B cells on allergic responses and symptoms. Methods Mice were treated with CD40- and/or CD86-silenced B cells transfected with siRNAs and pulsed with ovalbumin (OVA). And the effects of these B cells were estimated. Results CD86-silenced OVA-pulsed B cells significantly inhibited OVA-induced allergies. Treatment with CD40-/CD86-silenced OVA-pulsed B cells led to a significantly fewer sneezes and nasal rubbing movements, as well as lower OVA-specific immunoglobulin E (IgE) levels, than that with CD40-silenced or CD86-silenced OVA-pulsed B cells alone. These inhibitory effects were observed prior to sensitization as well as after the establishment of allergic rhinitis. CD40-/CD86-silenced OVA-pulsed B cells did not inhibit keyhole limpet hemocyanin-induced allergies. CD40-/CD86-silenced OVA-pulsed B cells also significantly inhibited allergic symptoms and OVA-specific IgE level in sera compared with CD40-/CD86-silenced OVA-pulsed dendritic cells (DCs). In addition, CD19+CD40− B cells significantly increased in the nasal tissue after intravenous administration of these cells. Furthermore, CD40-/CD86-silenced B cells inhibited allergic symptoms caused by Cry j 1, a major aeroallergen of Japanese cedar pollen, and Cry j 1-specific IgE in sera. Conclusion This study showed, for the first time, that siRNA-induced CD86-silenced B cells significantly inhibited allergic responses and symptoms antigen-specifically, and that siRNA-induced CD40-/CD86-silenced antigen-specific B cells are a more useful antigen-specific therapy than CD40- or CD86-silenced B cells alone for the control of allergies. Furthermore, it was shown that CD40-/CD86-silenced B cells have stronger inhibition of IgE production and allergic symptoms than CD40-/CD86-silenced DCs.
Collapse
Affiliation(s)
- Motohiko Suzuki
- 1 Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| | - Tamami Matsumoto
- 1 Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| | - Kiichi Toyoda
- 1 Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| | - Yoshihisa Nakamura
- 1 Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| | - Shingo Murakami
- 1 Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| |
Collapse
|
19
|
Hong JY, Li SS, Hu TY, Liu ZQ, Yu D, Yu HQ, Guan L, Wu GH, Zeng HT, Liu ZG, Yang PC. Frontline Science: TLR3 activation inhibits food allergy in mice by inducing IFN-γ + Foxp3 + regulatory T cells. J Leukoc Biol 2019; 106:1201-1209. [PMID: 30997942 DOI: 10.1002/jlb.3hi0918-348rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 01/14/2023] Open
Abstract
The pathologic feature of food allergy (FA) is the aberrant Th2-biased immune response in the intestine. Regulatory T cells (Tregs) play an important role in the suppression of aberrant immune response. The activities of the TLRs regulate multiple cell functions. This study aims to investigate the role of TLR3 activation in the regulation of Th2-biased immune response in the intestine by the generation of inducible Tregs (iTregs). In this study, polyinosinic polycytidylic acid (polyI:C) was used as an activator of TLR3. An FA mouse model was developed to establish the Th2-biased inflammation in the intestine. The effects of TLR3 activation on the generation of iTreg were tested in the culture and in mice. We observed that exposure to polyI:C induced IFN-γ+ Foxp3+ iTregs in mouse intestine and in the culture. The IFN-γ+ Foxp3+ iTregs showed immune suppressive functions. Exposure to polyI:C increased T-bet levels in CD4+ T cells. The T-bet formed a complex with GATA3 to dissociate Foxp3 from GATA3/Foxp3 complex in CD4+ T cells. The Foxp3 thus gained the opportunity to move to TGF-β promoter to generate iTregs. Administration with polyI:C prevented the development of FA and inhibited existing FA. In conclusion, activation of TLR3 induces IFN-γ+ Foxp3+ Tregs, which can prevent FA development and inhibit existing FA in mice.
Collapse
Affiliation(s)
- Jing-Yi Hong
- Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shan-Shan Li
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Tian-Yong Hu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Qiang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China.,Brain-Body Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dian Yu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Hai-Qiong Yu
- Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Li Guan
- Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Gao-Hui Wu
- Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hao-Tao Zeng
- Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
20
|
Matsushita T. Regulatory and effector B cells: Friends or foes? J Dermatol Sci 2019; 93:2-7. [DOI: 10.1016/j.jdermsci.2018.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022]
|
21
|
Jiménez-Saiz R, Patil SU. The Multifaceted B Cell Response in Allergen Immunotherapy. Curr Allergy Asthma Rep 2018; 18:66. [PMID: 30291463 DOI: 10.1007/s11882-018-0819-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While allergen immunotherapy (AIT) for IgE-mediated diseases holds curative potential, the considerable heterogeneity in clinical outcomes may relate to the complex mechanisms of tolerance. The regulation of humoral immunity by AIT contributes to the suppression of allergic responses. Recent findings have revealed novel roles for IgA and IgG antibodies in the induction of tolerance. These mechanisms synergize with their ability to block allergen-IgE binding and mediate inhibitory signaling of effector cells of the allergic response. In addition, the regulatory activity of B cells in AIT extends beyond IL-10 secretion and induction of IgG4. Here, we review the evolution of the B cell response during AIT with special emphasis on the novel protective mechanisms entailing humoral immunity.
Collapse
Affiliation(s)
- Rodrigo Jiménez-Saiz
- Department of Biochemistry and Molecular Biology, Chemistry School, Complutense University, Madrid, Spain
| | - Sarita U Patil
- Department of Medicine Division of Rheumatology, Allergy, and Immunology, Department of Pediatrics, Division of Allergy and Immunology, Food Allergy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Suzuki M, Yokota M, Nakamura Y, Ozaki S, Murakami S. A novel allergen-specific therapy with CD40-silenced B cells and dendritic cells. J Allergy Clin Immunol 2018; 142:1994-1997.e8. [PMID: 30144474 DOI: 10.1016/j.jaci.2018.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Motohiko Suzuki
- Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan.
| | - Makoto Yokota
- Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| | - Yoshihisa Nakamura
- Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| | - Shinya Ozaki
- Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| | - Shingo Murakami
- Department of Otorhinolaryngology, Nagoya City University, Nagoya, Japan
| |
Collapse
|
23
|
Shao JB, Luo XQ, Wu YJ, Li MG, Hong JY, Mo LH, Liu ZG, Li HB, Liu DB, Yang PC. Histone deacetylase 11 inhibits interleukin 10 in B cells of subjects with allergic rhinitis. Int Forum Allergy Rhinol 2018; 8:1274-1283. [PMID: 30007011 DOI: 10.1002/alr.22171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The interleukin (IL)-10 expression in B cells plays an important role in immune tolerance. The regulation of IL-10 expression in B cells is not fully understood yet. Tumor necrosis factor (TNF) is increased in allergic rhinitis (AR) patients. This study tests a hypothesis that TNF enhances histone deacetylase (HDAC)11 expression to inhibit the expression of IL-10 in B cells of AR patients. METHODS Peripheral B cells were collected from healthy persons and patients with AR. The B cells were analyzed by immune assay and molecular biological approaches for the expression of IL-10. RESULTS The expression of HDAC11 was higher in B cells of patients with AR than that in healthy persons. The expression of IL-10 in B cells was lower in AR patients than that in healthy subjects. The levels of HDAC11 in B cells were negatively correlated with the levels of IL-10. Exposure of B cells to TNF in the culture inhibited the expression of IL-10, in which HDAC11 played a critical role in the interference with the Il10 gene transcription. Inhibition of HDAC11 restored the IL-10 expression in B cells from AR patients and attenuated the experimental AR. CONCLUSION TNF can suppress the expression of IL-10 in B cells via enhancing the expression of HDAC11. Inhibition of HDAC11 restores the IL-10 expression in B cells of AR subjects. HDAC11 may be a novel target for the treatment of AR.
Collapse
Affiliation(s)
- Jian-Bo Shao
- Department of Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of Pediatric Otolaryngology, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Yong-Jin Wu
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Rhinology, Longgang ENT Hospital, Shenzhen, China
| | - Mao-Gang Li
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing-Yi Hong
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Li-Hua Mo
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Rhinology, Longgang ENT Hospital, Shenzhen, China
| | - Zhi-Gang Liu
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Hua-Bin Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Da-Bo Liu
- Department of Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of Pediatric Otolaryngology, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Ping-Chang Yang
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy (AIT) is currently the only curative treatment available for allergic diseases, and has been used in clinical practice for over a century. Induction and maintenance of immune tolerance to nonhazardous environmental and self-antigens is essential to maintain homeostasis and prevent chronic inflammation. Regulatory B (BREG) cells are immunoregulatory cells that protect against chronic inflammatory responses primarily through production of anti-inflammatory cytokines such as IL-10, transforming growth factor-β, and IL-35. The importance of BREG cells has been extensively demonstrated in the context of autoimmune diseases. Data showing their role in the regulation of allergic responses are slowly accumulating. This review summarizes recent findings relevant to the topic of BREG cells and their potential role in AIT. RECENT FINDINGS BREG cells support AIT in models of allergic airway inflammation and intestinal inflammation through induction of regulatory T (TREG) cells. In humans BREG frequency increases during venom immunotherapy while the phenotype of allergen-specific B cells changes. Mechanisms of BREG-mediated tolerance to allergens include IL-10-mediated suppression of effector T cell, including TH2 responses, induction of TREG cells, IL-10-mediated inhibition of Dendritic cell maturation, modulation of T follicular helper responses, and production of anti-inflammatory IgG4 antibodies. SUMMARY Current evidence supports a potential role for BREG cells in induction and maintenance of allergen tolerance during AIT. A better understanding of the role of B cells and BREG cells in AIT could open potential new windows for developing targeted therapies specifically focused on promoting BREG responses during AIT.
Collapse
|
25
|
Koivisto L, Bi J, Häkkinen L, Larjava H. Integrin αvβ6: Structure, function and role in health and disease. Int J Biochem Cell Biol 2018; 99:186-196. [PMID: 29678785 DOI: 10.1016/j.biocel.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors that traditionally mediate cell-to-extracellular matrix and cell-to-cell adhesion. They can, however, also bind a large repertoire of other molecules. Integrin αvβ6 is exclusively expressed in epithelial cells where it can, for example, serve as a fibronectin receptor. However, its hallmark function is to activate transforming growth factor-β1 (TGF-β1) to modulate innate immune surveillance in lungs and skin and along the gastrointestinal tract, and to maintain epithelial stem cell quiescence. The loss of αvβ6 integrin function in mice and humans leads to an altered immune response in lungs and skin, amelogenesis imperfecta, periodontal disease and, in some cases, alopecia. Elevated αvβ6 integrin expression and aberrant TGF-β1 activation and function are associated with organ fibrosis and cancer. Therefore, αvβ6 integrin serves as an attractive target for cancer imaging and for fibrosis and cancer therapy.
Collapse
Affiliation(s)
- Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
26
|
Li MY, Zhu M, Linghu EQ, Feng F, Zhu B, Wu C, Guo MZ. Interleukin-13 suppresses interleukin-10 via inhibiting A20 in peripheral B cells of patients with food allergy. Oncotarget 2018; 7:79914-79924. [PMID: 27825134 PMCID: PMC5346760 DOI: 10.18632/oncotarget.13107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
The regulatory B cells (Breg) are important in the body immunity. The differentiation process of Breg is not fully understood yet. Ubiquitin A20 has immune regulatory functions. This study aims to investigate the role of A20 in the regulation of interleukin (IL)-10 in B cells. In this study, B cells were isolated from the peripheral blood samples of healthy subjects and patients with food allergy (FA). The B cells were analyzed by flow cytometry, real time RT-PCR, Western blotting and chromatin immunoprecipitation. We observed that the frequency of Breg and the levels of A20 in B cells were markedly lower in FA patients than in healthy controls. In vitro deletion of A20 compromised the expression of IL-10. B cells in FA patients showed higher levels of histone deacetylase (HDAC)-11 than in healthy subjects. Exposure to IL-13 in the culture induced high levels of HDAC11 in B cells. IL-13 also repressed the expression of A20 in B cells, in which HDAC11 played a critical role via inducing the chromatin remoldeling at the IL-10 promoter locus. Mice with A20-deficient B cells are prone to FA. In summary, ubiquitin A20 can increase the IL-10 expression in B cells, which can be affected by the IL-13-induced HDAC11. To inhibit HDAC11 may have therapeutic potential for FA.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Gastroenterology and Hepatopathy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Zhu
- Department of Medical Oncology, Division of South Building, Chinese PLA General Hospital, Beijing, 100853, China
| | - En-Qiang Linghu
- Department of Gastroenterology and Hepatopathy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Command, Shenyang 110016, PR China
| | - Bing Zhu
- Liver Failure Treatment and Research Center, 302nd Military Hospital, Beijing 100039, China
| | - Cheng Wu
- Department of Digestive Endoscopy, Division of South Building, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ming-Zhou Guo
- Department of Gastroenterology and Hepatopathy, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
27
|
Lin RT, Liu JQ, Lu HY, Chen YM, Guan L, Liu ZG, Liu ZJ, Yang PC. Micro RNA-155 plays a critical role in the initiation of food allergen-related inflammation in the intestine. Oncotarget 2017; 8:67497-67505. [PMID: 28978048 PMCID: PMC5620188 DOI: 10.18632/oncotarget.18723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of food allergy (FA) is to be further investigated. Regulatory B cells (B10 cell) play a critical in the maintenance of the homeostasis in the intestine. Deregulation of B10 cell is associated with immune inflammation. Micro RNA (miR) 155 is involved in affecting immune cell function. This study tests a hypothesis that miR-155 affects the B10 cell function to facilitate the initiation of FA. In this study, BALB/c mice were sensitized to ovalbumin (OVA) to induce FA-like inflammation in the intestine. B cells were isolated from the intestine by magnetic cell sorting. The expression of miR-155 and IL-10 in B cells was assessed by real time RT-PCR. The results showed that mice sensitized to OVA showed FA-like inflammation and lower frequency of B10 cell in the intestine. B cells isolated from the intestine of FA mice showed higher levels of miR-155 and lower levels of IL-10. Although all the three T helper (Th)2 cytokines, including interleukin (IL)-4, IL-5 and IL-13, were higher in the serum, only IL-13 was positively correlated with the levels of miR-155 in the intestinal B cells. Exposure to IL-13 in the culture markedly increased the expression of miR-155 and suppressed the expression of IL-10 in B cells. Blocking miR-155 abolished the IL-13-induced IL-10 suppression in B cells and inhibited FA response in mice. In conclusion, miR-155 plays a critical role in the initiation of FA in mice. Blocking miR-155 has therapeutic potential in the treatment of FA.
Collapse
Affiliation(s)
- Ri-Tian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Jiang-Qi Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Hui-Ying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ya-Mei Chen
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Li Guan
- Department of Physical Examination, Affiliated Luohu Hospital, Shenzhen University, Shenzhen 518001, China
| | - Zhi-Gang Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Zhan-Ju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ping-Chang Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| |
Collapse
|
28
|
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev 2017; 278:219-236. [DOI: 10.1111/imr.12555] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
29
|
Aitoro R, Paparo L, Amoroso A, Di Costanzo M, Cosenza L, Granata V, Di Scala C, Nocerino R, Trinchese G, Montella M, Ercolini D, Berni Canani R. Gut Microbiota as a Target for Preventive and Therapeutic Intervention against Food Allergy. Nutrients 2017; 9:nu9070672. [PMID: 28657607 PMCID: PMC5537787 DOI: 10.3390/nu9070672] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota plays a pivotal role in immune system development and function. Modification in the gut microbiota composition (dysbiosis) early in life is a critical factor affecting the development of food allergy. Many environmental factors including caesarean delivery, lack of breast milk, drugs, antiseptic agents, and a low-fiber/high-fat diet can induce gut microbiota dysbiosis, and have been associated with the occurrence of food allergy. New technologies and experimental tools have provided information regarding the importance of select bacteria on immune tolerance mechanisms. Short-chain fatty acids are crucial metabolic products of gut microbiota responsible for many protective effects against food allergy. These compounds are involved in epigenetic regulation of the immune system. These evidences provide a foundation for developing innovative strategies to prevent and treat food allergy. Here, we present an overview on the potential role of gut microbiota as the target of intervention against food allergy.
Collapse
Affiliation(s)
- Rosita Aitoro
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Lorella Paparo
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Antonio Amoroso
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Margherita Di Costanzo
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Linda Cosenza
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Viviana Granata
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Carmen Di Scala
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Rita Nocerino
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giovanna Trinchese
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Mariangela Montella
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", 80055 Portici, Italy.
- Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Roberto Berni Canani
- Department of Translational Medical Science-Pediatric Section, University of Naples "Federico II", 80131 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples "Federico II", 80131 Naples, Italy.
- European Laboratory for the Investigation of Food Induced Diseases, University of Naples "Federico II", 80131 Naples, Italy.
- CEINGE Advanced Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
30
|
van Bilsen JHM, Sienkiewicz-Szłapka E, Lozano-Ojalvo D, Willemsen LEM, Antunes CM, Molina E, Smit JJ, Wróblewska B, Wichers HJ, Knol EF, Ladics GS, Pieters RHH, Denery-Papini S, Vissers YM, Bavaro SL, Larré C, Verhoeckx KCM, Roggen EL. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 2017; 7:13. [PMID: 28507730 PMCID: PMC5429547 DOI: 10.1186/s13601-017-0152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). MAIN BODY The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. CONCLUSION The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | | | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Harry J Wichers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Edward F Knol
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Simona L Bavaro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | | | | |
Collapse
|
31
|
Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72:682-690. [PMID: 27864967 DOI: 10.1111/all.13089] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Under homeostatic conditions, as well as in various diseases, leukocyte migration is a crucial issue for the immune system that is mainly organized through the activation of bone marrow-derived cells in various tissues. Immune cell trafficking is orchestrated by a family of small proteins called chemokines. Leukocytes express cell-surface receptors that bind to chemokines and trigger transendothelial migration. Most allergic diseases, such as asthma, rhinitis, food allergies, and atopic dermatitis, are generally classified by the tissue rather than the type of inflammation, making the chemokine/chemokine receptor system a key point of the immune response. Moreover, because small antagonists can easily block such receptors, various molecules have been developed to suppress the recruitment of immune cells during allergic reactions, representing potential new drugs for allergies. We review the chemokines and chemokine receptors that are important in asthma, food allergies, and atopic dermatitis and their respectively developed antagonists.
Collapse
Affiliation(s)
- L. Castan
- INRA; UR1268 BIA; Nantes France
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- Université de Nantes; Nantes France
| | - A. Magnan
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- CHU de Nantes; Service de Pneumologie; Institut du thorax; Nantes France
| | | |
Collapse
|
32
|
Boonpiyathad T, Meyer N, Moniuszko M, Sokolowska M, Eljaszewicz A, Wirz OF, Tomasiak-Lozowska MM, Bodzenta-Lukaszyk A, Ruxrungtham K, van de Veen W. High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy 2017; 72:407-415. [PMID: 27341567 DOI: 10.1111/all.12966] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND The involvement of B cells in allergen tolerance induction remains largely unexplored. This study investigates the role of B cells in this process, by comparing B-cell responses in allergic patients before and during allergen immunotherapy (AIT) and naturally exposed healthy beekeepers before and during the beekeeping season. METHODS Circulating B cells were characterized by flow cytometry. Phospholipase A2 (PLA)-specific B cells were identified using dual-color staining with fluorescently labeled PLA. Expression of regulatory B-cell-associated surface markers, interleukin-10, chemokine receptors, and immunoglobulin heavy-chain isotypes, was measured. Specific and total IgG1, IgG4, IgA, and IgE from plasma as well as culture supernatants of PLA-specific cells were measured by ELISA. RESULTS Strikingly, similar responses were observed in allergic patients and beekeepers after venom exposure. Both groups showed increased frequencies of plasmablasts, PLA-specific memory B cells, and IL-10-secreting CD73- CD25+ CD71+ BR 1 cells. Phospholipase A2-specific IgG4-switched memory B cells expanded after bee venom exposure. Interestingly, PLA-specific B cells showed increased CCR5 expression after high-dose allergen exposure while CXCR4, CXCR5, CCR6, and CCR7 expression remained unaffected. CONCLUSIONS This study provides the first detailed characterization of allergen-specific B cells before and after bee venom tolerance induction. The observed B-cell responses in both venom immunotherapy-treated patients and naturally exposed beekeepers suggest a similar functional immunoregulatory role for B cells in allergen tolerance in both groups. These findings can be investigated in other AIT models to determine their potential as biomarkers of early and successful AIT responses.
Collapse
Affiliation(s)
- T. Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
- Department of Medicine; Phramongkutklao Hospital; Bangkok Thailand
- Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - N. Meyer
- Department of Rheumatology, Clinical Immunology and Allergology; University Hospital; Bern Switzerland
| | - M. Moniuszko
- Department of Regenerative Medicine and Immune Regulation; Medical University of Bialystok; Bialystok Poland
- Department of Allergology and Internal Medicine; Medical University of Bialystok; Bialystok Poland
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - A. Eljaszewicz
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
- Department of Regenerative Medicine and Immune Regulation; Medical University of Bialystok; Bialystok Poland
| | - O. F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - M. M. Tomasiak-Lozowska
- Department of Allergology and Internal Medicine; Medical University of Bialystok; Bialystok Poland
| | - A. Bodzenta-Lukaszyk
- Department of Allergology and Internal Medicine; Medical University of Bialystok; Bialystok Poland
| | - K. Ruxrungtham
- Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
| | - W. van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
33
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
34
|
Molnarfi N, Bjarnadóttir K, Benkhoucha M, Juillard C, Lalive PH. Activation of human B cells negatively regulates TGF-β1 production. J Neuroinflammation 2017; 14:13. [PMID: 28103949 PMCID: PMC5244520 DOI: 10.1186/s12974-017-0798-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Accumulating evidence indicate that B cells can exhibit pro- or anti-inflammatory activities. Similar to interleukin (IL)-10-competent B cells, we recently showed that transforming growth factor (TGF)-β1-producing regulatory B cells limit the induction of autoimmune neuroinflammation in mice, making them potentially important in maintaining peripheral immune tolerance in central nervous system inflammatory demyelinating disorders such as multiple sclerosis. METHODS In this study, we compared B cell production of TGF-β1 and IL-10, the two most studied regulatory cytokines, and the pro-inflammatory B cell-derived IL-6 and tumor necrosis factor cytokines under basal conditions and following polyclonal stimulation with dual B cell receptor (BCR) cross-linking and Toll-like receptor (TLR)9 engagement. RESULTS We showed that resting TGF-β1-producing B cells fall within both the naïve (CD27-) and memory (CD27+) B cell compartments. We found no spontaneous B cell-derived IL-10, IL-6 or tumor necrosis factor (TNF) production. Human B cell activation with anti-Ig antibodies plus CPG-B leads to only modest IL-10 production by memory CD19+CD27+ B cells while expression levels of IL-6 and TNF by both naive and memory B cells were strongly induced. Remarkably, stimulated B cells showed significantly reduced capacity to produce TGF-β1. CONCLUSIONS These findings indicate that B cell activation may facilitate the development of excessive immune responses and autoimmunity by restricting B cell-derived TGF-β1 production by resting B cells and favoring in turns the proinflammatory actions of activated cytokine-producing B cells.
Collapse
Affiliation(s)
- Nicolas Molnarfi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kristbjörg Bjarnadóttir
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Catherine Juillard
- Unit of Neuroimmunology and Multiple Sclerosis, Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Unit of Neuroimmunology and Multiple Sclerosis, Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland. .,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
35
|
Habener A, Behrendt AK, Skuljec J, Jirmo AC, Meyer-Bahlburg A, Hansen G. B cell subsets are modulated during allergic airway inflammation but are not required for the development of respiratory tolerance in a murine model. Eur J Immunol 2017; 47:552-562. [PMID: 27995616 DOI: 10.1002/eji.201646518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/01/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023]
Abstract
Allergic asthma is a widespread chronic inflammatory disease of the airways. The role of different B cell subsets in developing asthma and respiratory tolerance is not well known. Especially regulatory B (Breg) cells are proposed to be important in asthma regulation. Using wild-type (WT) and B cell-deficient (μMT) mice we investigated how B cells are affected by induction of allergic airway inflammation and respiratory tolerance and whether they are necessary to develop these conditions. WT mice with an asthma-like phenotype, characterized by increased airway hyper reactivity, eosinophilic airway inflammation, mucus hypersecretion and elevated Th2 cytokines, exhibited increased MHCII and CD23 expression on follicular mature B cells in lung, bronchial lymph nodes (bLN) and spleen, which contributed to allergen-specific T cell proliferation in vitro. Germinal center B cell numbers were elevated and associated with increased production of allergen-specific immunoglobulins especially in bLN. In contrast, respiratory tolerance clearly attenuated these B cell alterations and directly enhanced marginal zone precursor B cells, which induced regulatory T cells in vitro. However, μMT mice developed asthma-like and tolerized phenotypes like WT mice. Our data indicate that although B cell subsets are affected by asthma-like and respiratory tolerant phenotypes, B cells are not required for tolerance induction.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Ann-Kathrin Behrendt
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Adan Chari Jirmo
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL).,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
36
|
Abstract
Inflammatory bowel diseases (IBDs) are thought to develop as a result of complex interactions between host genetics, the immune system and the environment including the gut microbiome. Although an improved knowledge of the immunopathogenesis of IBDs has led to great advances in therapy such as the highly effective anti-tumor necrosis factor class of medications, a significant proportion of patients with Crohn's disease and ulcerative colitis do not respond to anti-tumor necrosis factor antibodies. Further understanding of the different immune pathways involved in the genesis of chronic intestinal inflammation is required to help find effective treatments for IBDs. In this review, the role of the mucosal innate and adaptive immune system in IBD is summarized, highlighting new areas of discovery which may hold the key to identifying novel predictive or prognostic biomarkers and new avenues of therapeutic discovery.
Collapse
|
37
|
Bjarnadóttir K, Benkhoucha M, Merkler D, Weber MS, Payne NL, Bernard CCA, Molnarfi N, Lalive PH. B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation. Sci Rep 2016; 6:34594. [PMID: 27708418 PMCID: PMC5052622 DOI: 10.1038/srep34594] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 10/25/2022] Open
Abstract
Studies in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), have shown that regulatory B cells modulate the course of the disease via the production of suppressive cytokines. While data indicate a role for transforming growth factor (TGF)-β1 expression in regulatory B cell functions, this mechanism has not yet been tested in autoimmune neuroinflammation. Transgenic mice deficient for TGF-β1 expression in B cells (B-TGF-β1-/-) were tested in EAE induced by recombinant mouse myelin oligodendrocyte glycoprotein (rmMOG). In this model, B-TGF-β1-/- mice showed an earlier onset of neurologic impairment compared to their littermate controls. Exacerbated EAE susceptibility in B-TGF-β1-/- mice was associated with augmented CNS T helper (Th)1/17 responses. Moreover, selective B cell TGF-β1-deficiency increased the frequencies and activation of myeloid dendritic cells, potent professional antigen-presenting cells (APCs), suggesting that B cell-derived TGF-β1 can constrain Th1/17 responses through inhibition of APC activity. Collectively our data suggest that B cells can down-regulate the function of APCs, and in turn encephalitogenic Th1/17 responses, via TGF-β1, findings that may be relevant to B cell-targeted therapies.
Collapse
Affiliation(s)
- Kristbjörg Bjarnadóttir
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany.,Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Natalie L Payne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Claude C A Bernard
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Nicolas Molnarfi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, Division of Neurology, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
38
|
Ponce M, Diesner SC, Szépfalusi Z, Eiwegger T. Markers of tolerance development to food allergens. Allergy 2016; 71:1393-404. [PMID: 27286276 DOI: 10.1111/all.12953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
IgE-mediated reactions to food allergens are the most common cause of anaphylaxis in childhood. Although allergies to cow's milk, egg, or soy proteins, in contrast to peanut and tree nut allergens, resolve within the first 6 years of life in up to 60% due to natural tolerance development, this process is not well understood. At present, there is no cure or treatment for food allergy that would result in an induction of tolerance to the symptom-eliciting food. Avoidance, providing an emergency plan and education, is the standard of treatment. Oral immunotherapeutic approaches have been proven reasonable efficacy; however, they are associated with high rates of side-effects and low numbers of patients achieving tolerance. Nevertheless, mechanisms that take place during oral immunotherapy may help to understand tolerance development. On the basis of these therapeutic interventions, events like loss of basophil activation and induction of regulatory lymphocyte subsets and of blocking antibodies have been described. Their functional importance at a clinical level, however, remains to be investigated in detail. Consequently, there is eminent need to understand the process of tolerance development to food allergens and define biomarkers to develop and monitor new treatment strategies for food allergy.
Collapse
Affiliation(s)
- M. Ponce
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - S. C. Diesner
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - Z. Szépfalusi
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - T. Eiwegger
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
- Division of Immunology and Allergy, Food allergy and Anaphylaxis Program; The Department of Paediatrics; Hospital for Sick Children; Research Institute, Physiology and Experimental Medicine Program; The University of Toronto; Toronto ON Canada
| |
Collapse
|
39
|
van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 2016; 138:654-665. [DOI: 10.1016/j.jaci.2016.07.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
|
40
|
Julia V, Staumont-Salle D, Dombrowicz D. [Role of fractalkine/CX3CL1 and its receptor CX3CR1 in allergic diseases]. Med Sci (Paris) 2016; 32:260-6. [PMID: 27011244 DOI: 10.1051/medsci/20163203010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Allergic asthma and atopic dermatitis are diseases mainly resulting from the activation of Th2 cells, that produce cytokines favouring IgE production and eosinophilia but also of Th1 cells, that contribute to inflammation chronicity. Lymphocyte recruitment and retention of Th cells in target organs are 2 key events for asthma and atopic dermatitis pathogenesis. While lymphocyte migration is regulated by chemokines and lipid mediators such as leukotrienes and prostaglandins, factors involved in lymphocyte retention and survival within inflammatory tissues remain poorly understood. Recent works show that, in allergic diseases, there is an increased expression of fractalkine/CX3CL1 and its unique receptor CX3CR1 and that this chemokine does not act as chemoattractant. In allergic asthma, CX3CR1 expression regulates Th2 and Th1 cell survival in the inflammatory lung, while, in atopic dermatitis, it regulate Th2 and Th1 cell retention into the inflammatory site. Use of peptides blocking fractalkine binding to its receptor is currently tested in the treatment of asthma and atopic dermatitis.
Collapse
Affiliation(s)
- Valérie Julia
- CNRS, Inserm, université de Nice-Sophia Antipolis, institut de pharmacologie moléculaire et cellulaire, 660, route des Lucioles, 06560 Valbonne, France
| | - Delphine Staumont-Salle
- Université de Lille, Inserm, CHU Lille, European genomic institute of diabetes, institut Pasteur de Lille, U1011 - récepteurs nucléaires, maladies cardiovasculaires et diabète, 59000 Lille, France
| | - David Dombrowicz
- Université de Lille, Inserm, CHU Lille, European genomic institute of diabetes, institut Pasteur de Lille, U1011 - récepteurs nucléaires, maladies cardiovasculaires et diabète, 59000 Lille, France
| |
Collapse
|
41
|
Liu T, Navarro S, Lopata AL. Current advances of murine models for food allergy. Mol Immunol 2016; 70:104-17. [DOI: 10.1016/j.molimm.2015.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/21/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
42
|
Abstract
Food allergies are a global health issue with increasing prevalence. Allergic reactions can range from mild local symptoms to severe anaphylactic reactions. Significant progress has been made in diagnostic tools such as component-resolved diagnostics and its impact on risk stratification as well as in therapeutic approaches including biologicals. However, a cure for food allergy has not yet been achieved and patients and their families are forced to alter eating habits and social engagements, impacting their quality of life. New technologies and improved in vitro and in vivo models will advance our knowledge of the pathogenesis of food allergies and multicenter-multinational cohort studies will elucidate interactions between genetic background, lifestyle, and environmental factors. This review focuses on new insights and developments in the field of food allergy and summarizes recently published articles.
Collapse
Affiliation(s)
- A. Carrard
- Division of Pediatric Pulmonology and Allergology; University Children's Hospital, Inselspital; University of Bern; Bern Switzerland
| | - D. Rizzuti
- Division of Pediatric Gastroenterology, Hepatology and Nutrition; University Children's Hospital, Inselspital; University of Bern; Bern Switzerland
| | - C. Sokollik
- Division of Pediatric Gastroenterology, Hepatology and Nutrition; University Children's Hospital, Inselspital; University of Bern; Bern Switzerland
| |
Collapse
|
43
|
Ray A, Wang L, Dittel BN. IL-10-independent regulatory B-cell subsets and mechanisms of action. Int Immunol 2015; 27:531-6. [PMID: 25999596 PMCID: PMC11513724 DOI: 10.1093/intimm/dxv033] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Although classically B cells are known to play important roles in immune protection via humoral immunity, recently their regulatory mechanisms have been best appreciated in the context of autoimmunity. Several studies have identified different subsets of regulatory B cells that vary not only in their phenotype but also in their mechanism of action. Although the best-studied mechanism of B-cell immune regulation is IL-10 production, other IL-10-independent mechanisms have been proposed. These include maintenance of CD4(+)Foxp3(+) regulatory T cells; production of transforming growth factor-β, IL-35, IgM or adenosine or expression of PD-L1 (programmed death 1 ligand 1) or FasL (Fas ligand). Given that B-cell-targeted therapy is being increasingly used in the clinic, a complete understanding of the mechanisms whereby B cells regulate inflammation associated with specific diseases is required for designing safe and effective immunotherapies targeting B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Cell Lineage/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fas Ligand Protein/genetics
- Fas Ligand Protein/immunology
- Gene Expression Regulation/immunology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Humans
- Interleukin-10
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Avijit Ray
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53201, USA
| | - Luman Wang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Biotherapy Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Bonnie N Dittel
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53201, USA
| |
Collapse
|
44
|
Yang G, Geng XR, Liu ZQ, Liu JQ, Liu XY, Xu LZ, Zhang HP, Sun YX, Liu ZG, Yang PC. Thrombospondin-1 (TSP1)-producing B cells restore antigen (Ag)-specific immune tolerance in an allergic environment. J Biol Chem 2015; 290:12858-67. [PMID: 25839231 PMCID: PMC4432301 DOI: 10.1074/jbc.m114.623421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/21/2015] [Indexed: 01/03/2023] Open
Abstract
Restoration of the antigen (Ag)-specific immune tolerance in an allergic environment is refractory. B cells are involved in immune regulation. Whether B cells facilitate the generation of Ag-specific immune tolerance in an allergic environment requires further investigation. This paper aims to elucidate the mechanism by which B cells restore the Ag-specific immune tolerance in an allergic environment. In this study, a B cell-deficient mouse model was created by injecting an anti-CD20 antibody. The frequency of tolerogenic dendritic cell (TolDC) was assessed by flow cytometry. The levels of cytokines were determined by enzyme-linked immunosorbent assay. The expression of thrombospondin-1 (TSP1) was assessed by quantitative real-time RT-PCR, Western blotting, and methylation-specific PCR. The results showed that B cells were required in the generation of the TGF-β-producing TolDCs in mice. B cell-derived TSP1 converted the latent TGF-β to the active TGF-β in DCs, which generated TGF-β-producing TolDCs. Exposure to IL-13 inhibited the expression of TSP1 in B cells by enhancing the TSP1 gene DNA methylation. Treating food allergy mice with Ag-specific immunotherapy and IL-13 antagonists restored the generation of TolDCs and enhanced the effect of specific immunotherapy. In conclusion, B cells play a critical role in the restoration of specific immune tolerance in an allergic environment. Blocking IL-13 in an allergic environment facilitated the generation of TolDCs and enhanced the therapeutic effect of immunotherapy.
Collapse
Affiliation(s)
- Gui Yang
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China, the Brain Body Institute, McMaster University, Hamilton, Ontario L8N 4A6, Canada, and Longgang Central Hospital, Shenzhen 518116, China
| | - Xiao-Rui Geng
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China, the Brain Body Institute, McMaster University, Hamilton, Ontario L8N 4A6, Canada, and Longgang Central Hospital, Shenzhen 518116, China
| | - Zhi-Qiang Liu
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China, the Brain Body Institute, McMaster University, Hamilton, Ontario L8N 4A6, Canada, and Longgang Central Hospital, Shenzhen 518116, China
| | - Jiang-Qi Liu
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China, the Brain Body Institute, McMaster University, Hamilton, Ontario L8N 4A6, Canada, and Longgang Central Hospital, Shenzhen 518116, China
| | - Xiao-Yu Liu
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Ling-Zhi Xu
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Huan-Ping Zhang
- the Brain Body Institute, McMaster University, Hamilton, Ontario L8N 4A6, Canada, and
| | - Ying-Xue Sun
- the Brain Body Institute, McMaster University, Hamilton, Ontario L8N 4A6, Canada, and
| | - Zhi-Gang Liu
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China,
| | - Ping-Chang Yang
- From the ENT Institute of Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University, Shenzhen 518060, China, the Brain Body Institute, McMaster University, Hamilton, Ontario L8N 4A6, Canada, and
| |
Collapse
|
45
|
The future of biologics: applications for food allergy. J Allergy Clin Immunol 2015; 135:312-23. [PMID: 25662303 DOI: 10.1016/j.jaci.2014.12.1908] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 01/18/2023]
Abstract
Allergic diseases affect millions worldwide, with growing evidence of an increase in allergy occurrence over the past few decades. Current treatments for allergy include corticosteroids to reduce inflammation and allergen immunotherapy; however, some subjects experience treatment-resistant inflammation or adverse reactions to these treatments, and there are currently no approved therapeutics for the treatment of food allergy. There is a dire need for new therapeutic approaches for patients with poorly controlled atopic diseases and a need to improve the safety and effectiveness of allergen immunotherapy. Improved understanding of allergy through animal models and clinical trials has unveiled potential targets for new therapies, leading to the development of several biologics to treat allergic diseases. This review focuses on the mechanisms that contribute to allergy, with an emphasis on future targets for biologics for the treatment of food allergy. These biologics include immunotherapy with novel anti-IgE antibodies and analogs, small-molecule inhibitors of cell signaling, anti-type 2 cytokine mAbs, and TH1-promoting adjuvants.
Collapse
|
46
|
Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Sci Rep 2014; 4:7583. [PMID: 25533220 PMCID: PMC4274510 DOI: 10.1038/srep07583] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/18/2014] [Indexed: 01/02/2023] Open
Abstract
The mechanism of immune tolerance is to be further understood. The present study aims to investigate the role of the Cardiac endothelial cell (CEC)-derived exosomes in the induction of regulatory B cells. In this study, CECs were isolated from the mouse heart. Exosomes were purified from the culture supernatant of the primary endothelial cells. The suppressor functions of the regulatory B cells were determined by flow cytometry. The results showed that the CEC-derived exosomes carried integrin αvβ6. Exposure to lipopolysaccharide (LPS) induced B cells to express the latent transforming growth factor (TGF)-β, the latter was converted to the active form, TGF-β, by the exosome-derived αvβ6. The B cells released TGF-β in response to re-exposure to the exosomes in the culture, which suppressed the effector T cell proliferation. We conclude that CEC-derived exosomes have the capacity to induce B cells with immune suppressor functions.
Collapse
|
47
|
Abstract
The science of food allergy has been rapidly evolving before our eyes in the past half century. Like other allergic disorders, the prevalence of food allergies has dramatically increased, and coupled with the increased public awareness of anaphylaxis due to food allergy, this has driven an explosion in basic and clinical research in this extremely broad subject. Treatment of food allergies has evolved and practices such as food challenges have become an integral part of an allergy practice. The impact of the increase of food allergy has driven package labeling laws, legislation on emergency treatment availability in schools and other public places, and school policy. But to this day, our knowledge of the pathogenesis of food allergy is still incomplete. There are the most obvious IgE-mediated immediate hypersensitivity reactions, but then multiple previously unidentified conditions such as eosinophilic esophagitis, food protein-induced enterocolitis syndrome, milk protein allergy, food-induced atopic dermatitis, oral allergy syndrome, and others have complicated the diagnosis and management of many of our patients who are unable to tolerate certain foods. Many of these conditions are not IgE-mediated, but may be T cell-driven diseases. The role of T regulatory cells and immune tolerance and the newly discovered immunological role of vitamin D have shed light on the variable clinical presentation of food allergy and the development of new methods of immunotherapy in an example of bench-to-bedside research. Component-resolved diagnostic techniques have already begun to allow us to more precisely define the epitopes that are targeted in food allergic patients. The development of biological modulators, research on genomics and proteomics, and epigenetic techniques all offer promising avenues for new modes of therapy of food allergy in the twenty-first century.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA,
| | | | | |
Collapse
|
48
|
Palomares O, Crameri R, Rhyner C. The contribution of biotechnology toward progress in diagnosis, management, and treatment of allergic diseases. Allergy 2014; 69:1588-601. [PMID: 25307026 DOI: 10.1111/all.12533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
'Biotechnology' has been intuitively used by humans since thousands of years for the production of foods, beverages, and drugs based on the experience without any scientific background. However, the golden era of this discipline emerged only during the second half of the last century. Incredible progresses have been achieved on all fields starting from the industrialization of the production of foods to the discovery of antibiotics, the decipherment of the genetic code, and rational approaches to understand and define the status we now call 'healthy'. The extremely complex interactions between genetic background, life style, and environmental factors influencing our continuously increasing life span have become more and more evident and steadily generate new questions which are only partly answered. Here, we try to summarize the contribution of biotechnology to our understanding, control, and cure of IgE-mediated allergic diseases. We are aware that a review of such a vast topic can never cover all aspects of the progress achieved in the different fields.
Collapse
Affiliation(s)
- O. Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - R. Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - C. Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| |
Collapse
|
49
|
Han S, Feng S, Ren M, Ma E, Wang X, Xu L, Xu M. Glioma cell-derived placental growth factor induces regulatory B cells. Int J Biochem Cell Biol 2014; 57:63-8. [DOI: 10.1016/j.biocel.2014.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/27/2014] [Accepted: 10/04/2014] [Indexed: 01/26/2023]
|
50
|
Braza F, Chesne J, Castagnet S, Magnan A, Brouard S. Regulatory functions of B cells in allergic diseases. Allergy 2014; 69:1454-63. [PMID: 25060230 DOI: 10.1111/all.12490] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/24/2022]
Abstract
B cells are essentially described for their capacity to produce antibodies ensuring anti-infectious immunity or deleterious responses in the case of autoimmunity or allergy. However, abundant data described their ability to restrain inflammation by diverse mechanisms. In allergy, some regulatory B-cell subsets producing IL-10 have been recently described as potent suppressive cells able to restrain inflammatory responses both in vitro and in vivo by regulatory T-cell differentiation or directly inhibiting T-cell-mediated inflammation. A specific deficit in regulatory B cells participates to more severe allergic inflammation. Induction of allergen tolerance through specific immunotherapy induces a specific expansion of these cells supporting their role in establishment of allergen tolerance. However, the regulatory functions carried out by B cells are not exclusively IL-10 dependent. Indeed, other regulatory mechanisms mediated by B cells are (i) the production of TGF-β, (ii) the promotion of T-cell apoptosis by Fas-Fas ligand or granzyme-B pathways, and (iii) their capacity to produce inhibitory IgG4 and sialylated IgG able to mediate anti-inflammatory mechanisms. This points to Bregs as interesting targets for the development of new therapies to induce allergen tolerance. In this review, we highlight advances in the study of regulatory mechanisms mediated by B cells and outline what is known about their phenotype as well as their suppressive role in allergy from studies in both mice and humans.
Collapse
Affiliation(s)
- F. Braza
- INSERM; UMR 1087; l'institut du Thorax; Nantes France
- CNRS; UMR 6291; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- INSERM; UMR U1064; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
| | - J. Chesne
- INSERM; UMR 1087; l'institut du Thorax; Nantes France
- CNRS; UMR 6291; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- INSERM; UMR U1064; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
| | - S. Castagnet
- Laboratoire HLA; Établissement Français du Sang; Nantes France
| | - A. Magnan
- INSERM; UMR 1087; l'institut du Thorax; Nantes France
- CNRS; UMR 6291; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
- CHU Nantes; l'institut du Thorax; Service de Pneumologie; Nantes France
| | - S. Brouard
- INSERM; UMR U1064; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
| |
Collapse
|