1
|
Treating allergies via skin - Recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev 2022; 190:114458. [PMID: 35850371 DOI: 10.1016/j.addr.2022.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Subcutaneous allergen immunotherapy has been practiced clinically for decades to treat airborne allergies. Recently, the cutaneous route, which exploits the immunocompetence of the skin has received attention, which is evident from attempts to use it to treat peanut allergy. Delivery of allergens into the skin is inherently impeded by the barrier imposed by stratum corneum, the top layer of the skin. While the stratum corneum barrier must be overcome for efficient allergen delivery, excessive disruption of this layer can predispose to development of allergic inflammation. Thus, the most desirable allergen delivery approach must provide a balance between the level of skin disruption and the amount of allergen delivered. Such an approach should aim to achieve high allergen delivery efficiency across various skin types independent of age and ethnicity, and optimize variables such as safety profile, allergen dosage, treatment frequency, application time and patient compliance. The ability to precisely quantify the amount of allergen being delivered into the skin is crucial since it can allow for allergen dose optimization and can promote consistency and reproducibility in treatment response. In this work we review prominent cutaneous delivery approaches, and offer a perspective on further improvisation in cutaneous allergen-specific immunotherapy.
Collapse
|
2
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Pali-Schöll I, DeBoer DJ, Alessandri C, Seida AA, Mueller RS, Jensen-Jarolim E. Formulations for Allergen Immunotherapy in Human and Veterinary Patients: New Candidates on the Horizon. Front Immunol 2020; 11:1697. [PMID: 32849594 PMCID: PMC7417425 DOI: 10.3389/fimmu.2020.01697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Allergen immunotherapy is currently the only causal treatment for allergic diseases in human beings and animals. It aims to re-direct the immune system into a tolerogenic or desensitized state. Requirements include clinical efficacy, safety, and schedules optimizing patient or owner compliance. To achieve these goals, specific allergens can be formulated with adjuvants that prolong tissue deposition and support uptake by antigen presenting cells, and/or provide a beneficial immunomodulatory action. Here, we depict adjuvant formulations being investigated for human and veterinary allergen immunotherapy.
Collapse
Affiliation(s)
- Isabella Pali-Schöll
- University of Veterinary Medicine, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Douglas J DeBoer
- Dermatology/Allergy Section, Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | | | - Ahmed Adel Seida
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ralf S Mueller
- Centre for Clinical Veterinary Medicine, University of Munich, Munich, Germany
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Biedermann T, Winther L, Till SJ, Panzner P, Knulst A, Valovirta E. Birch pollen allergy in Europe. Allergy 2019; 74:1237-1248. [PMID: 30829410 DOI: 10.1111/all.13758] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/25/2022]
Abstract
Birch and other related trees of the families Betulaceae and Fagaceae (alder, hazel, oak, hornbeam, chestnut, and beech) constitute the birch homologous group. This grouping is primarily based on the extensive IgE cross-reactivity of allergen homologs to the major birch allergen Bet v 1. Birch pollen is the most dominant tree pollen in Northern and Central Europe and is a major cause of allergic rhinitis and, possibly, asthma symptoms. Over the last few decades, levels of birch pollen have risen and the period of exposure has increased due to climate changes. Subsequently, the prevalence of birch pollen sensitization has also increased. The cross-reactivity and sequential pollen seasons within the birch homologous group create a prolonged symptomatic allergy period beyond birch pollen alone. Furthermore, many plant food allergens contain homologs to Bet v 1, meaning that the majority of patients with birch pollen allergy suffer from secondary pollen food syndrome (PFS). As a result, the negative impact on health-related quality of life (HRQoL) in patients allergic to birch pollen is significant. The purpose of this manuscript was to narratively review topics of interest such as taxonomy, cross-reactivity, prevalence, clinical relevance, PFS, and HRQoL with regard to birch pollen allergy from a European perspective.
Collapse
Affiliation(s)
- T. Biedermann
- Department of Dermatology and Allergology Technical University of Munich Munich Germany
| | - L. Winther
- Allergy Clinic Department of Dermato‐Allergology Gentofte Hospital Copenhagen Denmark
| | - S. J. Till
- Kings College London Guy's Hospital London UK
| | - P. Panzner
- Department of Immunology and Allergology Faculty of Medicine in Pilsen Charles University Prague Czech Republic
| | - A. Knulst
- Department of Dermatology/Allergology University Medical Center Utrecht Utrecht University Utrecht the Netherlands
| | - E. Valovirta
- Department of Lung Diseases and Clinical Allergology University of Turku and Allergy Clinic Terveystalo, Turku Finland
| |
Collapse
|
5
|
Su Y, Romeu-Bonilla E, Heiland T. Next generation immunotherapy for tree pollen allergies. Hum Vaccin Immunother 2018; 13:2402-2415. [PMID: 28853984 DOI: 10.1080/21645515.2017.1367882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tree pollen induced allergies are one of the major medical and public health burdens in the industrialized world. Allergen-Specific Immunotherapy (AIT) through subcutaneous injection or sublingual delivery is the only approved therapy with curative potential to pollen induced allergies. AIT often is associated with severe side effects and requires long-term treatment. Safer, more effective and convenient allergen specific immunotherapies remain an unmet need. In this review article, we discuss the current progress in applying protein and peptide-based approaches and DNA vaccines to the clinical challenges posed by tree pollen allergies through the lens of preclinical animal models and clinical trials, with an emphasis on the birch and Japanese red cedar pollen induced allergies.
Collapse
Affiliation(s)
- Yan Su
- a Department of R&D , Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| | | | - Teri Heiland
- a Department of R&D , Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Molecular allergology uses pure, mainly recombinant and structurally defined allergen molecules and allergen-derived epitopes to study mechanisms of IgE-associated allergy, to diagnose, and even predict the development of allergic manifestations and to treat and prevent IgE-associated allergies. Atopic dermatitis, a chronic inflammatory skin disease is almost always associated with IgE sensitization to allergens. However, also non-IgE-mediated pathomechanisms seem to be operative in atopic dermatitis and it is often difficult to identify the disease-causing allergens. Here we review recent work showing the usefulness of molecular allergology to study mechanisms of atopic dermatitis, for diagnosis and eventually for treatment and prevention of atopic dermatitis. RECENT FINDINGS IgE sensitization to airborne, food-derived, microbial allergens, and autoallergens has been found to be associated with atopic dermatitis. Using defined allergen molecules and non-IgE-reactive allergen derivatives, evidence could be provided for the existence of IgE- and non-IgE-mediated mechanisms of inflammation in atopic dermatitis. Furthermore, effects of epicutaneous allergen administration on systemic allergen-specific immune responses have been studied. Multi-allergen tests containing micro-arrayed allergen molecules have been shown to be useful for the identification of culprit allergens in atopic dermatitis and may improve the management of atopic dermatitis by allergen-specific immunotherapy, allergen avoidance, and IgE-targeting therapies in a personalized medicine approach. SUMMARY Molecular allergology allows for dissection of the pathomechanisms of atopic dermatitis, provides new forms of allergy diagnosis for identification of disease-causing allergens, and opens the door to new forms of management by allergen-specific and T cells-targeting or IgE-targeting interventions in a personalized medicine approach.
Collapse
|
7
|
Epicutaneous allergen application preferentially boosts specific T cell responses in sensitized patients. Sci Rep 2017; 7:11657. [PMID: 28912492 PMCID: PMC5599525 DOI: 10.1038/s41598-017-10278-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
The effects of epicutaneous allergen administration on systemic immune responses in allergic and non-allergic individuals has not been investigated with defined allergen molecules. We studied the effects of epicutaneous administration of rBet v 1 and rBet v 1 fragments on systemic immune responses in allergic and non-allergic subjects. We conducted a clinical trial in which rBet v 1 and two hypoallergenic rBet v 1 fragments were applied epicutaneously by atopy patch testing (APT) to 15 birch pollen (bp) allergic patients suffering from atopic dermatitis, 5 bp-allergic patients suffering from rhinoconjunctivitis only, 5 patients with respiratory allergy without bp allergy and 5 non-allergic individuals. Epicutaneous administration of rBet v 1 and rBet v 1 fragments led to strong and significant increases of allergen-specific T cell proliferation (CLA+ and CCR4+T cell responses) only in bp-allergic patients with a positive APT reaction. There were no relevant changes of Bet v 1-specific IgE and IgG responses. No changes were noted in allergic subjects without bp allergy and in non-allergic subjects. Epicutaneous allergen application boosts specific T cell but not antibody responses mainly in allergic, APT-positive patients suggesting IgE-facilitated allergen presentation as mechanism for its effects on systemic allergen-specific immune responses.
Collapse
|
8
|
Epikutan-SIT: Blockierende IgG-Antikörper bilden sich nur mit Toxin-Adjuvanz. ALLERGO JOURNAL 2017. [DOI: 10.1007/s15007-017-1322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Cabauatan CR, Campana R, Niespodziana K, Reinisch C, Lundberg U, Meinke A, Henning R, Neubauer A, Valenta R. Heat-labile Escherichia coli toxin enhances the induction of allergen-specific IgG antibodies in epicutaneous patch vaccination. Allergy 2017; 72:164-168. [PMID: 27568860 PMCID: PMC5215485 DOI: 10.1111/all.13036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 11/27/2022]
Abstract
Epicutaneous allergen-specific immunotherapy (EPIT) is proposed as an alternative route for allergen-specific immunotherapy (AIT). The induction of allergen-specific blocking IgG antibodies represents an important mechanism underlying AIT, but has not been investigated for EPIT. Here, we compared the induction of allergen-specific blocking IgG in outbred guinea pigs which had been immunized with recombinant birch pollen allergen Bet v 1 using patch delivery system (PDS) with or without heat-labile toxin (LT) from Escherichia coli or subcutaneously with aluminum hydroxide (Alum)-adsorbed rBet v 1. Only subcutaneous immunization with Alum-adsorbed rBet v 1 and epicutaneous administration of rBet v 1 with PDS in combination with LT from E. coli induced allergen-specific IgG antibodies blocking allergic patients' IgE, but not immunization with rBet v 1 via PDS alone. Our results suggest that patch vaccination with rBet v 1 in combination with LT may be a promising strategy for allergen-specific immunotherapy against birch pollen allergy.
Collapse
Affiliation(s)
- C. R. Cabauatan
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - R. Campana
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - K. Niespodziana
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - C. Reinisch
- Valneva Austria GmbH; Campus Vienna Biocenter; Vienna Austria
| | - U. Lundberg
- Valneva Austria GmbH; Campus Vienna Biocenter; Vienna Austria
| | - A. Meinke
- Valneva Austria GmbH; Campus Vienna Biocenter; Vienna Austria
| | | | | | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| |
Collapse
|
10
|
Killingbeck SS, Ge MQ, Haczku A. Patching it together: epicutaneous vaccination with heat-labile Escherichia coli toxin against birch pollen allergy. Allergy 2017; 72:5-8. [PMID: 27716934 PMCID: PMC6279960 DOI: 10.1111/all.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - M. Q. Ge
- University of California, Davis, CA, USA
| | - A. Haczku
- University of California, Davis, CA, USA
| |
Collapse
|