1
|
Tiligada E, Gafarov D, Zaimi M, Vitte J, Levi-Schaffer F. Novel Immunopharmacological Drugs for the Treatment of Allergic Diseases. Annu Rev Pharmacol Toxicol 2024; 64:481-506. [PMID: 37722722 DOI: 10.1146/annurev-pharmtox-051623-091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Daria Gafarov
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joana Vitte
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM
- Montpellier, France
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
2
|
Recto K, Kachroo P, Huan T, Van Den Berg D, Lee GY, Bui H, Lee DH, Gereige J, Yao C, Hwang SJ, Joehanes R, Weiss ST, O'Connor GT, Levy D, DeMeo DL. Epigenome-wide DNA methylation association study of circulating IgE levels identifies novel targets for asthma. EBioMedicine 2023; 95:104758. [PMID: 37598461 PMCID: PMC10462855 DOI: 10.1016/j.ebiom.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS We performed an epigenome-wide association study using whole blood from Framingham Heart Study (FHS; n = 3,471, 46% females) participants and validated results using the Childhood Asthma Management Program (CAMP; n = 674, 39% females) and the Genetic Epidemiology of Asthma in Costa Rica Study (CRA; n = 787, 41% females). Using the closest gene to each IgE-associated CpG, we highlighted biologically plausible pathways underlying IgE regulation and analyzed the transcription patterns linked to IgE-associated CpGs (expression quantitative trait methylation loci; eQTMs). Using prior UK Biobank summary data from genome-wide association studies of asthma and allergy, we performed Mendelian randomization (MR) for causal inference testing using the IgE-associated CpGs from FHS with methylation quantitative trait loci (mQTLs) as instrumental variables. FINDINGS We identified 490 statistically significant differentially methylated CpGs associated with IgE in FHS, of which 193 (39.3%) replicated in CAMP and CRA (FDR < 0.05). Gene ontology analysis revealed enrichment in pathways related to transcription factor binding, asthma, and other immunological processes. eQTM analysis identified 124 cis-eQTMs for 106 expressed genes (FDR < 0.05). MR in combination with drug-target analysis revealed CTSB and USP20 as putatively causal regulators of IgE levels (Bonferroni adjusted P < 7.94E-04) that can be explored as potential therapeutic targets. INTERPRETATION By integrating eQTM and MR analyses in general and clinical asthma populations, our findings provide a deeper understanding of the multidimensional inter-relations of DNA methylation, gene expression, and IgE levels. FUNDING US NIH/NHLBI grants: P01HL132825, K99HL159234. N01-HC-25195 and HHSN268201500001I.
Collapse
Affiliation(s)
- Kathryn Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Priyadarshini Kachroo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - David Van Den Berg
- University of Southern California Methylation Characterization Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Helena Bui
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Jessica Gereige
- Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - George T O'Connor
- The Framingham Heart Study, Framingham, MA 01702, USA; Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA.
| | - Dawn L DeMeo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
4
|
Liew KY, Kamise NI, Ong HM, Aw Yong PY, Islam F, Tan JW, Tham CL. Anti-Allergic Properties of Propolis: Evidence From Preclinical and Clinical Studies. Front Pharmacol 2022; 12:785371. [PMID: 35126124 PMCID: PMC8816323 DOI: 10.3389/fphar.2021.785371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Allergic diseases are a global health burden with increasing prevalence. Side effects of available medications (antihistamines and steroids), lack of patients' perceived effectiveness and high cost of biologic therapies (omalizumab) are challenges to the clinical management of allergic diseases. As allergy symptoms persist for a long time, complementary and alternative medicine (CAM) such as propolis may be considered a potential prophylactic or therapeutic option to avoid long-term medication use. Propolis is a natural resinous substance produced by bees. Although propolis is well known to possess antioxidant, antimicrobial, and anticancer properties, its anti-allergic potential is not fully explored. Several preclinical studies demonstrated the therapeutic effects of propolis extracts against allergic inflammation, asthma, allergic rhinitis, atopic dermatitis, and food allergy, which may be partly attributed to their inhibitory effects on the activation of mast cells and basophils. Clinically, the consumption of propolis as a supplement or an adjunct therapy is safe and attenuates various pathological conditions in asthma. Such an approach may be adopted for atopic dermatitis and allergic rhinitis. Although flavonoids (chrysin, kaempferol, galangin, and pinocembrin) and cinnamic acid derivatives (artepillin C and caffeic acid phenethyl ester) can contribute to the anti-allergic activities, they may not be present in all propolis samples due to variations in the chemical composition. Future studies should relate the anti-allergic activity of propolis with its chemical contents. This mini-review summarizes and discusses existing preclinical and clinical studies reporting the anti-allergic activities of propolis to provide insights into its potential applications in allergic diseases.
Collapse
Affiliation(s)
- Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurain Irdayani Kamise
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hui Ming Ong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Poi Yi Aw Yong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Fahmida Islam
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
5
|
López-Urrutia E, Padilla-Benavides T, Pérez-Plasencia C, Campos-Parra AD. Editorial: Repurposed Drugs Targeting Cancer Signaling Pathways: Dissecting New Mechanism of Action Through In Vitro and In Vivo Analyses. Front Oncol 2021; 11:773429. [PMID: 34671566 PMCID: PMC8521020 DOI: 10.3389/fonc.2021.773429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eduardo López-Urrutia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico.,Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
6
|
Lin P, Cao M, Xia F, Liao H, Sun H, Wang Q, Lee J, Zhou Y, Guan Y, Zhang C, Xu Z, Li F, Wei J, Ling D. A Phosphatase-Mimetic Nano-Stabilizer of Mast Cells for Long-Term Prevention of Allergic Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004115. [PMID: 33898190 PMCID: PMC8061383 DOI: 10.1002/advs.202004115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Allergic diseases are pathological immune responses with significant morbidity, which are closely associated with allergic mediators as released by allergen-stimulated mast cells (MCs). Prophylactic stabilization of MCs is regarded as a practical approach to prevent allergic diseases. However, most of the existing small molecular MC stabilizers exhibit a narrow therapeutic time window, failing to provide long-term prevention of allergic diseases. Herein, ceria nanoparticle (CeNP-) based phosphatase-mimetic nano-stabilizers (PMNSs) with a long-term therapeutic time window are developed for allergic disease prevention. By virtue of the regenerable catalytic hotspots of oxygen vacancies on the surface of CeNPs, PMNSs exhibit sustainable phosphatase-mimetic activity to dephosphorylate phosphoproteins in allergen-stimulated MCs. Consequently, PMNSs constantly modulate intracellular phospho-signaling cascades of MCs to inhibit the degranulation of allergic mediators, which prevents the initiation of allergic mediator-associated pathological responses, eventually providing protection against allergic diseases with a long-term therapeutic time window.
Collapse
Affiliation(s)
- Peihua Lin
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Mengda Cao
- Research Division of Clinical PharmacologyThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Fan Xia
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Hangzhou Institute of Innovative MedicineZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Hongwei Liao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Heng Sun
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qiyue Wang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jiyoung Lee
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yan Zhou
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yunan Guan
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Cheng Zhang
- Women & Children Central LaboratoryThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210036P. R. China
| | - Zhiqiang Xu
- Research Division of Clinical PharmacologyThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Fangyuan Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Hangzhou Institute of Innovative MedicineZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ji‐Fu Wei
- Research Division of Clinical PharmacologyThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Daishun Ling
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
- Hangzhou Institute of Innovative MedicineZhejiang UniversityHangzhouZhejiang310058P. R. China
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
7
|
Xuan X, Sun Z, Yu C, Chen J, Chen M, Wang Q, Li L. Network pharmacology-based study of the protective mechanism of conciliatory anti-allergic decoction on asthma. Allergol Immunopathol (Madr) 2020; 48:441-449. [PMID: 32359824 DOI: 10.1016/j.aller.2019.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study aimed to explore the underlying anti-asthma pharmacological mechanisms of conciliatory anti-allergic decoction (CAD) with a network pharmacology approach. METHODS Traditional Chinese medicine related databases were utilized to screen the active ingredients of CAD. Targets of CAD for asthma treatment were also identified based on related databases. The protein-protein interaction network, biological function and KEGG pathway enrichment analysis, and molecular docking of the targets were performed. Furthermore, an asthma mouse model experiment involving HE staining, AB-PAS staining, and ELISA was also performed to assess the anti-asthma effect of CAD. RESULTS There were 77 active ingredients in CAD, including quercetin, kaempferol, stigmasterol, luteolin, cryptotanshinone, beta-sitosterol, acacetin, naringenin, baicalin, and 48 related targets for asthma treatment, mainly including TNF, IL4, IL5, IL10, IL13 and IFN-γ, were identified with ideal molecular docking binding scores by network pharmacology analysis. KEGG pathway analysis revealed that these targets were directly involved in the asthma pathway, Th1 and Th2 cell differentiation, and signaling pathways correlated with asthma (NF-κB, IL17, T cell receptor, TNF, JAK-STAT signaling pathways, etc.). Animal experiments also confirmed that CAD could attenuate inflammatory cell invasion, goblet cell hyperplasia and mucus secretion. The levels of the major targets TNF-α, IL4, IL5, and IL13 can also be regulated by CAD in an asthma mouse model. CONCLUSION The anti-asthma mechanism of CAD possibly stemmed from the active ingredients targeting asthma-related targets, which are involved in the asthma pathway and signaling pathways to exhibit therapeutic effects.
Collapse
Affiliation(s)
- Xiaobo Xuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Ziyan Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Chenhuan Yu
- Experimental Animal centre, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Jian Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Mei Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Qili Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Lan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
8
|
Benavides-Cordoba V. Drug Repositioning for COVID-19. Colomb Med (Cali) 2020; 51:e4279. [PMID: 33012890 PMCID: PMC7518729 DOI: 10.25100/cm.v51i2.4279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Drug repositioning is a strategy that identifies new uses of approved drugs to treat conditions different from their original purpose. With the advance of COVID-19 and the pandemic declaration; It has become the closest alternative to reduce the advance of the virus. Antimalarial, antiviral drugs, antibiotics, glucocorticoids, monoclonal antibodies, among others, are being studied; their findings, although preliminary, could establish a starting point in the search for a solution. In this review, we present a selection of drugs, of different classes and with potential activity against COVID-19, whose trials are ongoing; and as proofs of concept, double blind, add-on event-driven, would allow proposing research that generates results in less time and preserving quality criteria for drug development and approval by regulatory agencies.
Collapse
|
9
|
Hou YB, Zhang LN, Wang HN, Zhao ZF, Sun YT, Ji K, Chen JJ. The antipsychotic drug pimozide inhibits IgE-mediated mast cell degranulation and migration. Int Immunopharmacol 2020; 84:106500. [PMID: 32311669 DOI: 10.1016/j.intimp.2020.106500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Mast cells (MCs) mediate a key role in allergic diseases. Detailed studies of how the neuroleptic drug pimozide affects MC activity are lacking. The aim of this study was to investigate pimozide inhibition of immunoglobulin E (IgE)-mediated MC activation and MC-mediated allergic responses. METHOD MCs were stimulated with anti-dinitrophenyl (DNP) IgE antibodies and DNP-horse serum albumin (HSA) antigen (Ag), and anti-allergic pimozide effects were detected by measuring β-hexosaminidase levels. Morphological changes were observed histologically. In vivo pimozide effects were assessed in passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-sensitized active systemic anaphylaxis mouse (ASA) model experiments. Levels of phosphorylated (p-) SYK (spleen tyrosine kinase) and MAPKs (mitogen-activated protein kinases) were detected in western blots. RESULTS We found that pimozide inhibited MC degranulation, reduced MC release of β-hexosaminidase dose-dependently in activated RBL-2H3 (IC50: 13.52 μM) and bone marrow derived MC (BMMC) (IC50: 42.42 μM), and reduced MC morphological changes. The IgE/Ag-induced migration effect was suppressed by pimozide treatment dose-dependently. Pimozide down-regulated IgE/Ag-induced phosphorylation of SYK and MAPKs in activated MCs. Moreover, pimozide attenuated allergic reactions in PCA and ASA model mice, and decreased MC populations among splenic cells. CONCLUSIONS The antipsychotic drug pimozide can suppress IgE-mediated MC activation in vitro and in vivo and should be considered for repurposing to suppress MC-mediated diseases.
Collapse
Affiliation(s)
- Yi-Bo Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Yue-Tong Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Beneficial effects of tamoxifen on leptin sensitivity in young mice fed a high fat diet: Role of estrogen receptor α and cytokines. Life Sci 2020; 246:117384. [PMID: 32061672 DOI: 10.1016/j.lfs.2020.117384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
|
11
|
|
12
|
Amo G, Martí M, García-Menaya JM, Cordobés C, Cornejo-García JA, Blanca-López N, Canto G, Doña I, Blanca M, Torres MJ, Agúndez JAG, García-Martín E. Identification of Novel Biomarkers for Drug Hypersensitivity After Sequencing of the Promoter Area in 16 Genes of the Vitamin D Pathway and the High-Affinity IgE Receptor. Front Genet 2019; 10:582. [PMID: 31293618 PMCID: PMC6603231 DOI: 10.3389/fgene.2019.00582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The prevalence of allergic diseases and drug hypersensitivity reactions (DHRs) during recent years is increasing. Both, allergic diseases and DHRs seem to be related to an interplay between environmental factors and genetic susceptibility. In recent years, a large effort in the elucidation of the genetic mechanisms involved in these disorders has been made, mostly based on case-control studies, and typically focusing on isolated SNPs. These studies provide a limited amount of information, which now can be greatly expanded by the complete coverage that Next Generation Sequencing techniques offer. In this study, we analyzed the promoters of sixteen genes related to the Vitamin D pathway and the high-affinity IgE receptor, including FCER1A, MS4A2, FCER1G, VDR, GC, CYP2R1, CYP27A1, CYP27B1, CYP24A1, RXRA, RXRB, RXRG, IL4, IL4R, IL13, and IL13RA1. The study group was composed of patients with allergic rhinitis plus asthma (AR+A), patients with hypersensitivity to beta-lactams (BLs), to NSAIDs including selective hypersensitivity (SH) and cross-reactivity (CR), and healthy controls without antecedents of atopy or adverse drug reactions. We identified 148 gene variations, 43 of which were novel. Multinomial analyses revealed that three SNPs corresponding to the genes FCER1G (rs36233990 and rs2070901), and GC (rs3733359), displayed significant associations and, therefore, were selected for a combined dataset study in a cohort of 2,476 individuals. The strongest association was found with the promoter FCER1G rs36233990 SNP that alters a transcription factor binding site. This SNP was over-represented among AR+A patients and among patients with IgE-mediated diseases, as compared with control individuals or with the rest of patients in this study. Classification models based on the above-mentioned SNPs were able to predict correct clinical group allocations in patients with DHRs, and patients with IgE-mediated DHRs. Our findings reveal gene promoter SNPs that are significant predictors of drug hypersensitivity, thus reinforcing the hypothesis of a genetic predisposition for these diseases.
Collapse
Affiliation(s)
- Gemma Amo
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Manuel Martí
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jesús M García-Menaya
- Allergy Service, Badajoz University Hospital, Badajoz, Spain.,ARADyAL Instituto de Salud Carlos III, Badajoz, Spain
| | - Concepción Cordobés
- Allergy Service, Mérida Hospital, Badajoz, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - José A Cornejo-García
- Research Laboratory, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Natalia Blanca-López
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - Gabriela Canto
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Doña
- Allergy Unit, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Málaga, Spain
| | - Miguel Blanca
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - María José Torres
- Allergy Unit, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Málaga, Spain
| | - José A G Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| |
Collapse
|
13
|
Schroeder HW. Mixing the Old with the New: Drug Repurposing for Immune Deficiency in the Era of Precision Medicine and Pediatric Genomics. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:2168-2169. [PMID: 30390908 DOI: 10.1016/j.jaip.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Harry W Schroeder
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
14
|
The Plant Proteinase Inhibitor CrataBL Plays a Role in Controlling Asthma Response in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9274817. [PMID: 30364003 PMCID: PMC6188594 DOI: 10.1155/2018/9274817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023]
Abstract
Background. CrataBL is a protein isolated from Crataeva tapia bark. It has been shown to exhibit several biological properties, including anti-inflammatory, analgesic, antitumor, and insecticidal activities. There are no studies evaluating the role of CrataBL in experimental asthma models. Aim. To evaluate the effects of CrataBL on lung mechanics, inflammation, remodeling, and oxidative stress activation of mice with allergic pulmonary inflammation. Materials and Methods. BALB/c mice (6-7 weeks old, 25-30g) were divided into four groups: nonsensitized and nontreated mice (C group, n=8); ovalbumin- (OVA-) sensitized and nontreated mice (OVA group, n=8); nonsensitized and CrataBL-treated mice (C+CR group, n=8); OVA-sensitized and CrataBL-treated mice (OVA+CR group, n=8). We evaluated hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), pulmonary inflammation, extracellular matrix remodeling, and oxidative stress markers. Results. CrataBL treatment in OVA-sensitized mice (OVA+CR group) attenuated the following variables compared to OVA-sensitized mice without treatment (OVA group) (all p<0.05): (1) respiratory system resistance (Rrs) and elastance (Ers) after methacholine challenge; (2) total cells, macrophages, polymorphonuclear cells, and lymphocytes in BALF; (3) eosinophils and volume fraction of collagen and elastic fibers in the airway and alveolar wall according to histopathological and morphometry analysis; (4) IL-4-, IL-5-, IL-13-, IL-17-, IFN-γ-, MMP-9-, TIMP-1-, TGF-β-, iNOS-, and NF-kB-positive cells and volume of 8-iso-PGF2α in airway and alveolar septa according to immunohistochemistry; and (5) IL-4, IL-5, and IFN-γ according to an ELISA. Conclusion. CrataBL contributes to the control of hyperresponsiveness, pulmonary inflammation, extracellular matrix remodeling, and oxidative stress responses in an animal model of chronic allergic pulmonary inflammation.
Collapse
|
15
|
Howell C, Smith JR, Shute JK. Targeting matrix metalloproteinase-13 in bronchial epithelial repair. Clin Exp Allergy 2018; 48:1214-1221. [PMID: 29924890 DOI: 10.1111/cea.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Viral infection of the bronchial epithelium disrupts the barrier properties of the epithelium in healthy individuals and those with lung disease. Repair of the bronchial epithelium is dependent of the formation of a provisional fibrin matrix and migration of epithelial cells to cover denuded areas, followed by proliferation and differentiation. OBJECTIVE The objective was to test the hypothesis that poly I:C, a model of viral infection, limits epithelial repair through the stimulated release of matrix metalloproteinase-13 (MMP-13). METHODS Confluent layers of cultured normal human primary bronchial epithelial cells (NHBE) and SV-40 virus-transformed 16HBE14o- bronchial epithelial cells were mechanically wounded, and video microscopy used to measure the rate of wound closure over 2 hours, in the absence and presence of poly I:C (1-20 μg/mL). MMP-13, tissue factor and endothelin release were measured by ELISA. The effect of inhibitors of MMP-13 activity and expression and a nonspecific endothelin receptor antagonist, bosentan, on the rate of epithelial repair was investigated. RESULTS Poly I:C limited the rate of epithelial repair, and NHBE were significantly more sensitive to poly I:C effects than 16HBE14o- cells. NHBE, but not 16HBE14o-, released MMP-13 in response to poly I:C. Inhibitors of MMP-13 activity (WAY 170523) and expression (dimethyl fumarate) significantly enhanced the rate of repair. Bosentan enhanced the rate of bronchial epithelial repair by a mechanism that was independent of MMP-13. CONCLUSIONS AND CLINICAL RELEVANCE Bronchial epithelial repair is limited by endothelin and by MMP-13, a protease that degrades coagulation factors, such as fibrinogen, and matrix proteins essential for epithelial repair. Further studies with primary cells from patients are needed to confirm whether repurposing bosentan and inhibitors of MMP-13 expression or activity, for inhalation may be a useful therapeutic strategy in diseases where repeated cycles of epithelial injury and repair occur, such as asthma and COPD.
Collapse
Affiliation(s)
- Christopher Howell
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Janis K Shute
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|