1
|
Ardicli S, Ardicli O, Yazici D, Pat Y, Babayev H, Xiong P, Zeyneloglu C, Garcia-Sanchez A, Shi LL, Viscardi OG, Skolnick S, Ogulur I, Dhir R, Jutel M, Agache I, Janda J, Pali-Schöll I, Nadeau KC, Akdis M, Akdis CA. Epithelial barrier dysfunction and associated diseases in companion animals: Differences and similarities between humans and animals and research needs. Allergy 2024; 79:3238-3268. [PMID: 39417247 DOI: 10.1111/all.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Since the 1960s, more than 350,000 new chemicals have been introduced into the lives of humans and domestic animals. Many of them have become part of modern life and some are affecting nature as pollutants. Yet, our comprehension of their potential health risks for both humans and animals remains partial. The "epithelial barrier theory" suggests that genetic predisposition and exposure to diverse factors damaging the epithelial barriers contribute to the emergence of allergic and autoimmune conditions. Impaired epithelial barriers, microbial dysbiosis, and tissue inflammation have been observed in a high number of mucosal inflammatory, autoimmune and neuropsychiatric diseases, many of which showed increased prevalence in the last decades. Pets, especially cats and dogs, share living spaces with humans and are exposed to household cleaners, personal care products, air pollutants, and microplastics. The utilisation of cosmetic products and food additives for pets is on the rise, unfortunately, accompanied by less rigorous safety regulations than those governing human products. In this review, we explore the implications of disruptions in epithelial barriers on the well-being of companion animals, drawing comparisons with humans, and endeavour to elucidate the spectrum of diseases that afflict them. In addition, future research areas with the interconnectedness of human, animal, and environmental well-being are highlighted in line with the "One Health" concept.
Collapse
Affiliation(s)
- Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Türkiye
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Peng Xiong
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical & Diagnostic Sciences, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | | | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SEED Inc. Co., Los Angeles, California, USA
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Jozef Janda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine and Medical University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
2
|
Klimov PB, Hubert J, Erban T, Alejandra Perotti M, Braig HR, Flynt A, He Q, Cui Y. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 2024; 54:661-674. [PMID: 38992783 DOI: 10.1016/j.ijpara.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.
Collapse
Affiliation(s)
- Pavel B Klimov
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA; Tyumen State University, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen, Russia.
| | - Jan Hubert
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia; Czech University of Life Science, Faculty of Microbiology Nutrient and Dietics, Prague, Czechia
| | - Tomas Erban
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia
| | - M Alejandra Perotti
- University of Reading, Ecology and Evolutionary Biology Section, School of Biological Sciences, Reading RG6 6AS, United Kingdom
| | - Henk R Braig
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, J5400 DNQ, Argentina
| | - Alex Flynt
- University of Southern Mississippi, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS, USA
| | - Qixin He
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA.
| | - Yubao Cui
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University.Wuxi, PR Chin.
| |
Collapse
|
3
|
Hensel P, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Pucheu-Haston C, Santoro D. Update on the role of genetic factors, environmental factors and allergens in canine atopic dermatitis. Vet Dermatol 2024; 35:15-24. [PMID: 37840229 DOI: 10.1111/vde.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Canine atopic dermatitis (cAD) is a common, complex and multifactorial disease involving, among others, genetic predisposition, environmental factors and allergic sensitisation. OBJECTIVE This review summarises the current evidence on the role of genetic and environmental factors and allergic sensitisation in the pathogenesis of cAD since the last review by ICADA in 2015. MATERIALS AND METHODS Online citation databases and proceedings from international meetings on genetic factors, environmental factors and allergens relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Despite intensive research efforts, the detailed genetic background predisposing to cAD and the effect of a wide range of environmental factors still need more clarification. Genome-wide association studies and investigations on genetic biomarkers, such as microRNAs, have provided some new information. Environmental factors appear to play a major role. Lifestyle, especially during puppyhood, appears to have an important impact on the developing immune system. Factors such as growing up in a rural environment, large size of family, contact with other animals, and a nonprocessed meat-based diet may reduce the risk for subsequent development of cAD. It appears that Toxocara canis infection may have a protective effect against Dermatophagoides farinae-induced cAD. House dust mites (D. farinae and D. pteronyssinus) remain the most common allergen group to which atopic dogs react. Currently, the major allergens related to D. farinae in dogs include Der f 2, Der f 15, Der f 18 and Zen 1. CONCLUSIONS AND CLINICAL RELEVANCE Canine atopic dermatitis remains a complex, genetically heterogeneous disease that is influenced by multiple environmental factors. Further, well-designed studies are necessary to shed more light on the role of genetics, environmental factors and major allergens in the pathogenesis of cAD.
Collapse
Affiliation(s)
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Hartung BF, Mueller RS, Gauss J, Weitzer T, Boehm TMSA, Palić J, Schulz B. Reactions to environmental allergens in cats with feline lower airway disease. Front Vet Sci 2023; 10:1267496. [PMID: 38130436 PMCID: PMC10734688 DOI: 10.3389/fvets.2023.1267496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives Aeroallergens have been discussed as potential triggers for feline asthma (FA), which can be induced experimentally by allergen sensitization. To date, only few studies have investigated reactions to environmental allergens in cats with naturally occurring feline lower airway disease (FLAD). The aim of the study was to compare results of intradermal testing (IDT) and serum allergen-specific immunoglobulin E-(IgE) testing (SAT) in cats with FLAD, and to investigate possible associations with allergen exposure. Material and methods Eight cats with eosinophilic airway inflammation (EI), ten cats with mixed inflammation (MI), six with neutrophilic inflammation (NI), and 24 healthy cats (HC) were included. Cats diagnosed with FLAD were assigned to the different inflammatory groups based on bronchoalveolar lavage fluid (BLAF) cytology. SAT was performed in all cats; IDT was only carried out in cats with FLAD. Information about the cats' environment and potential allergen exposure was obtained using an owner questionnaire. Results In comparison to 83% of HC with positive reactions on SAT only 52% of cats with FLAD had positive responses (p = 0.051). Significantly more positive reactions per cat were detected on IDT than on SAT (p = 0.001). No significant difference was found for positive reactions per cat on SAT when compared between HC, NI, EI, and MI (p = 0.377). Only "slight" agreement was found for most allergens when reactions obtained in both tests in cats with FLAD were compared, except for "moderate" agreement for English plantain (k = 0.504) and Alternaria alternata (k = 0.488). Overall, no clear association between the cats' environment and allergen reactions were detected. Conclusions and clinical importance Interpretation of allergy test results in cats with FLAD should be done in the context of clinical signs and individual factors.
Collapse
Affiliation(s)
- Birte F. Hartung
- LMU Small Animal Clinic, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ralf S. Mueller
- LMU Small Animal Clinic, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jana Gauss
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tamara Weitzer
- LMU Small Animal Clinic, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Jelena Palić
- Vet Med Labor GmbH Division of IDEXX Laboratories, Kornwestheim, Germany
| | - Bianka Schulz
- LMU Small Animal Clinic, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
5
|
Martins LML. Survey of Sensitization to Common Fungi in an Allergic Dog Population: The Need for Further Focus on Sensitization and Allergy to Fungi in Veterinary Medicine. J Fungi (Basel) 2023; 9:1075. [PMID: 37998880 PMCID: PMC10672432 DOI: 10.3390/jof9111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Most fungal species are commensals and non-pathogenic to plants, humans, or animals. However, several species of the Alternaria, Aspergillus, Trichophyton, and Microsporum genera are common causes of disease, even for immunocompetent individuals. Besides mucosal damage, fungi may contribute to a skin barrier impairment, favoring sensitization and allergy development. A total of 68 allergic dogs were selected from a veterinary dermatology and allergy outpatient consultation for conditions related to both Malassezia overgrowth and other fungal complications. The allergy diagnosis was made through anamnesis and current clinical criteria, with the involved allergenic species being identified by intradermal tests (IDTs) and allergen-specific immunoglobulin E (sIgE) determination in serum. Dermatophagoides farinae, Dactylis glomerata, and Malassezia pachydermatis showed as the higher sensitization species from house dust mites, grass pollen, and fungi, respectively. Significant correlations at p < 0.05 were found between sensitization to Dactylis glomerata and Phleum pratense grass pollens, Dermatophagoides farinae and Dermatophagoides pteronyssinus, Acarus siro, Tyrophagus putrescentiae, and Lepidoglyphus destructor dust/storage mites, and between fungi like Aspergillus mix and Penicillium or Alternaria alternata. A significant correlation was also found between sensitization to the Aspergillus mix and D. farinae, D. pteronyssinus, or A. siro. Rather severe dermatitis was observed when a positive IDT to Malassezia pachydermatis was found, regardless of the detection of circulating sIgE, allowing us to consider the usefulness of both the IDT and the sIgE for a systematic diagnosis of allergy to fungi.
Collapse
Affiliation(s)
- Luís Miguel Lourenço Martins
- Department of Veterinary Medicine, School of Science and Technology, MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Apartado 94, 7006-554 Évora, Portugal
| |
Collapse
|
6
|
Pessoa VC, Branco-Ferreira M, Jónsdóttir S, Marti E, Tilley P. Comparison of Skin Prick Tests (SPT), Intradermal Tests (IDT) and In Vitro Tests in the Characterization of Insect Bite Hypersensitivity (IBH) in a Population of Lusitano Horses: Contribution for Future Implementation of SPT in IBH Diagnosis. Animals (Basel) 2023; 13:2733. [PMID: 37684997 PMCID: PMC10486572 DOI: 10.3390/ani13172733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Thirty controls (C) and 30 IBH-affected (T) Lusitano horses were evaluated. T horses were included based on anamnesis and physical examination, supported by questionnaires. All horses were submitted to skin tests, Intrademal (IDT) and Skin Prick Tests (SPT), on the neck with 14 specific allergens, 13 recombinant proteins (r-proteins) from Culicoides nubeculosus (Cul n) and Culicoides obsoletus (Cul o) salivary glands and Culicoides nubeculosus Whole Body Extract (Cul n WBE). Addicionally, a cluster of six T and six C horses were also tested with Cul n 3 and Cul n 4 produced in insect cells and barley, as well as E. coli produced Cul o 3 and Cul o WBE. Allergen concentrations were 10 µg/mL for IDT and 100 µg/mL for SPT, and wheal diameters assessed at 20 min, 6 and 48 h. IDTs were considered positive when wheal diameter was ≥50% of the histamine wheal and SPT's ≥ 0.9 cm. In vitro tests, allergen-specific serum IgE and sulfidoleukotriene (sLT) release assay were also carried out. Results showed that Cul n WBE, Cul n 7, 8, 9, Cul o1P and Cul o 2P were the best performing allergens for SPTs (p ≤ 0.0001) for the 1st allergen panel and Cul o WBE, Cul n 3 Bar and Cul n 4 Bac (p ≤ 0.05) for the 2nd, presenting a higher discriminatory diagnostic potential than IDTs, at a concentration of 100 µg/mL, with readings assessed at 20 min. Regarding in vitro tests overall, the sLT release assay performed best.
Collapse
Affiliation(s)
- Vera Carvalho Pessoa
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- AL4Animals—Associate Laboratory for Animal and Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Manuel Branco-Ferreira
- Immunoallergology University Clinic, Faculty of Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
| | - Sigridur Jónsdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, 102 Reykjavik, Iceland;
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Paula Tilley
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- AL4Animals—Associate Laboratory for Animal and Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Song H, Lee J, Jeong KY, Cheon DS, Park JW. Comparison of sensitization patterns to dust mite allergens between atopic dermatitis patients and dogs, and non-specific reactivity of canine IgE to the storage mite Tyrophagus putrescentiae. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:41-55. [PMID: 36190668 DOI: 10.1007/s10493-022-00744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
House dust mite is a common cause of atopic dermatitis (AD) both in humans and dogs. Detection of serum IgE to allergens is commonly used to diagnose allergic diseases. However, false-positive reactions due to cross-reactivity and non-specific reactivity may lead to misdiagnosis. We compared human and canine IgE reactivities to mite component allergens. Canine IgE-reactive components of Dermatophagoides farinae and Tyrophagus putrescentiae were identified by tandem mass spectrometry. Recombinant proteins were produced and IgE reactivities to component allergens were assessed by ELISA and inhibition assays using sera from AD patients and dogs. Canine IgE-reactive proteins (Der f 1, Der f 11, Tyr p 4, Tyr p 8, Tyr p 11, Tyr p 28) were identified by proteome analysis. Most patients were sensitized to Der f 1 (93.3%) and Der f 2 (86.7%). Dogs showed high sensitization to Der f 2 (94.1%) and Der f 18 (84.6%). Both patients and dogs showed low IgE binding frequency to Tyr p 8, 43.3% and 4%, respectively. The ELISA inhibition study indicated that canine IgE reactivity to T. putrescentiae is mostly due to non-specific reaction and cross-reaction with D. farinae. Different IgE sensitization patterns were shown between allergic humans and dogs with AD, especially to Der f 18, for the first time in Korea. Furthermore, non-specific canine IgE reactivity to storage mite indicates the possibility of misdiagnoses. Standardizations focused on the major canine allergen content of extracts should be developed. This will allow precision diagnosis and individuated treatments for each patient and atopic dog.
Collapse
Affiliation(s)
- Hangyeol Song
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jongsun Lee
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | | | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
8
|
One Health: Flächen im Lebensumfeld von Mensch und Tier und ihre Auswirkungen auf Allergie und Asthma. ALLERGO JOURNAL 2022. [DOI: 10.1007/s15007-022-5015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Martins LML. Allergy to Fungi in Veterinary Medicine: Alternaria, Dermatophytes and Malassezia Pay the Bill! J Fungi (Basel) 2022; 8:235. [PMID: 35330237 PMCID: PMC8951134 DOI: 10.3390/jof8030235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The fungal kingdom comprises ubiquitous forms of life with 1.5 billion years, mostly phytopathogenic and commensals for humans and animals. However, in the presence of immune disorders, fungi may cause disease by intoxicating, infecting or sensitizing with allergy. Species from the genera Alternaria, Aspergillus and Malassezia, as well as dermatophytes from the genera Microsporum, Trichophyton and Epidermophyton, are the most commonly implicated in veterinary medicine. Alternaria and Malassezia stand as the most commonly associated with either allergy or infection in animals, immediately followed by Aspergillus, while dermatophytes are usually associated with the ringworm skin infection. By aiming at the relevance of fungi in veterinary allergy it was concluded that further research is still needed, especially in the veterinary field.
Collapse
Affiliation(s)
- Luís Miguel Lourenço Martins
- Department of Veterinary Medicine, School of Science and Technology, MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, University of Évora, 7000-809 Évora, Portugal
| |
Collapse
|
10
|
Pali‐Schöll I, Roth‐Walter F, Jensen‐Jarolim E. One Health in allergology: A concept that connects humans, animals, plants, and the environment. Allergy 2021; 76:2630-2633. [PMID: 33665860 PMCID: PMC8359833 DOI: 10.1111/all.14804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Isabella Pali‐Schöll
- Comparative Medicine Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Austria
- Center of Pathophysiology, Infectiology and Immunology Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Franziska Roth‐Walter
- Comparative Medicine Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Austria
- Center of Pathophysiology, Infectiology and Immunology Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Erika Jensen‐Jarolim
- Comparative Medicine Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Austria
- Center of Pathophysiology, Infectiology and Immunology Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
11
|
Insect Protein-Based Diet as Potential Risk of Allergy in Dogs. Animals (Basel) 2021; 11:ani11071942. [PMID: 34209808 PMCID: PMC8300419 DOI: 10.3390/ani11071942] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Before insects can be used widely as an alternative source of dietary protein, their allerginicity should be investigated. Therefore, the aim of our study was to assess the potential adverse reactions of the immune system of dogs against Tenebrio molitor proteins. Dogs sensitised to storage mites T. putrescentiae and A. siro were included. Clinically healthy and clinically allergic dogs were compared. Proteins were extracted from mealworm larvae and their digestibility determined by in vitro incubation with digestive proteases. Mealworm protein extracts and digests were analysed by SDS-PAGE. Canine sera tested for the presence of mite-specific IgEs were used for subsequent Western blotting. LC-MS/MS analysis was used to identify mealworm proteins and their allergenic potential was predicted with the AllermatchTM tool. The binding of canine sera IgEs to mealworm proteins was confirmed; however, the differences between the two groups of dogs were not significant. Moreover, no clear correlation was found between sensitisation to storage mites and clinical status of the dogs. Altogether, 17 different proteins were identified, including tropomyosin, α-amylase, and Tm-E1a cuticular protein that are known cross-reacting IgE-binding allergens. Our results suggest that dogs allergic to mites may clinically express also the cross-reactivity with mealworm proteins.
Collapse
|
12
|
Di Tommaso M, Luciani A, Crisi PE, Beschi M, Rosi P, Rocconi F, Miglio A. Detection of Serum Allergen-Specific IgE in Atopic Dogs Tested in Northern Italy: Preliminary Study. Animals (Basel) 2021; 11:358. [PMID: 33535414 PMCID: PMC7912760 DOI: 10.3390/ani11020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Canine atopic dermatitis (CAD) is a pruritic allergic skin disease associated with IgE-mediated hypersensitivity. IgE is detected using Serum Allergen-Specific IgE test (SAT) in order to identify allergens. The present study aims to identify the environmental allergens in atopic dogs living in Northern Italy using SAT. The screening SAT (sSAT), using a monoclonal antibody cocktail-based ELISA to identify indoor and outdoor allergens, was performed. In all positive samples, an anti-IgE monoclonal antibody ELISA test was performed to extend panel of allergens. Out of 117 selected dogs, 69 were included in the study; 71% were positive and 29% were negative to sSAT. Among the 49 positive sSAT, 53% were positive for both indoor and outdoor, 38.8% only for indoor, and 8.2% only for outdoor allergens. This is the first study on the frequency of allergens involved in CAD in Italy using SAT. IgE hypersensitivity in atopic dogs of Northern Italy is usually associated with indoor allergens, primarily house dust mites. Among the outdoor allergens, an important role was played by Rumex acetosa. Polysensitization also commonly occurs. Therefore, since the numerous factors affect the IgE positivity in CAD, specific panels for geographical areas should be considered and re-evaluated at time intervals.
Collapse
Affiliation(s)
- Morena Di Tommaso
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Piano d’Accio, 64100 Teramo, Italy; (A.L.); (F.R.); (A.M.)
| | - Alessia Luciani
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Piano d’Accio, 64100 Teramo, Italy; (A.L.); (F.R.); (A.M.)
| | - Paolo Emidio Crisi
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Piano d’Accio, 64100 Teramo, Italy; (A.L.); (F.R.); (A.M.)
| | - Marica Beschi
- Veterinary Clinic Dr. Paolo Rosi, via Brescia 46, 25086 Rezzato (BS), Italy; (M.B.); (P.R.)
| | - Paolo Rosi
- Veterinary Clinic Dr. Paolo Rosi, via Brescia 46, 25086 Rezzato (BS), Italy; (M.B.); (P.R.)
| | - Francesca Rocconi
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Piano d’Accio, 64100 Teramo, Italy; (A.L.); (F.R.); (A.M.)
| | - Arianna Miglio
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Piano d’Accio, 64100 Teramo, Italy; (A.L.); (F.R.); (A.M.)
| |
Collapse
|
13
|
Moog F, Brun J, Bourdeau P, Cadiergues MC. Clinical, Parasitological, and Serological Follow-Up of Dogs with Sarcoptic Mange Treated Orally with Lotilaner. Case Rep Vet Med 2021; 2021:6639017. [PMID: 33575060 PMCID: PMC7857930 DOI: 10.1155/2021/6639017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Canine sarcoptic mange is a highly pruritic and contagious skin disease caused by the mite Sarcoptes scabiei var. canis. This case series describes the clinical, parasitological, and serological follow-up of a cohort of eight adult Saint Bernard dogs with confirmed sarcoptic mange, treated orally with lotilaner. Dogs were evaluated initially and after 14 days and 1, 2, 3, 4, 6, and 12 months for skin lesions, pruritus severity, presence of parasites, and Sarcoptes-IgG levels. A serological indoor allergy panel (IgE) was obtained for seven dogs at day 0 and repeated 12 months later in five dogs to assess potential cross-reactivity between S. scabiei and environmental allergens. Lotilaner was administered to each dog according to the manufacturer's instructions and was repeated after one and two months without any concurrent therapeutic measure or modification of the husbandry conditions. Pruritus ceased after two weeks. The cutaneous score was reduced by 47%, and skin scrapings were negative for all but three animals. All skin scrapings were negative after one month. Lesions were absent after two months. Serological levels decreased gradually, but more slowly than the skin lesions, and two dogs out of six remained positive in the absence of skin lesions or symptoms. All dogs initially tested positive for dust mites and/or storage mites. The IgE titres remained unchanged 12 months later in the five tested dogs. This case report demonstrates the efficacy of lotilaner on scabies in a cohort of infested dogs under natural conditions and the potential antigenic cross-reaction of S. scabiei with house dust and storage mites.
Collapse
Affiliation(s)
- F. Moog
- Small Animal Clinic, Université de Toulouse, ENVT, Toulouse, France
| | - J. Brun
- Small Animal Clinic, Université de Toulouse, ENVT, Toulouse, France
| | - P. Bourdeau
- LUNAM, University-ONIRIS-DPMA Unit/NP3 Unit, Nantes, France
| | - M. C. Cadiergues
- Small Animal Clinic, Université de Toulouse, ENVT, Toulouse, France
- INFINITY, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| |
Collapse
|
14
|
IgE reactivity to fish allergens from Pacific cod (Gadus macrocephalus) in atopic dogs. BMC Vet Res 2020; 16:341. [PMID: 32938440 PMCID: PMC7493343 DOI: 10.1186/s12917-020-02559-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Background IgE reactivity to fish allergens in atopic dogs, which are used as models for food allergy, has not been elucidated to date. We investigated IgE reactivity to crude extracts and purified allergens derived from the Pacific cod (Gadus macrocephalus) in atopic dogs to identify the allergenic proteins of cod. Results The levels of specific IgE to crude cod extracts were measured in the sera of 179 atopic dogs, including 27 dogs with cod allergy, using enzyme-linked immunosorbent assay (ELISA). Specific IgE to crude cod extracts were present in 36 (20%) of the 179 atopic dogs and in 12 (44%) of the 27 dogs with cod allergy. The allergens in crude cod extracts were analyzed by ELISA, immunoblotting, and liquid chromatography-tandem mass spectrometry. In allergen component analysis, IgE reactivity to tropomyosin and enolase was observed in the sera of dogs with cod allergy. IgE reactivity to parvalbumin, collagen, and tropomyosin was evaluated using the sera of atopic dogs that tested positive for specific IgE to crude cod extracts. Among the 36 dogs with IgE reactivity to crude cod extracts, 9 (25%), 14 (39%), and 18 (50%) dogs tested positive for specific IgE to parvalbumin, collagen, and tropomyosin, respectively. Conclusions The IgE reactivity to cod allergens observed in dogs was similar to that in humans, and this finding further supports the use of atopic dogs with fish allergy as a model for fish allergy in humans.
Collapse
|
15
|
Cul o 2 specific IgG3/5 antibodies predicted Culicoides hypersensitivity in a group imported Icelandic horses. BMC Vet Res 2020; 16:283. [PMID: 32778104 PMCID: PMC7418374 DOI: 10.1186/s12917-020-02499-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culicoides hypersensitivity (CH) is induced in horses by salivary allergens of Culicoides midges. In Iceland, the causal Culicoides species for CH are not present. Previous epidemiological data indicated that Icelandic horses are more susceptible to CH when they are exported from Iceland and first exposed to Culicoides at adult age. Horses born in countries where Culicoides is endemic, develop the disease less frequently. Here, we established a longitudinal allergy model to identify predictive and diagnostic serological biomarkers of CH. RESULTS Sixteen adult Icelandic horses from Iceland were imported to the Northeastern United States (US) during the winter and were kept in the same environment with natural Culicoides exposure for the next two years. None of the horses showed clinical allergy during the first summer of Culicoides exposure. In the second summer, 9/16 horses (56%) developed CH. Allergen specific IgE and IgG isotype responses in serum samples were analysed using nine potential Culicoides allergens in a fluorescent bead-based multiplex assay. During the first summer of Culicoides exposure, while all horses were still clinically healthy, Cul o 2 specific IgG3/5 antibodies were higher in horses that developed the allergic disease in the second summer compared to those that did not become allergic (p = 0.043). The difference in Cul o 2 specific IgG3/5 antibodies between the two groups continued to be detectable through fall (p = 0.035) and winter of the first year. During the second summer, clinical signs first appeared and Cul o 3 specific IgG3/5 isotypes were elevated in allergic horses (p = 0.041). Cul o 2 specific IgG5 (p = 0.035), and Cul o 3 specific IgG3/5 (p = 0.043) were increased in late fall of year two when clinical signs started to improve again. CONCLUSIONS Our results identified IgG5 and IgG3/5 antibodies against Cul o 2 and Cul o 3, respectively, as markers for CH during and shortly after the allergy season in the Northeastern US. In addition, Cul o 2 specific IgG3/5 antibodies may be valuable as a predictive biomarker of CH in horses that have been exposed to Culicoides but did not yet develop clinical signs.
Collapse
|
16
|
Wilkołek P, Szczepanik M, Sitkowski W, Rodzik B, Pluta M, Taszkun I, Gołyński M. Evaluation of multiple allergen simultaneous (sIgE) testing compared to intradermal testing in the etiological diagnosis of atopic dermatitis in horses. J Vet Sci 2020; 20:e60. [PMID: 31775187 PMCID: PMC6883192 DOI: 10.4142/jvs.2019.20.e60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
Although intradermal testing (IDT) is commonly used in the etiological diagnosis of allergies, in vitro testing for specific IgE (sIgE) is an attractive alternative. Currently, new laboratory techniques in veterinary allergological practice, including multiple allergen simultaneous tests (MASTs), gradually supersede in vivo tests. Both, serological (sIgE) and IDTs in fourteen atopic Malopolski horses were performed. Correlation and agreement between test results were evaluated. Receiver operating characteristic analysis showed that sIgE to Acarus siro had the best diagnostic performance (Area under the ROC curve [AUC] = 0.969), followed by Dermatophagoides pteronyssinus (AUC = 0.844), Dermatophagoides farinae (AUC = 0.813) and Tyrophagus putrescentiae (AUC = 0.803). A significant positive correlation between IDT and MAST was found for A. siro (rS = 0.870; p = 0.00005), and D. farinae (rS = 0.657; p = 0.011). There was significant moderate agreement for 2 of 5 allergens, A. siro (κ = 0.569) and D. farinae (κ = 0.485) in semiquantitative assessment and significant fair to substantial agreement for 3 of 5 allergens, D. pteronyssinus (κ = 0.689), A. siro (κ = 0.569), D. farinae (κ = 0.432) in dichotomic assessment. Sensitivity ranged from 44% to 89%, depending on the allergen, while specificity was significantly higher for all allergens in MAST (60%–100%); the mean accuracy was 73% (manufacturer cut-off) and 77.4% (optimal cut-off) based on the Youden index. Compared with IDT, serological MAST showed good detection performance for 60% allergen sIgE in dichotomic assessment with substantial diagnostic capability, but careful clinical interpretation is needed for some allergens.
Collapse
Affiliation(s)
- Piotr Wilkołek
- Sub-Department of Clinical Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland.
| | - Marcin Szczepanik
- Sub-Department of Clinical Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Wiesław Sitkowski
- Sub-Department of Clinical Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Beata Rodzik
- Institute of Mathematics, Marie Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Michał Pluta
- Equine Breeding and Management Unit, Department of Biology and Animal Breeding, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iwona Taszkun
- Sub-Department of Clinical Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Marcin Gołyński
- Nicolaus Copernicus University in Torun, Faculty of Biological and Veterinary Sciences, 87-100 Torun, Poland
| |
Collapse
|
17
|
Forsyth J, Halliwell RE, Harrand R. Co-reactivity between related and unrelated environmental allergens in equine allergen-specific IgE serology testing in the UK. Vet Dermatol 2019; 30:544-e165. [PMID: 31464011 DOI: 10.1111/vde.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Identification of environmental allergens in horses with allergic disease facilitates allergen avoidance and targeted immunotherapy. HYPOTHESIS/OBJECTIVES To evaluate allergenic co-reactivity between 44 environmental allergens. ANIMALS Horses with suspected allergic disease (n = 344) whose sera were submitted for environmental allergen testing. METHODS AND MATERIALS Allergen-specific IgE serological assays were performed using 44 allergens divided into six taxonomically related groups: house dust/storage mites, moulds, insects, grass, tree and weed pollens. Using pairwise comparisons, odds ratios (ORs) were calculated for each environmental pair to determine if there was increased or decreased likelihood of a positive result for one allergen, given a positive result to another. The OR significance was set (using Holm-Bonferroni correction) at P < 0.00006 for all horses (n = 344) and P < 0.00005 for horses with at least one positive reaction (n = 239). Using one-way ANOVA with Tukey's post hoc tests (significance at P < 0.05), differences in mean log e ORs between three groups, taxonomically related allergens with a statistically significant association (related-associated), related allergens lacking a significant association (related-nonassociated) and unrelated allergens were tested. RESULTS Statistically significant associations were found between both related and unrelated allergen pairs, the former being more frequent. For all horses (n = 344) and horses with at least one positive reaction (n = 239), co-reactivity ranged from 100% (grasses) to 0% (moulds). The weeds group was exceptional in having more co-reactions with another group (grasses). CONCLUSIONS AND CLINICAL IMPORTANCE Co-reactivity was shown within and between certain related allergen groups. Further studies are required to determine whether this is the result of antigenic cross-reactivity.
Collapse
Affiliation(s)
- Johanna Forsyth
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| | - Richard E Halliwell
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Robert Harrand
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| |
Collapse
|
18
|
Fischer NM, Müller RS. Allergen Specific Immunotherapy in Canine Atopic Dermatitis: an Update. CURRENT DERMATOLOGY REPORTS 2019. [DOI: 10.1007/s13671-019-00276-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abstract
The laboratory mouse Mus musculus has long been used as a model organism to test hypotheses and treatments related to understanding the mechanisms of disease in humans; however, for these experiments to be relevant, it is important to know the complex ways in which mice are similar to humans and, crucially, the ways in which they differ. In this chapter, an in-depth analysis of these similarities and differences is provided to allow researchers to use mouse models of human disease and primary cells derived from these animal models under the most appropriate and meaningful conditions. Although there are considerable differences between mice and humans, particularly regarding genetics, physiology, and immunology, a more thorough understanding of these differences and their effects on the function of the whole organism will provide deeper insights into relevant disease mechanisms and potential drug targets for further clinical investigation. Using specific examples of mouse models of human lung disease, i.e., asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis, this chapter explores the most salient features of mouse models of human disease and provides a full assessment of the advantages and limitations of these models, focusing on the relevance of disease induction and their ability to replicate critical features of human disease pathophysiology and response to treatment. The chapter concludes with a discussion on the future of using mice in medical research with regard to ethical and technological considerations.
Collapse
|
20
|
The detection of house dust mite Dermatophagoides farinae, Der f 2 and Zen-1 allergen-specific immunoglobulin E antibodies in dogs with atopic Dermatitis in Malaysia. Vet Immunol Immunopathol 2019; 212:43-49. [PMID: 31213251 DOI: 10.1016/j.vetimm.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023]
Abstract
Canine atopic dermatitis (AD) is a chronic, inflammatory and pruritic allergic skin disease in dogs. House dust mites such as Dermatophagoides farinae are one of the known causative agents for the induction of canine AD worldwide. D. farinae protein Der f 2 is known as an important allergen involved in canine AD and recently, Zen-1 has also been identified as an allergenic protein. There is limited information on the prevalence and role of allergen sensitization to crude D. farinae extract (CDF), Der f 2 and Zen-1 among dogs diagnosed with AD in Malaysia. The aim of this study was to determine the proportion of CDF-, Der f 2- and Zen-1-specific reactive sera among dogs diagnosed with AD in Malaysia using an enzyme-linked immunosorbent assay (ELISA). Serum samples were collected from dogs diagnosed with AD from several veterinary clinics in Malaysia. The canine case records were retrieved and information on signalment, dermatological and non-dermatological histories, clinical presentation, food allergies, and exclusion of ectoparasitic, microbial and fungal skin infections were obtained through a survey form. All serum samples were evaluated to quantify the CDF-, Der f 2- and Zen-1-specific immunoglobulin E (IgE) levels. A total of 24.6%, 48.4% and 29.8% of dogs diagnosed with AD were positive for CDF-, Der f 2- and Zen-1-specific IgE, respectively. These results suggest that CDF-, Der f 2- and Zen-1 are important allergens that can contribute to AD in dogs in Malaysia, and serological testing can be performed to provide additional treatment options involving specific immunotherapies.
Collapse
|
21
|
Pali‐Schöll I, Blank S, Verhoeckx K, Mueller RS, Janda J, Marti E, Seida AA, Rhyner C, DeBoer DJ, Jensen‐Jarolim E. EAACI position paper: Comparing insect hypersensitivity induced by bite, sting, inhalation or ingestion in human beings and animals. Allergy 2019; 74:874-887. [PMID: 30644576 DOI: 10.1111/all.13722] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Adverse reactions to insects occur in both human and veterinary patients. Systematic comparison may lead to improved recommendations for prevention and treatment in all species. In this position paper, we summarize the current knowledge on insect allergy induced via stings, bites, inhalation or ingestion, and compare reactions in companion animals to those in people. With few exceptions, the situation in human insect allergy is better documented than in animals. We focus on a review of recent literature and give overviews of the epidemiology and clinical signs. We discuss allergen sources and allergenic molecules to the extent described, and aspects of diagnosis, prophylaxis, management and therapy.
Collapse
Affiliation(s)
- Isabella Pali‐Schöll
- Comparative Medicine The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University of Vienna and University of Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) Member of the German Center of Lung Research (DZL) Technical University of Munich and Helmholtz Center Munich Munich Germany
| | - Kitty Verhoeckx
- Department of Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
- TNO Zeist The Netherlands
| | - Ralf S. Mueller
- Centre for Clinical Veterinary Medicine Ludwig Maximilian University Munich Munich Germany
| | - Jozef Janda
- Faculty of Science Charles University Prague Czech Republic
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty University of Berne Berne Switzerland
| | - Ahmed A. Seida
- Department of Microbiology and Immunology Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF) Davos Switzerland
| | - Douglas J. DeBoer
- School of Veterinary Medicine University of Wisconsin Madison Wisconsin
| | - Erika Jensen‐Jarolim
- Comparative Medicine The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University of Vienna and University of Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
22
|
|
23
|
Marteles D, Odriozola L, Verde MT, Conde T, Fernández A. Assessment of serum allergen-specific IgE levels in horses with seasonal allergic dermatitis and recurrent airway obstruction in Spain. Acta Vet Hung 2019; 67:11-21. [PMID: 30922098 DOI: 10.1556/004.2019.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergic conditions are prevalent equine diseases that can be diagnosed by clinical examination alone, but definitive diagnosis is more likely with laboratory testing. The ELISA Allercept© test was used to analyse the serum samples of 73 horses with allergic diseases. Sixty-one horses (83.5%) had allergen-specific IgE levels ≥ 150 ELISA Units (EU), the cut-off defined by the assay. Fifty-four horses had allergic dermatitis (AD) with high IgE levels to Tyrophagus putrescentiae (51.9%), Rumex crispus (48.1%), Tabanus (46.3%) and Dermatophagoides farinae/ D. pteronyssinus (40.7%). Seven horses with recurrent airway obstruction (RAO) had a high prevalence of T. putrescentiae (85.7%), followed by that of Acarus siro (57.1%) and D. farinae/D. pteronyssinus (57.1%). Horses affected with RAO had more positive reactions to mites (2.22 ± 0.84) than did horses with AD (1.51 ± 0.61, P < 0.05). A strong correlation of serum allergen-specific IgE level was found between Culex tarsalis and Stomoxys (r = 0.943) and between Dactylis glomerata and both Secale cereale (r = 0.79) and R. crispus (r = 0.696). These results indicate that among horses with allergic diseases in Spain, ELISA tests demonstrated a high prevalence of serum allergen-specific IgE in response to mites. Our study emphasises the importance of laboratory testing and updating allergy panels to improve the likelihood of a definitive diagnosis and the identification of allergens that should be included in allergic disease treatment.
Collapse
Affiliation(s)
- Diana Marteles
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Laura Odriozola
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Miguel Servet 177, 50013 Zaragoza, Spain
| | - María Teresa Verde
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Tomás Conde
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Antonio Fernández
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
24
|
Colostrum Antibodies, Egg Antibodies and Monoclonal Antibodies Providing Passive Immunity for Animals. NUTRACEUTICALS IN VETERINARY MEDICINE 2019. [PMCID: PMC7123268 DOI: 10.1007/978-3-030-04624-8_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Passive immunity can be provided to animals by several sources of antibodies including from colostrum, avian eggs, and monoclonal sources. These antibodies have been shown protect production and companion animals from a number of pathogens. This chapter reviews the immune system for the principles of immune response to antigens and the synthesis of immunoglobulins of the five classes of antibodies in the body. Colostrum antibodies are described for passive immunity protection in animals such as calves. Chicken egg antibodies are another source of antibodies for passive immunity. Therapeutic monoclonal antibodies are also used to provide passive immunity in the veterinary field.
Collapse
|
25
|
Mueller RS, Jensen‐Jarolim E, Roth‐Walter F, Marti E, Janda J, Seida AA, DeBoer D. Allergen immunotherapy in people, dogs, cats and horses - differences, similarities and research needs. Allergy 2018; 73:1989-1999. [PMID: 29675865 DOI: 10.1111/all.13464] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
Abstract
In human patients with seasonal allergic rhinoconjunctivitis sensitized to grass pollen, the first successful allergen immunotherapy (AIT) was reported in 1911. Today, immunotherapy is an accepted treatment for allergic asthma, allergic rhinitis and hypersensitivities to insect venom. AIT is also used for atopic dermatitis and recently for food allergy. Subcutaneous, epicutaneous, intralymphatic, oral and sublingual protocols of AIT exist. In animals, most data are available in dogs where subcutaneous AIT is an accepted treatment for atopic dermatitis. Initiating a regulatory response and a production of "blocking" IgG antibodies with AIT are similar mechanisms in human beings and dogs with allergic diseases. Although subcutaneous immunotherapy is used for atopic dermatitis in cats, data for its efficacy are sparse. There is some evidence for successful treatment of feline asthma with AIT. In horses, most studies evaluate the effect of AIT on insect hypersensitivity with conflicting results although promising pilot studies have demonstrated the prophylaxis of insect hypersensitivity with recombinant antigens of biting midges (Culicoides spp.). Optimizing AIT using allergoids, peptide immunotherapy, recombinant allergens and new adjuvants with the different administration types of allergen extracts will further improve compliance and efficacy of this proven treatment modality.
Collapse
Affiliation(s)
- R. S. Mueller
- Centre for Clinical Veterinary Medicine LMU Munich Munich Germany
| | - E. Jensen‐Jarolim
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology Infectiology and Immunology, Medical University Vienna Austria
| | - F. Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University Vienna Vienna Austria
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health University of Bern Bern Switzerland
| | - J. Janda
- Faculty of Science Charles University Prague Czech Republic
| | - A. A. Seida
- Immunology and Microbiology Department Faculty of Veterinary Medicine Cairo University Giza Egypt
| | - D. DeBoer
- School of Veterinary Medicine University of Wisconsin Madison WI USA
| |
Collapse
|
26
|
Seroprevalence of Immunoglobulin E Antibodies against Japanese Cedar Pollen Allergens Cry j 1 and Cry j 2 in Dogs Bred in Japan. Vet Sci 2018; 5:vetsci5030079. [PMID: 30208581 PMCID: PMC6164319 DOI: 10.3390/vetsci5030079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/04/2022] Open
Abstract
Levels of Japanese cedar pollen (Cryptomeria japonica) have increased in Japan and cedar pollinosis caused by Japanese cedar pollen has been reported in dogs. Serum levels of immunoglobulin E (IgE) against Cry j 1 and Cry j 2 in dogs raised in institutes and treated at veterinary hospitals in Japan were thus investigated. A total of 71 sera obtained from two institutes and 87 sera obtained from veterinary hospitals in the Hyogo and Kanagawa Prefectures were analyzed in this study. Serum levels of IgE were measured using the enzyme-linked immunosorbent assay with commercial purified Cry j 1 and Cry j 2. IgE against Cry j 1 and Cry j 2 in sera obtained from the two institutes were detected, despite the dogs being bred in enclosed areas. Moreover, significant differences were noted in the serum levels of IgE against Cry j 1 and Cry j 2 between the two institutes. The number of samples showing Cry j 1 or Cry j 2 levels above the cut-off values was greater in the Kanagawa Prefecture than in the Hyogo Prefecture. In total, 14 dogs showed Cry j 1 and Cry j 2 levels greater than the cut-off values in the Hyogo Prefecture, and only three such dogs were seen in the Kanagawa Prefecture. A significant correlation between serum levels against both allergens was observed (r2 = 0.6931, p < 0.0001).
Collapse
|
27
|
Einhorn L, Hofstetter G, Brandt S, Hainisch EK, Fukuda I, Kusano K, Scheynius A, Mittermann I, Resch-Marat Y, Vrtala S, Valenta R, Marti E, Rhyner C, Crameri R, Satoh R, Teshima R, Tanaka A, Sato H, Matsuda H, Pali-Schöll I, Jensen-Jarolim E. Molecular allergen profiling in horses by microarray reveals Fag e 2 from buckwheat as a frequent sensitizer. Allergy 2018; 73:1436-1446. [PMID: 29350763 PMCID: PMC6032949 DOI: 10.1111/all.13417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Background Companion animals are also affected by IgE‐mediated allergies, but the eliciting molecules are largely unknown. We aimed at refining an allergen microarray to explore sensitization in horses and compare it to the human IgE reactivity profiles. Methods Custom‐designed allergen microarray was produced on the basis of the ImmunoCAP ISAC technology containing 131 allergens. Sera from 51 horses derived from Europe or Japan were tested for specific IgE reactivity. The included horse patients were diagnosed for eczema due to insect bite hypersensitivity, chronic coughing, recurrent airway obstruction and urticaria or were clinically asymptomatic. Results Horses showed individual IgE‐binding patterns irrespective of their health status, indicating sensitization. In contrast to European and Japanese human sensitization patterns, frequently recognized allergens were Aln g 1 from alder and Cyn d 1 from Bermuda grass, likely due to specific respiratory exposure around paddocks and near the ground. The most prevalent allergen for 72.5% of the tested horses (37/51) was the 2S‐albumin Fag e 2 from buckwheat, which recently gained importance not only in human but also in horse diet. Conclusion In line with the One Health concept, covering human health, animal health and environmental health, allergen microarrays provide novel information on the allergen sensitization patterns of the companion animals around us, which may form a basis for allergen‐specific preventive and therapeutic concepts.
Collapse
Affiliation(s)
- L. Einhorn
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - G. Hofstetter
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - S. Brandt
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - E. K. Hainisch
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - I. Fukuda
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - K. Kusano
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - A. Scheynius
- Science for Life Laboratory; Department of Clinical Science and Education; Karolinska Institutet, and Sachs’ Children and Youth Hospital; Södersjukhuset; Stockholm Sweden
| | - I. Mittermann
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Y. Resch-Marat
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - S. Vrtala
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - R. Valenta
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - C. Rhyner
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Crameri
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Satoh
- Division of Food Function Research; Food Research Institute; National Agriculture and Food Research Organization; Tsukuba Japan
| | - R. Teshima
- National Institute of Health Sciences; Tokyo Japan
| | - A. Tanaka
- Laboratory of Comparative Animal Medicine; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Sato
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - I. Pali-Schöll
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Jensen-Jarolim
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
- AllergyCare; Allergy Diagnosis and Study Center; Vienna Austria
| |
Collapse
|
28
|
Pacholewska A, Kraft MF, Gerber V, Jagannathan V. Differential Expression of Serum MicroRNAs Supports CD4⁺ T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes (Basel) 2017; 8:E383. [PMID: 29231896 PMCID: PMC5748701 DOI: 10.3390/genes8120383] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate post-transcriptional gene expression and may be exported from cells via exosomes or in partnership with RNA-binding proteins. MiRNAs in body fluids can act in a hormone-like manner and play important roles in disease initiation and progression. Hence, miRNAs are promising candidates as biomarkers. To identify serum miRNA biomarkers in the equine model of asthma we investigated small RNA derived from the serum of 34 control and 37 asthmatic horses. These samples were used for next generation sequencing, novel miRNA identification and differential miRNA expression analysis. We identified 11 significantly differentially expressed miRNAs between case and control horses: eca-miR-128, eca-miR-744, eca-miR-197, eca-miR-103, eca-miR-107a, eca-miR-30d, eca-miR-140-3p, eca-miR-7, eca-miR-361-3p, eca-miR-148b-3p and eca-miR-215. Pathway enrichment using experimentally validated target genes of the human homologous miRNAs showed a significant enrichment in the regulation of epithelial-to-mesenchymal transition (key player in airway remodeling in asthma) and the phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling pathway (modulator of CD4⁺ T cell maturation and function). Downregulated miR-128 and miR-744 supports a Th2/Th17 type immune response in severe equine asthma.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Matthias F Kraft
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
| | - Vidhya Jagannathan
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| |
Collapse
|
29
|
Mueller RS, Olivry T. Critically appraised topic on adverse food reactions of companion animals (4): can we diagnose adverse food reactions in dogs and cats with in vivo or in vitro tests? BMC Vet Res 2017; 13:275. [PMID: 28854915 PMCID: PMC5577833 DOI: 10.1186/s12917-017-1142-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/14/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The gold standard to diagnose adverse food reactions (AFRs) in the dog and cat is currently an elimination diet with subsequent provocation trials. However, those trials are inconvenient and client compliance can be low. Our objective was to systematically review the literature to evaluate in vivo and in vitro tests used to diagnose AFR in small animals. RESULTS We searched three databases (CAB Abstracts, MEDLINE and Web of Science) for pertinent references on September 16, 2016. Among 71, 544 and 41 articles found in the CAB Abstract, MEDLINE and Web of Science databases, respectively, we selected 22 articles and abstracts from conference proceedings that reported data usable for evaluation of tests for AFR. Serum tests for food-specific IgE and IgG, intradermal testing with food antigens, lymphocyte proliferation tests, fecal food-specific IgE, patch, gastroscopic, and colonoscopic testing were evaluated. CONCLUSIONS Testing for serum food-specific IgE and IgG showed low repeatability and, in dogs, a highly variable accuracy. In cats, the accuracy of testing for food-specific IgE was low. Lymphocyte proliferation tests were more frequently positive and more accurate in animals with AFR, but, as they are more difficult to perform, they remain currently a research tool. All other reported tests were only evaluated by individual studies with small numbers of animals. Negative patch test reactions have a very high negative predictability in dogs and could enable a choice of ingredients for the elimination diet in selected patients. Gastroscopic and colonoscopic testing as well as food-specific fecal IgE or food-specific serum IgG measurements appear less useful. Currently, the best diagnostic procedure to identify AFRs in small animals remains an elimination diet with subsequent provocation trials.
Collapse
Affiliation(s)
- Ralf S Mueller
- Medizinische Kleintierklinik, Centre for Clinical Veterinary Medicine, LMU Munich, Veterinaerstrasse 13, 80539, Munich, Germany.
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| |
Collapse
|
30
|
Delcombel R, Karembe H, Nare B, Burton A, Liebenberg J, Fourie J, Varloud M. Synergy between dinotefuran and fipronil against the cat flea (Ctenocephalides felis): improved onset of action and residual speed of kill in adult cats. Parasit Vectors 2017; 10:341. [PMID: 28724438 PMCID: PMC5517796 DOI: 10.1186/s13071-017-2272-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/05/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The cat flea, Ctenocephalides felis felis (C. felis), is a cosmopolitan hematophagous ectoparasite, and is considered to be the most prevalent flea species in both Europe and the USA. Clinical signs frequently associated with flea bites include pruritus, dermatitis and in severe cases even pyodermatitis and alopecia. Ctenocephalides felis is also a vector for several pathogens and is an intermediate host for the cestode Dipylidium caninum. Treatment of cats with a fast-acting pulicide, that is persistently effective in protecting the animal against re-infestation, is therefore imperative to their health. In addition, a rapid onset of activity ("speed of kill") may also reduce the risks of disease transmission and flea allergic dermatitis. The aim of this study was to evaluate the in vitro insecticidal activity and potential synergism between dinotefuran and fipronil against C. felis. A further aim was to evaluate the onset of activity and residual speed of kill of the combination in vivo on cats artificially infested with C. felis. METHODS In the first study, the insecticidal activity of dinotefuran and fipronil separately and dinotefuran/fipronil (DF) in combination, at a fixed ratio (2:1), was evaluated using an in vitro coated-vial bioassay. In the second study, the onset of activity against existing flea infestations and residual speed of kill of DF against artificial flea infestations on cats was assessed in vivo. Onset of activity against existing flea infestations was assessed in terms of knock-down effect within 2 h post-treatment and onset of speed of kill assessed at 3 h, 6 h and 12 h post-treatment. Residual speed of kill was evaluated 6 h and 48 h after infestation, over a period of six weeks post-treatment. RESULTS In vitro results revealed that the DF combination was synergistic and more potent against fleas than either compound alone. The combination also proved effective when tested in vivo. Efficacy was > 97% [geometric mean (GM) and arithmetic mean (AM)] at 3 h after treatment, and ≥ 99.8% (GM and AM) at 6 h and 12 h post-treatment. At 6 h after flea re-infestations, the efficacy of DF remained ≥ 90.8% (GM and AM) for up to 28 days, and at 42 days post-treatment persistent efficacy was still ≥ 54.3% (GM and AM). At 48 h after flea re-infestations, DF remained almost fully effective for up to 28 days, with efficacies ≥ 99.4% (GM and AM) and was persistently ≥ 93.0% (GM and AM) effective for up to 42 days post-treatment. CONCLUSIONS The combination of dinotefuran and fipronil in a single formulation exhibited strong synergistic insecticidal activity against C. felis in vitro, and also proved effective on artificially infested cats. This activity had a rapid onset that persisted for 6 weeks against re-infestations of C. felis on cats. The rapid curative insecticidal effect was observed as early as 3 h after treatment, and as early as 6 h after re-infestations for up to 6 weeks post-treatment. The insecticidal activity profile of DF makes it an optimal candidate for the protection of cats against flea infestations, and possibly also associated diseases.
Collapse
Affiliation(s)
- Romain Delcombel
- Ceva Santé Animale, 10 avenue de la Ballastière, 33500 Libourne, France
| | - Hamadi Karembe
- Ceva Santé Animale, 10 avenue de la Ballastière, 33500 Libourne, France
| | - Bakela Nare
- Avista Pharma Solutions, 3501-C TriCenter Blvd, Durham, NC 27713 USA
| | - Audrey Burton
- Avista Pharma Solutions, 3501-C TriCenter Blvd, Durham, NC 27713 USA
| | - Julian Liebenberg
- Clinvet International (Pty) Ltd, Uitzich Road, Bainsvlei, Bloemfontein, South Africa
| | - Josephus Fourie
- Clinvet International (Pty) Ltd, Uitzich Road, Bainsvlei, Bloemfontein, South Africa
| | - Marie Varloud
- Ceva Santé Animale, 10 avenue de la Ballastière, 33500 Libourne, France
| |
Collapse
|
31
|
Oida K, Einhorn L, Herrmann I, Panakova L, Resch Y, Vrtala S, Hofstetter G, Tanaka A, Matsuda H, Jensen-Jarolim E. Innate function of house dust mite allergens: robust enzymatic degradation of extracellular matrix at elevated pH. World Allergy Organ J 2017; 10:23. [PMID: 28702111 PMCID: PMC5496134 DOI: 10.1186/s40413-017-0154-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022] Open
Abstract
Background Exposure to the house dust mite Dermatophagoides pteronyssinus (D.p.) increases the risk for developing allergic diseases in humans and their best friends, the dogs. Here, we explored whether this allergenic mite via its enzymes may impact the cutaneous extracellular matrix (ECM), which critically determines epithelial barrier integrity both structurally and functionally. Methods Two extracts obtained from either dust-purified or cultured D.p. bodies were used in the present study. To assess the potential impact of D.p. on protein components of the ECM, proteolytic activity of the D.p. extracts were determined by casein and gelatin gel zymography, and their N-acetyl-β-hexosaminidase activity determined colorimetrically. In addition, IgE-dependent and innate degranulation potential of D.p. was examined in canine MPT-1 mast cells and neurite outgrowth assay using rat pheochromocytoma PC-12 cells. Results In gel zymography, both extracts digested the substrates casein and gelatin in a dose-dependent manner, especially at alkaline pH, and effective in a wide range of temperatures (30 °C−42 °C). In particular, a 25-kDa band corresponding to Der p 1, the major D.p. allergen for humans, was found enzymatically active in both casein and gelatin gels regardless of the presence of metal ions and of alkaline conditions. Besides protease activity, N-acetyl-β-hexosaminidase activity was detected in both extracts, suggesting that D.p. affects the cutaneous ECM through deteriorating both proteins and glycosaminoglycans. While both D.p. extracts induced IgE-dependent mast cell degranulation, much less innate effects on mast- and neuronal cells were observed. Conclusions Our data highlight that D.p. is a robust source of several distinct enzymes with protease- and N-acetyl-β-hexosaminidase activities. In alkaline milieu they can degrade components of the ECM. Therefore, D.p. may contribute to epithelial barrier disruption especially when the skin surface pH is elevated. Electronic supplementary material The online version of this article (doi:10.1186/s40413-017-0154-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kumiko Oida
- The interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.,Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Saiwai-cho 3-8-5, Fuchu, Tokyo 183-8509 Japan
| | - Lukas Einhorn
- The interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ina Herrmann
- The interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.,Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lucia Panakova
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Yvonne Resch
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Susanne Vrtala
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.,Christian Doppler Laboratory for the Development of Allergen Chips, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerlinde Hofstetter
- The interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Akane Tanaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Saiwai-cho 3-8-5, Fuchu, Tokyo 183-8509 Japan.,Laboratory of Comparative Animal Medicine Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology Division of Animal Life Science, Institute of Agriculture, Saiwai-cho 3-8-5, Fuchu, Tokyo 183-8509 Japan
| | - Hiroshi Matsuda
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Saiwai-cho 3-8-5, Fuchu, Tokyo 183-8509 Japan.,Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-8-5, Fuchu, Tokyo 183-8509 Japan
| | - Erika Jensen-Jarolim
- The interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
32
|
DeBoer DJ. The future of immunotherapy for canine atopic dermatitis: a review. Vet Dermatol 2017; 28:25-e6. [PMID: 28133873 DOI: 10.1111/vde.12416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 01/20/2023]
Abstract
Allergen specific immunotherapy (ASIT) is a foundation treatment for canine atopic dermatitis (CAD), though few critical studies have documented its effectiveness as a disease-modifying treatment in dogs. The mechanisms by which ASIT works in dogs have not been elucidated, although they are likely to parallel those known for humans. Current ASIT approaches in CAD focus on either subcutaneous or sublingual administration. Greater knowledge of major allergens in dogs, ideal dosage regimes and details of allergen admixture are likely to lead to better efficacy in CAD. Evaluation of biomarkers for successful therapy may also be of benefit. Potentially important advances in human medicine, that have yet to be explored in dogs, include use of modified allergen preparations such as allergoids, recombinant major allergens or allergen peptides; modification with adjuvants; or packaging of the above in virus-like particles. Co-administration of immunomodulators such as CpG oligodeoxynucleotides or specific monoclonal antibodies might direct the immune response in the desired direction while calming the "cytokine storm" of active disease. Initial trials of alternative routes of administration such as intralymphatic immunotherapy have yielded exciting results in humans, and continuing study in dogs is underway. Progress in ASIT of human food allergy may provide clues that will assist with improved diagnosis and patient management of CAD. Importantly, further study must be undertaken to clarify the conditions under which ASIT is a valuable treatment modality for dogs.
Collapse
Affiliation(s)
- Douglas J DeBoer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
33
|
Jensen-Jarolim E, Pali-Schöll I, Roth-Walter F. Outstanding animal studies in allergy I. From asthma to food allergy and anaphylaxis. Curr Opin Allergy Clin Immunol 2017; 17:169-179. [PMID: 28346234 PMCID: PMC5424575 DOI: 10.1097/aci.0000000000000363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Animal models published within the past 18 months on asthma, food allergy and anaphylaxis, all conditions of rising public health concern, were reviewed. RECENT FINDINGS While domestic animals spontaneously develop asthma, food allergy and anaphylaxis, in animal models, divergent sensitization and challenge routes, dosages, intervals and antigens are used to induce asthmatic, food allergic or anaphylactic phenotypes. This must be considered in the interpretation of results. Instead of model antigens, gradually relevant allergens such as house dust mite in asthma, and food allergens like peanut, apple and peach in food allergy research were used. Novel engineered mouse models such as a mouse with a T-cell receptor for house dust mite allergen Der p 1, or with transgenic human hFcγR genes, facilitated the investigation of single molecules of interest. Whole-body plethysmography has become a state-of-the-art in-vivo readout in asthma research. In food allergy and anaphylaxis research, novel techniques were developed allowing real-time monitoring of in-vivo effects following allergen challenge. Networks to share tissues were established as an effort to reduce animal experiments in allergy which cannot be replaced by in-vitro measures. SUMMARY Natural and artificial animal models were used to explore the pathophysiology of asthma, food allergy and anaphylaxis and to improve prophylactic and therapeutic measures. Especially the novel mouse models mimicking molecular aspects of the complex immune network in asthma, food allergy and anaphylaxis will facilitate proof-of-concept studies under controlled conditions.
Collapse
Affiliation(s)
- Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Barber MF, Lee EM, Griffin H, Elde NC. Rapid Evolution of Primate Type 2 Immune Response Factors Linked to Asthma Susceptibility. Genome Biol Evol 2017; 9:1757-1765. [PMID: 28854632 PMCID: PMC5569703 DOI: 10.1093/gbe/evx120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Host immunity pathways evolve rapidly in response to antagonism by pathogens. Microbial infections can also trigger excessive inflammation that contributes to diverse autoimmune disorders including asthma, lupus, diabetes, and arthritis. Definitive links between immune system evolution and human autoimmune disease remain unclear. Here we provide evidence that several components of the type 2 immune response pathway have been subject to recurrent positive selection in the primate lineage. Notably, substitutions in the central immune regulator IL13 correspond to a polymorphism linked to asthma susceptibility in humans. We also find evidence of accelerated amino acid substitutions as well as gene gain and loss events among eosinophil granule proteins, which act as toxic antimicrobial effectors that promote asthma pathology by damaging airway tissues. These results support the hypothesis that evolutionary conflicts with pathogens promote tradeoffs for increasingly robust immune responses during animal evolution. Our findings are also consistent with the view that natural selection has contributed to the spread of autoimmune disease alleles in humans.
Collapse
Affiliation(s)
| | - Elliott M. Lee
- Department of Human Genetics, University of Utah School of Medicine
| | - Hayden Griffin
- Department of Human Genetics, University of Utah School of Medicine
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine
| |
Collapse
|
35
|
Sánchez-Borges M, Fernandez-Caldas E, Thomas WR, Chapman MD, Lee BW, Caraballo L, Acevedo N, Chew FT, Ansotegui IJ, Behrooz L, Phipatanakul W, Gerth van Wijk R, Pascal D, Rosario N, Ebisawa M, Geller M, Quirce S, Vrtala S, Valenta R, Ollert M, Canonica GW, Calderón MA, Barnes CS, Custovic A, Benjaponpitak S, Capriles-Hulett A. International consensus (ICON) on: clinical consequences of mite hypersensitivity, a global problem. World Allergy Organ J 2017; 10:14. [PMID: 28451053 PMCID: PMC5394630 DOI: 10.1186/s40413-017-0145-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023] Open
Abstract
Since mite allergens are the most relevant inducers of allergic diseases worldwide, resulting in significant morbidity and increased burden on health services, the International Collaboration in Asthma, Allergy and Immunology (iCAALL), formed by the American Academy of Allergy, Asthma and Immunology (AAAAI), the American College of Allergy, Asthma and Immunology (ACAAI), the European Academy of Allergy and Clinical Immunology (EAACI), and the World Allergy Organization (WAO), has proposed to issue an International Consensus (ICON) on the clinical consequences of mite hypersensitivity. The objectives of this document are to highlight aspects of mite biology that are clinically relevant, to update the current knowledge on mite allergens, routes of sensitization, the genetics of IgE responses to mites, the epidemiologic aspects of mite hypersensitivity, the clinical pictures induced by mites, the diagnosis, specific immunotherapeutic approaches, and prevention.
Collapse
Affiliation(s)
- Mario Sánchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
- Clínica El Avila, 6ª transversal Urb. Altamira, Piso 8, Consultoria 803, Caracas, 1060 Venezuela
| | - Enrique Fernandez-Caldas
- Inmunotek S.L., Madrid, Spain and Division of Allergy and Immunology, University of South Florida College of Medicine, Tampa, FL USA
| | - Wayne R. Thomas
- Telethon Kids Institute, University of Western Australia, Crawley, WA Australia
| | | | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Fook Tim Chew
- Department of Biological Sciences, Allergy and Molecular Immunology Laboratory, Functional Genomics Laboratories, National University of Singapore, Singapore, Singapore
| | | | - Leili Behrooz
- Division of Immunology and Allergy, Boston Cshildren’s Hospital, Harvard Medical School, Boston, MA USA
| | - Wanda Phipatanakul
- Division of Immunology and Allergy, Boston Cshildren’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roy Gerth van Wijk
- Department of Internal Medicine, Allergology, Erasmus MC, Rotterdam, the Netherlands
| | - Demoly Pascal
- Division of Allergy, Department of Pulmonology, University Hospital of Montpellier, Paris, France
- Montpellier and Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France
| | - Nelson Rosario
- Federal University of Parana, Rua General Carneiro, Curitiba, Brazil
| | - Motohiro Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa Japan
| | - Mario Geller
- Division of Medicine, Academy of Medicine of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Markus Ollert
- Department of Infection & Immunity, Laboratory of Immunogenetics and Allergology, Luxembourg Institute of Health, Luxembourg, UK
| | - Giorgio Walter Canonica
- Allergy & Respiratory Diseases Clinic, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Moises A. Calderón
- Section of Allergy and Clinical Immunology, Imperial College London – NHLI, London, United Kingdom
| | - Charles S. Barnes
- Division of Allergy/Immunology, Children’s Mercy Hospital, Kansas City, MO USA
| | - Adnan Custovic
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Suwat Benjaponpitak
- Division of Pediatric Allergy/Immunology/Rheumatology, Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arnaldo Capriles-Hulett
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| |
Collapse
|
36
|
|
37
|
Pali-Schöll I, Herrmann I, Jensen-Jarolim E, Iben C. Allergies, with Focus on Food Allergies, in Humans and Their Animals. Comp Med 2017. [DOI: 10.1007/978-3-319-47007-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Jensen-Jarolim E, Herrmann I, Panakova L, Janda J. Allergic and Atopic Eczema in Humans and Their Animals. Comp Med 2017. [DOI: 10.1007/978-3-319-47007-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Jonsdottir S, Svansson V, Stefansdottir SB, Mäntylä E, Marti E, Torsteinsdottir S. Oral administration of transgenic barley expressing a Culicoides
allergen induces specific antibody response. Equine Vet J 2016; 49:512-518. [DOI: 10.1111/evj.12655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- S. Jonsdottir
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| | - V. Svansson
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| | - S. B. Stefansdottir
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| | - E. Mäntylä
- Faculty of Pharmacy; University of Iceland; Reykjavik Iceland
- ORF Genetics Ltd; Kopavogur Iceland
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Berne; Berne Switzerland
| | - S. Torsteinsdottir
- Institute for Experimental Pathology; Biomedical Center; University of Iceland; Keldur Iceland
| |
Collapse
|
40
|
Ziegler A, Gerber V, Marti E. In vitro effects of the toll-like receptor agonists monophosphoryl lipid A and CpG-rich oligonucleotides on cytokine production by equine cells. Vet J 2016; 219:6-11. [PMID: 28093114 DOI: 10.1016/j.tvjl.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022]
Abstract
Insect bite hypersensitivity (IBH) is an equine allergic dermatitis to Culicoides spp. antigens. Attempts at using allergen-specific immunotherapy (AIT) as a treatment for IBH have so far proven unsuccessful. Toll-like receptor (TLR) agonists can promote a shift in the immune response from the allergy-promoting T helper cell 2 (Th2) response towards a Th1 and/or regulatory response. The aim of this study was to evaluate two immunomodulatory TLR agonists in vitro as potential vaccine adjuvants for a more efficacious AIT in IBH. Peripheral blood mononuclear cells (PBMCs) from healthy and IBH-affected horses were stimulated with the TLR-agonists monophosphoryl lipid A (MPLA) or CpG-rich oligodeoxynucleotides (CpG-ODN) in the presence or absence of Culicoides spp. allergens. Cytokine concentrations of interferon (IFN)-α, IFN-γ, interleukin (IL)-4, IL-10 and IL-17 were quantified in the supernatants of stimulated PBMCs. MPLA induced IL-10 secretion in all horses, regardless of presence and nature of antigens, while suppressing antigen-induced production of IFN-γ, IL-4 and IL-17. CpG-ODN significantly increased IFN-α, IFN-γ and IL-4 production, but had little effect on IL-10 production. In conclusion, MPLA promotes a regulatory immune response and is therefore a promising adjuvant candidate for allergy vaccines in horses. While C-class CpG-ODN is an unsuitable adjuvant for AIT, it induces IFN-γ and IFN-α, and thus may be a useful adjuvant in combination with vaccines for equine infectious or neoplastic diseases.
Collapse
Affiliation(s)
- A Ziegler
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggass-Strasse 124, Bern CH-3001, Switzerland
| | - V Gerber
- Swiss Institute of Equine Medicine, University of Bern and Agroscope, Länggass-Strasse 124, Bern CH-3001, Switzerland
| | - E Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggass-Strasse 124, Bern CH-3001, Switzerland.
| |
Collapse
|
41
|
Immunoproteomic characterization of a Dermatophagoides farinae extract used in the treatment of canine atopic dermatitis. Vet Immunol Immunopathol 2016; 180:1-8. [DOI: 10.1016/j.vetimm.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022]
|
42
|
Jonsdottir S, Svansson V, Stefansdottir SB, Schüpbach G, Rhyner C, Marti E, Torsteinsdottir S. A preventive immunization approach against insect bite hypersensitivity: Intralymphatic injection with recombinant allergens in Alum or Alum and monophosphoryl lipid A. Vet Immunol Immunopathol 2016; 172:14-20. [PMID: 27032498 DOI: 10.1016/j.vetimm.2016.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/11/2016] [Accepted: 02/24/2016] [Indexed: 11/15/2022]
Abstract
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides insects, not indigenous to Iceland. Horses born in Iceland and exported to Culicoides-rich areas are frequently affected with IBH. The aims of the study were to compare immunization with recombinant allergens using the adjuvant aluminum hydroxide (Alum) alone or combined with monophosphoryl lipid A (MPLA) for development of a preventive immunization against IBH. Twelve healthy Icelandic horses were vaccinated intralymphatically three times with 10 μg each of four recombinant Culicoides nubeculosus allergens in Alum or in Alum/MPLA. Injection with allergens in both Alum and Alum/MPLA resulted in significant increase in specific IgG subclasses and IgA against all r-allergens with no significant differences between the adjuvant groups. The induced antibodies from both groups could block binding of allergen specific IgE from IBH affected horses to a similar extent. No IgE-mediated reactions were induced. Allergen-stimulated PBMC from Alum/MPLA horses but not from Alum only horses produced significantly more IFNγ and IL-10 than PBMC from non-vaccinated control horses. In conclusion, intralymphatic administration of small amounts of pure allergens in Alum/MPLA induces high IgG antibody levels and Th1/Treg immune response and is a promising approach for immunoprophylaxis and immunotherapy against IBH.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Sara Bjork Stefansdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Gertraud Schüpbach
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012 Berne, Switzerland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012 Berne, Switzerland
| | - Sigurbjorg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
43
|
Jensen-Jarolim E, Pacios LF, Bianchini R, Hofstetter G, Roth-Walter F. Structural similarities of human and mammalian lipocalins, and their function in innate immunity and allergy. Allergy 2016; 71:286-94. [PMID: 26497994 PMCID: PMC4949658 DOI: 10.1111/all.12797] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 01/08/2023]
Abstract
Owners and their domestic animals via skin shedding and secretions, mutually exchange microbiomes, potential pathogens and innate immune molecules. Among the latter especially lipocalins are multifaceted: they may have an immunomodulatory function and, furthermore, they represent one of the most important animal allergen families. The amino acid identities, as well as their structures by superposition modeling were compared among human lipocalins, hLCN1 and hLCN2, and most important animal lipocalin allergens, such as Can f 1, Can f 2 and Can f 4 from dog, Fel d 4 from cats, Bos d 5 from cow's milk, Equ c 1 from horses, and Mus m 1 from mice, all of them representing major allergens. The β-barrel fold with a central molecular pocket is similar among human and animal lipocalins. Thereby, lipocalins are able to transport a variety of biological ligands in their highly conserved calyx-like cavity, among them siderophores with the strongest known capability to complex iron (Fe(3+) ). Levels of human lipocalins are elevated in nonallergic inflammation and cancer, associated with innate immunoregulatory functions that critically depend on ligand load. Accordingly, deficient loading of lipocalin allergens establishes their capacity to induce Th2 hypersensitivity. Our similarity analysis of human and mammalian lipocalins highlights their function in innate immunity and allergy.
Collapse
Affiliation(s)
- E Jensen-Jarolim
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - L F Pacios
- Biotechnology Department, Center for Plant Biotechnology and Genomics, ETSI Montes, Technical University of Madrid, Madrid, Spain
- Department of Natural Systems and Resources, ETSI Montes, Technical University of Madrid, Madrid, Spain
| | - R Bianchini
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - G Hofstetter
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - F Roth-Walter
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| |
Collapse
|
44
|
Abstract
Allergic diseases in animals are increasingly gaining importance in veterinary practice and as research models. For intradermal testing and allergen immunotherapy, a good knowledge of relevant allergens for the individual species is of great importance. Currently, the knowledge about relevant veterinary allergens is based on sensitization rates identified by intradermal testing or serum testing for allergen-specific IgE; crude extracts are the basis for most evaluations. Only a few studies provide evidence about the molecular structure of (particularly) dust mite, insect and mould allergens in dogs and horses, respectively. In those species, some major allergens differ from those in humans. This position paper summarizes the current knowledge about relevant allergens in dogs, cats and horses.
Collapse
Affiliation(s)
- R S Mueller
- Centre for Clinical Veterinary Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - J Janda
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - E Jensen-Jarolim
- Comparative Medicine, Messerli Research-Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - C Rhyner
- Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - E Marti
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| |
Collapse
|