1
|
Cao TBT, Luu Quoc Q, Jang JH, Yang EM, Ryu MS, Choi Y, Park HS. Serum Galectin-10: A biomarker for persistent airflow limitation in adult asthmatics. World Allergy Organ J 2024; 17:100955. [PMID: 39252790 PMCID: PMC11382115 DOI: 10.1016/j.waojou.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Background Inhaled corticosteroids (ICS) are primary anti-inflammatory medications to control eosinophilic airway inflammation, and prevent asthma exacerbation. However, persistent airflow limitation (PAL) presents in some asthmatics even on ICS treatment, leading to lung function decline. Thus, we evaluated clinical associations of serum galectin-10 (Gal10) and galectin-3 (Gal3) levels in adult asthmatics who had maintained anti-asthma medication. Methods Sixty-seven asthmatics and 78 healthy controls (HCs) were recruited. Serum Gal10 and Gal3 levels were measured by enzyme-linked immunosorbent assay, and their clinical relevance with inflammatory and lung function parameters was evaluated. Spirometry was performed to assess PAL and small airway dysfunction (SAD). Airway epithelial cells were cocultured with eosinophils/neutrophils, and were exposed to house dust mites to assess the production of Gal10 and Gal3. Results Serum Gal10 (not Gal3) levels were significantly higher in asthmatics than in HCs (P < 0.001), in asthmatics with PAL than in those without PAL (P = 0.005), and in those with SAD than in those without SAD (P = 0.004). The Gal10-high group had significantly higher levels of peripheral CD66+ neutrophil counts, serum periostin and Gal3, and lower values of FEV1% and MMEF% than the Gal10-low group (P < 0.050 for all). The production of Gal10 and Gal3 was increased in eosinophilic airway model, while Gal10 (not Gal3) levels were increased in neutrophilic airway model as well as house dust mite stimulation. Conclusion Our findings suggest that serum Gal10 level may be a potential biomarker for PAL in adult asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Quang Luu Quoc
- Department of Oral & Maxillofacial Surgery, Loma Linda University, School of Dentistry, CA, USA
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
2
|
Quoc QL, Cao TBT, Seo S, An BS, Hwang DY, Choi Y, Park HS. Association Between Cytokeratin 19-Specific IgG and Neutrophil Activation in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:353-371. [PMID: 39155736 PMCID: PMC11331195 DOI: 10.4168/aair.2024.16.4.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Patients with non-eosinophilic asthma (NEA) are less responsive to anti-inflammatory drugs and suffer from frequent asthma exacerbations. The pathogenic mechanism of NEA is not fully understood; however, the roles of monocytes and autoimmune mechanisms targeting airway epithelial cell (AEC) antigens have been proposed. METHODS The effects of monocyte extracellular traps (MoETs) on cytokeratin 19 (CK19) production in AECs, as well as the impact of CK19-specific immunoglobulin (Ig) G on neutrophil and monocyte activation, were investigated both in vivo and in vitro. Sixty asthmatic patients and 15 healthy controls (HCs) were enrolled, and the levels of serum immune complexes containing CK19-specific IgG and neutrophil extracellular trap (NET)-specific IgG were measured using enzyme-linked immunoassay. RESULTS MoETs induced CK19 and CK19-specific IgG production. Furthermore, the levels of serum CK19-specific IgG were significantly higher in the NEA group than in the eosinophilic asthma group. Among patients with NEA, asthmatics with high levels of CK19-specific IgG had higher levels of myeloperoxidase and NET-specific IgG than those with low levels of CK19-specific IgG (P = 0.020 and P = 0.017; respectively). Moreover, the immune complexes from asthmatics with high CK19-specific IgG enhanced NET formation and reactive oxygen species production (neutrophil activation), which were suppressed by N-acetylcysteine and anti-CD16 antibody treatment. CONCLUSIONS These findings suggest that circulating CK19 and CK19-specific IgG may contribute to NET formation, leading to airway inflammation and steroid resistance in NEA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
3
|
Mayorga C, Ariza A, Muñoz-Cano R, Sabato V, Doña I, Torres MJ. Biomarkers of immediate drug hypersensitivity. Allergy 2024; 79:601-612. [PMID: 37947156 DOI: 10.1111/all.15933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Immediate drug hypersensitivity reactions (IDHRs) are a burden for patients and the health systems. This problem increases when taking into account that only a small proportion of patients initially labelled as allergic are finally confirmed after an allergological workup. The diverse nature of drugs involved will imply different interactions with the immunological system. Therefore, IDHRs can be produced by a wide array of mechanisms mediated by the drug interaction with specific antibodies or directly on effector target cells. These heterogeneous mechanisms imply an enhanced complexity for an accurate diagnosis and the identification of the phenotype and endotype at early stages of the reaction is of vital importance. Currently, several endophenotypic categories (type I IgE/non-IgE, cytokine release, Mast-related G-protein coupled receptor X2 (MRGPRX2) or Cyclooxygenase-1 (COX-1) inhibition and their associated biomarkers have been proposed. A precise knowledge of endotypes will permit to discriminate patients within the same phenotype, which is crucial in order to personalise diagnosis, future treatment and prevention to improve the patient's quality of life.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
| | - Rosa Muñoz-Cano
- Allergy Department, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer - IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology, Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Inmaculada Doña
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Maria J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina - IBIMA Plataforma BIONAND, Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| |
Collapse
|
4
|
Lee Y, Kim C, Lee E, Lee HY, Woo SD, You SC, Park RW, Park HS. Long-term clinical outcomes of aspirin-exacerbated respiratory disease: Real-world data from an adult asthma cohort. Clin Exp Allergy 2023; 53:941-950. [PMID: 37332228 DOI: 10.1111/cea.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is a phenotype of severe asthma, but its disease course has not been well documented compared with that of aspirin-tolerant asthma (ATA). OBJECTIVES This study aimed to investigate the long-term clinical outcomes between AERD and ATA. METHODS AERD patients were identified by the diagnostic code and positive bronchoprovocation test in a real-world database. Longitudinal changes in lung function, blood eosinophil/neutrophil counts, and annual numbers of severe asthma exacerbations (AEx) were compared between the AERD and the ATA groups. Within a year after baseline, two or more severe AEx events indicated severe AERD, whereas less than two AEx events indicated nonsevere AERD. RESULTS Among asthmatics, 353 had AERD in which 166 and 187 patients had severe and nonsevere AERD, respectively, and 717 had ATA. AERD patients had significantly lower FEV1%, higher blood neutrophil counts, and higher sputum eosinophils (%) (all p < .05) as well as higher levels of urinary LTE4 and serum periostin, and lower levels of serum myeloperoxidase and surfactant protein D (all p < .01) than those with ATA. In a 10-year follow-up, the severe AERD group maintained lower FEV1% with more severe AEs than the nonsevere AERD group. CONCLUSION AND CLINICAL RELEVANCE We demonstrated that AERD patients presented poorer long-term clinical outcomes than ATA patients in real-world data analyses.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Chungsoo Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
- Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Hyun Young Lee
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, South Korea
| | - Seong-Dae Woo
- Division of Pulmonology and Allergy, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seng Chan You
- Department of Biomedicine System Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Rae Woong Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
5
|
Cao TBT, Quoc QL, Yang EM, Moon JY, Shin YS, Ryu MS, Choi Y, Park HS. Tissue Inhibitor of Metalloproteinase-1 Enhances Eosinophilic Airway Inflammation in Severe Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:451-472. [PMID: 37075799 PMCID: PMC10359643 DOI: 10.4168/aair.2023.15.4.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE Severe asthma (SA) is characterized by persistent airway inflammation and remodeling, followed by lung function decline. The present study aimed to evaluate the role of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the pathogenesis of SA. METHODS We enrolled 250 adult asthmatics (54 with SA and 196 with non-SA) and 140 healthy controls (HCs). Serum TIMP-1 levels were determined by enzyme-linked immunosorbent assay. The release of TIMP-1 from airway epithelial cells (AECs) in response to stimuli as well as the effects of TIMP-1 on the activations of eosinophils and macrophages were evaluated in vitro and in vivo. RESULTS Significantly higher levels of serum TIMP-1 were noted in asthmatics than in HCs, in the SA group than in non-SA group, and in the type 2 SA group than in non-type 2 SA group (P < 0.01 for all). A negative correlation between serum TIMP-1 and FEV1% values (r = -0.400, P = 0.003) was noted in the SA group. In vitro study demonstrated that TIMP-1 was released from AECs in response to poly I:C, IL-13, eosinophil extracellular traps (EETs) and in coculture with eosinophils. TIMP-1-stimulated mice showed eosinophilic airway inflammation, which was not completely suppressed by steroid treatment. In vitro and in vivo functional studies showed that TIMP-1 directly activated eosinophils and macrophages, and induced the release of EETs and macrophages to polarize toward M2 subset, which was suppressed by anti-TIMP-1 antibody. CONCLUSIONS These findings suggest that TIMP-1 enhances eosinophilic airway inflammation and that serum TIMP-1 may be a potential biomarker and/or therapeutic target for type 2 SA.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
6
|
Choi Y, Park HS, Kim YK. Bacterial Extracellular Vesicles: A Candidate Molecule for the Diagnosis and Treatment of Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:279-289. [PMID: 37188485 DOI: 10.4168/aair.2023.15.3.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Extracellular vesicles (EVs) are an end product released from almost all living cells such as eukaryotic cells and bacteria. These membrane vesicles containing proteins, lipids, and nucleic acids are mainly involved in intracellular communications through the transfer of their components from donor to acceptor cells. Moreover, EVs have been implicated in many functions in response to environmental changes, contributing to health and disease; bacterial EVs depending on their specific parental bacterium have diverse effects on immune responses to play a beneficial or pathogenic role in patients with various allergic and immunologic diseases. As bacterial EVs are a completely new area of investigation in this field, we highlight our current understanding of bacterial EVs and discuss their diagnostic and therapeutic potentials (as immunomodulators) for targeting asthma and atopic dermatitis.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| | | |
Collapse
|
7
|
Sim S, Choi Y, Park HS. Immunologic Basis of Type 2 Biologics for Severe Asthma. Immune Netw 2022; 22:e45. [PMID: 36627938 PMCID: PMC9807964 DOI: 10.4110/in.2022.22.e45] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/30/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease characterized by reversible airway obstruction and airway hyperreactivity to various environmental stimuli, leading to recurrent cough, dyspnea, and wheezing episodes. Regarding inflammatory mechanisms, type 2/eosinophilic inflammation along with activated mast cells is the major one; however, diverse mechanisms, including structural cells-derived and non-type 2/neutrophilic inflammations are involved, presenting heterogenous phenotypes. Although most asthmatic patients could be properly controlled by the guided treatment, patients with severe asthma (SA; classified as a treatment-refractory group) suffer from uncontrolled symptoms with frequent asthma exacerbations even on regular anti-inflammatory medications, raising needs for additional controllers, including biologics that target specific molecules found in asthmatic airway, and achieving the precision medicine for asthma. This review summarizes the immunologic basis of airway inflammatory mechanisms and current biologics for SA in order to address unmet needs for future targets.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
8
|
Cao TBT, Moon JY, Yoo HJ, Ban GY, Kim SH, Park HS. Down-regulated surfactant protein B in obese asthmatics. Clin Exp Allergy 2022; 52:1321-1329. [PMID: 35294785 DOI: 10.1111/cea.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity is a common comorbid condition in adult asthmatics and known as a feature of asthma severity. However, the molecular mechanism under obesity-induced inflammation has not yet been fully understood. OBJECTIVE Considering the essential role of hydrophobic surfactant protein B (SP-B) in lung function, SP-B was targeted to examine its involvement in the development of obesity-induced airway inflammation in asthmatics. METHODS The aim was to examine an alteration in circulating SP-B according to obesity in adult asthmatics, 129 asthmatics were enrolled and classified into 3 groups (obese, overweight and normal-weight groups) according to body mass index (BMI). Circulating SP-B levels were determined by enzyme-linked immunosorbent assay. Four single nucleotide polymorphisms of SFTPB gene were genotyped. Serum ceramide levels were measured by liquid chromatography-tandem mass spectrometry. RESULTS Significantly lower serum SP-B levels were noted in the obese group than in the overweight or normal-weight group (p = .002). The serum SP-B level was significantly correlated with serum levels of C18:0 ceramide and transforming growth factor beta 1 as well as BMI (r = -0.200; r = -0.215; r = -0.332, p < .050 for all). An inverse correlation was noted between serum SP-B and fractional exhaled nitric oxide levels in female asthmatics (r = -0.287, p = .009). Genetic predisposition of the SFTPB gene at 9306 A>G to the obese and overweight groups was noted. CONCLUSION Obesity altered ceramide metabolism leading to pulmonary surfactant dysfunction and impaired resolution of airway inflammation, finally contributing to the phenotypes of obese asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun-Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
9
|
Rhyou HI, Nam YH, Park HS. Emerging Biomarkers Beyond Leukotrienes for the Management of Nonsteroidal Anti-inflammatory Drug (NSAID)-Exacerbated Respiratory Disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:153-167. [PMID: 35255534 PMCID: PMC8914608 DOI: 10.4168/aair.2022.14.2.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is a unique condition characterized by aspirin/NSAID hypersensitivity, adult-onset asthma, and/or chronic rhinosinusitis with nasal polyps. Arachidonic acid metabolism dysregulation and intense eosinophilic/type 2 inflammation are central mechanisms in NERD. Studies have been conducted on various biomarkers, and urinary leukotriene E4 is considered the most available biomarker of NERD. However, the pathophysiology of NERD is heterogeneous and complex. Epithelial cells and platelets can interact with immune cells in NERD, and novel biomarkers related to these interactions have recently been investigated. We summarize emerging novel biomarkers of NERD and discuss their roles in the management of NERD.
Collapse
Affiliation(s)
- Hyo-In Rhyou
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young-Hee Nam
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
10
|
Lyly A, Laidlaw TM, Lundberg M. Pathomechanisms of AERD—Recent Advances. FRONTIERS IN ALLERGY 2021; 2:734733. [PMID: 35387030 PMCID: PMC8974777 DOI: 10.3389/falgy.2021.734733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
The pathomechanisms behind NSAID-exacerbated respiratory disease are complex and still largely unknown. They are presumed to involve genetic predisposition and environmental triggers that lead to dysregulation of fatty acid and lipid metabolism, altered cellular interactions involving transmetabolism, and continuous and chronic inflammation in the respiratory track. Here, we go through the recent advances on the topic and sum up the current understanding of the background of this illness that broadly effects the patients' lives.
Collapse
Affiliation(s)
- Annina Lyly
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Inflammation Center, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- *Correspondence: Annina Lyly
| | - Tanya M. Laidlaw
- Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Marie Lundberg
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Choi Y, Sim S, Lee DH, Lee HR, Ban GY, Shin YS, Kim YK, Park HS. Effect of TGF-β1 on eosinophils to induce cysteinyl leukotriene E4 production in aspirin-exacerbated respiratory disease. PLoS One 2021; 16:e0256237. [PMID: 34437574 PMCID: PMC8389430 DOI: 10.1371/journal.pone.0256237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cysteinyl leukotriene (cysLT) overproduction and eosinophil activation are hallmarks of aspirin-exacerbated respiratory disease (AERD). However, pathogenic mechanisms of AERD remain to be clarified. Here, we aimed to find the significance of transforming growth factor beta 1 (TGF-β1) in association with cysteinyl leukotriene E4 (LTE4) production, leading to eosinophil degranulation. To evaluate levels of serum TGF-β1, first cohort enrolled AERD (n = 336), ATA (n = 442) patients and healthy control subjects (HCs, n = 253). In addition, second cohort recruited AERD (n = 34) and ATA (n = 25) patients to investigate a relation between levels of serum TGF-β1 and urinary LTE4. The function of TGF-β1 in LTE4 production was further demonstrated by ex vivo (human peripheral eosinophils) or in vivo (BALB/c mice) experiment. As a result, the levels of serum TGF-β1 were significantly higher in AERD patients than in ATA patients or HCs (P = .001; respectively). Moreover, levels of serum TGF-β1 and urinary LTE4 had a positive correlation (r = 0.273, P = .037). In the presence of TGF-β1, leukotriene C4 synthase (LTC4S) expression was enhanced in peripheral eosinophils to produce LTE4, which sequentially induced eosinophil degranulation via the p38 pathway. When mice were treated with TGF-β1, significantly induced eosinophilia with increased LTE4 production in the lung tissues were noted. These findings suggest that higher levels of TGF-β1 in AERD patients may contribute to LTE4 production via enhancing LTC4S expression which induces eosinophil degranulation, accelerating airway inflammation.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Ga-Young Ban
- Department of Pulmonology and Allergy, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- * E-mail:
| |
Collapse
|
12
|
Mitamura Y, Ogulur I, Pat Y, Rinaldi AO, Ardicli O, Cevhertas L, Brüggen MC, Traidl-Hoffmann C, Akdis M, Akdis CA. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis 2021; 85:615-626. [PMID: 34420214 PMCID: PMC9293165 DOI: 10.1111/cod.13959] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
The “epithelial barrier hypothesis” proposes that the exposure to various epithelial barrier–damaging agents linked to industrialization and urbanization underlies the increase in allergic diseases. The epithelial barrier constitutes the first line of physical, chemical, and immunological defense against environmental factors. Recent reports have shown that industrial products disrupt the epithelial barriers. Innate and adaptive immune responses play an important role in epithelial barrier damage. In addition, recent studies suggest that epithelial barrier dysfunction plays an essential role in the pathogenesis of the atopic march by allergen sensitization through the transcutaneous route. It is evident that external factors interact with the immune system, triggering a cascade of complex reactions that damage the epithelial barrier. Epigenetic and microbiome changes modulate the integrity of the epithelial barrier. Robust and simple measurements of the skin barrier dysfunction at the point‐of‐care are of significant value as a biomarker, as recently reported using electrical impedance spectroscopy to directly measure barrier defects. Understanding epithelial barrier dysfunction and its mechanism is key to developing novel strategies for the prevention and treatment of allergic diseases. The aim of this review is to summarize recent studies on the pathophysiological mechanisms triggered by environmental factors that contribute to the dysregulation of epithelial barrier function.
Collapse
Affiliation(s)
- Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Microbiology, Faculty of Medicine, Aydin Menderes University, Aydin, Turkey
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Microbiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Christine Kühne-Center for Allergy Research and Education, Davos
| |
Collapse
|
13
|
Quoc QL, Choi Y, Thi Bich TC, Yang EM, Shin YS, Park HS. S100A9 in adult asthmatic patients: a biomarker for neutrophilic asthma. Exp Mol Med 2021; 53:1170-1179. [PMID: 34285336 PMCID: PMC8333352 DOI: 10.1038/s12276-021-00652-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The biomarkers and therapeutic targets of neutrophilic asthma (NA) are poorly understood. Although S100 calcium-binding protein A9 (S100A9) has been shown to correlate with neutrophil activation, its role in asthma pathogenesis has not been clarified. This study investigated the mechanism by which S100A9 is involved in neutrophil activation, neutrophil extracellular trap (NET)-induced airway inflammation, and macrophage polarization in NA. The S100A9 levels (by ELISA) in sera/culture supernatant of peripheral blood neutrophils (PBNs) and M0 macrophages from asthmatic patients were measured and compared to those of healthy controls (HCs). The function of S100A9 was evaluated using airway epithelial cells (AECs) and PBNs/M0 macrophages from asthmatic patients, as well as a mouse asthma model. The serum levels of S100A9 were higher in NA patients than in non-NA patients, and there was a positive correlation between serum S100A9 levels and sputum neutrophil counts (r = 0.340, P = 0.005). Asthmatic patients with higher S100A9 levels had lower PC20 methacholine values and a higher prevalence of severe asthma (SA) (P < .050). PBNs/M0 macrophages from SA released more S100A9 than those from non-SA patients. PBNs from asthmatic patients induced S100A9 production by AECs, which further activated AECs via the extracellular signal-regulated kinase (ERK) pathway, stimulated NET formation, and induced M1 macrophage polarization. Higher S100A9 levels in sera, bronchoalveolar lavage fluid, and lung tissues were observed in the mouse model of NA but not in the other mouse models. These results suggest that S100A9 is a potential serum biomarker and therapeutic target for NA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
14
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the complex cellular interactions of aspirin-exacerbated respiratory disease (AERD) and how these interactions promote pathogenic mechanisms of AERD. RECENT FINDINGS In addition to characteristic changes in eicosanoid levels, recent studies have identified increases in alarmin cytokines (IL-33, thymic stromal lymphopoietin) as well as activated innate lymphoid and plasma cell populations in samples from AERD patients. SUMMARY Patients with AERD typically demonstrate high levels of proinflammatory eicosanoids including cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) and hyporesponsiveness to prostaglandin E2 (PGE2). CysLTs are released by mast cells, eosinophils, and adherent platelets and promote epithelial release of IL-33, which activates mast cells and group 2 innate lymphoid cells (ILC2s) in concert with CysLTs. TSLP induces PGD2 release from mast cells which activates and recruits eosinophils, basophils, Th2 cells, and ILC2s via CRTH2. In turn, ILC2s and other cell types produce Th2 cytokines IL-4, IL-5, and IL-13 that, along with CysLTs and PGD2, promote bronchoconstriction, eosinophilic tissue inflammation, and mucus production.
Collapse
Affiliation(s)
- Jana H. Badrani
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Taylor A. Doherty
- Department of Medicine, University of California-San Diego, La Jolla, CA
- Veterans Affairs San Diego Health Care System, La Jolla, CA
| |
Collapse
|
16
|
Hong H, Liao S, Chen F, Yang Q, Wang D. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 2020; 75:2794-2804. [PMID: 32737888 DOI: 10.1111/all.14526] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022]
Abstract
Under the concept of "united airway diseases," the airway is a single organ wherein upper and lower airway diseases are commonly comorbid. The upper and lower airways are lined with respiratory epithelium that plays a vital role in immune surveillance and modulation as the first line of defense to various infective pathogens, allergens, and physical insults. Recently, there is a common hypothesis emphasizing epithelium-derived cytokines, namely IL-25, IL-33, and TSLP, as key regulatory factors that link in immune-pathogenic mechanisms of allergic rhinitis (AR), chronic rhinosinusitis (CRS), and asthma, mainly involving in type 2 inflammatory responses and linking innate and adaptive immunities. Herein, we review studies that elucidated the role of epithelium-derived triple cytokines in both upper and lower airways with the purpose of expediting better clinical treatments and managements of AR, CRS, asthma, and other associated allergic diseases via applications of the modulators of these cytokines.
Collapse
Affiliation(s)
- Haiyu Hong
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| | - Shumin Liao
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
| | - Fenghong Chen
- Otorhinolaryngology Hospital The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Qintai Yang
- Department of Otolaryngology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - De‐Yun Wang
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| |
Collapse
|
17
|
Abstract
Purpose of Review Lung tissues are highly susceptible to airway inflammation as they are inevitably exposed to inhaled pathogens and allergens. In the lungs, clearance of infectious agents and regulation of inflammatory responses are important for the first-line defense, where surfactants play a role in host defense mechanisms. In this review, clinical significance of pulmonary surfactants in asthma has been highlighted. Recent Findings Surfactants, such as surfactant protein A (SP-A) and SP-D released from alveolar epithelium, reduce pathogen infection and control immune-cell activation. Especially, SP-D directly binds to eosinophil surface, leading to inhibition of extracellular trap formation and reduction in airway inflammation. Production of surfactants is commonly determined by both genetic (single nucleotide polymorphisms) and environmental factors influencing processes involved in the development of asthma. In addition, nintedanib (an intracellular inhibitor of tyrosine kinases) could increase SP-D levels and is used in patients with idiopathic pulmonary fibrosis. These findings may provide a possible application of SP-D in asthma. Summary Surfactants are key players contributing to host defense through maintaining the immune system. As clinical implications of surfactants involved in asthma have been suggested, further translational studies are needed to apply surfactants as an effective therapeutic target in patients with asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jaehyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
18
|
Woo SD, Luu QQ, Park HS. NSAID-Exacerbated Respiratory Disease (NERD): From Pathogenesis to Improved Care. Front Pharmacol 2020; 11:1147. [PMID: 32848759 PMCID: PMC7399220 DOI: 10.3389/fphar.2020.01147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Nonsteroidal antiinflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is characterized by moderate-to-severe asthma and a higher prevalence of chronic rhinosinusitis/nasal polyps, but is a highly heterogeneous disorder with various clinical manifestations. Two major pathogenic mechanisms are: (1) overproduction of cysteinyl leukotrienes with dysregulation of arachidonic acid metabolism and (2) increased type 2 eosinophilic inflammation affected by genetic mechanisms. Aspirin challenge is the gold standard to diagnose NERD, whereas reliable in vitro biomarkers have yet not been identified. Therapeutic approaches have been done on the basis of disease severity with the avoidance of culprit and cross-reacting NSAIDs, and when indicated, aspirin desensitization is an effective treatment option. Biologic approaches targeting Type 2 cytokines are emerging as potential therapeutic options. Here, we summarize the up-to-date evidence of pathophysiologic mechanisms and diagnosis/management approaches to the patients with NERD with its phenotypic classification.
Collapse
Affiliation(s)
- Seong-Dae Woo
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Quoc Quang Luu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
19
|
Choi Y, Sim S, Park HS. Distinct functions of eosinophils in severe asthma with type 2 phenotype: clinical implications. Korean J Intern Med 2020; 35:823-833. [PMID: 32460456 PMCID: PMC7373972 DOI: 10.3904/kjim.2020.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is commonly recognized as a heterogeneous condition with a complex pathophysiology. With advances in the development of multiple medications for patients with asthma, most asthma symptoms are well managed. Nevertheless, 5% to 10% of adult asthmatic patients (called severe asthma) are in uncontrolled or partially controlled status despite intensive treatment. Especially, severe eosinophilic asthma is one of the severe asthma phenotypes characterized by eosinophilia in sputum/blood driven by type 2 immune responses. Eosinophils have been widely accepted as a central effector cell in the lungs. Some evidence has demonstrated that persistent eosinophilia in upper and lower airway mucosa contributes to asthma severity by producing various mediators including cytokines, chemokines and granule proteins. Moreover, extracellular traps released from eosinophils have been revealed to enhance type 2 inflammation in patients with severe asthma. These novel molecules have the ability to induce airway inf lammation and hyperresponsiveness through enhancing innate and type 2 immune responses. In this review, we highlight recent insight into the function of eosinophil extracellular traps in patients with severe asthma. In addition, the role of eosinophil extracellular vesicles in severe asthma is also proposed. Finally, current biologics are suggested as a potential strategy for effective management of severe eosinophilic asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Correspondence to Hae-Sim Park, M.D. Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 World cup-ro, Yeongtonggu, Suwon 16499, Korea Tel: +82-31-219-5196, Fax: +82-31-219-5154, E-mail:
| |
Collapse
|
20
|
Altered gut microbiota by azithromycin attenuates airway inflammation in allergic asthma. J Allergy Clin Immunol 2020; 145:1466-1469.e8. [PMID: 32035985 DOI: 10.1016/j.jaci.2020.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
21
|
Yeung WYW, Park HS. Update on the Management of Nonsteroidal Anti-Inflammatory Drug Hypersensitivity. Yonsei Med J 2020; 61:4-14. [PMID: 31887794 PMCID: PMC6938782 DOI: 10.3349/ymj.2020.61.1.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
The clinical phenotypes of nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity are heterogeneous with various presentations including time of symptom onset, organ involvements, and underlying pathophysiology. Having a correct diagnosis can be challenging. Understanding their respective mechanisms as well as developing a comprehensive classification and diagnostic algorithm are pivotal for appropriate management strategy. Treatment modalities are based on the subtypes and severity of hypersensitivity reactions. Insights into the phenotypes and endotypes of hypersensitivity reactions enable personalized management in patients with suboptimal control of disease. This review updated the recent evidence of pathophysiology, classification, diagnostic algorithm, and management of NSAID hypersensitivity reactions.
Collapse
Affiliation(s)
- Wan Yin Winnie Yeung
- Division of Rheumatology, Department of Internal Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea.
| |
Collapse
|
22
|
Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest 2019; 129:1493-1503. [PMID: 30855278 PMCID: PMC6436902 DOI: 10.1172/jci124611] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A rapidly developing paradigm for modern health care is a proactive and individualized response to patients' symptoms, combining precision diagnosis and personalized treatment. Precision medicine is becoming an overarching medical discipline that will require a better understanding of biomarkers, phenotypes, endotypes, genotypes, regiotypes, and theratypes of diseases. The 100-year-old personalized allergen-specific management of allergic diseases has particularly contributed to early awareness in precision medicine. Polyomics, big data, and systems biology have demonstrated a profound complexity and dynamic variability in allergic disease between individuals, as well as between regions. Escalating health care costs together with questionable efficacy of the current management of allergic diseases facilitated the emergence of the endotype-driven approach. We describe here a precision medicine approach that stratifies patients based on disease mechanisms to optimize management of allergic diseases.
Collapse
Affiliation(s)
- Ioana Agache
- Transylvania University, Faculty of Medicine, Brasov, Romania
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
23
|
Choi Y, Lee Y, Park HS. Which Factors Associated With Activated Eosinophils Contribute to the Pathogenesis of Aspirin-Exacerbated Respiratory Disease? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:320-329. [PMID: 30912322 PMCID: PMC6439191 DOI: 10.4168/aair.2019.11.3.320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/30/2022]
Abstract
Eosinophils have long been recognized as a central effector cell in the lungs of asthmatic patients. They contribute to airway inflammation and remodeling through releasing several molecules such as cytokines, granule proteins, lipid mediators and extracellular traps/vesicles. Repeated evidence reveals that intense eosinophil infiltration in upper and lower airway mucosae contributes to the pathogenesis of aspirin-exacerbated respiratory disease (AERD). Persistent eosinophilia is found to be associated with type 2 immune responses, cysteinyl leukotriene overproduction and eosinophil-epithelium interactions. This review highlights recent findings about key mechanisms of eosinophil activation in the airway inflammation of AERD. In addition, current biologics (targeting type 2 immune responses) were suggested to control eosinophilic inflammation for AERD patients.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
24
|
Choi Y, Lee D, Lee J, Shin YS, Kim S, Park H. Immunomodulatory function of surfactant protein D in eosinophilic asthma. Allergy 2019; 74:192-195. [PMID: 30076619 DOI: 10.1111/all.13588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - Dong‐Hyun Lee
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - Ji‐Ho Lee
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - Seung‐Hyun Kim
- Clinical Trial Center Ajou University Medical Center Suwon Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| |
Collapse
|
25
|
Lin Z, Thorenoor N, Wu R, DiAngelo SL, Ye M, Thomas NJ, Liao X, Lin TR, Warren S, Floros J. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. Front Immunol 2018; 9:2256. [PMID: 30333828 PMCID: PMC6175982 DOI: 10.3389/fimmu.2018.02256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Surfactant proteins (SP) are involved in surfactant function and innate immunity in the human lung. Both lung function and innate immunity are altered in CF, and altered SP levels and genetic association are observed in Cystic Fibrosis (CF). We hypothesized that single nucleotide polymorphisms (SNPs) within the SP genes associate with CF or severity subgroups, either through single SNP or via SNP-SNP interactions between two SNPs of a given gene (intragenic) and/or between two genes (intergenic). We genotyped a total of 17 SP SNPs from 72 case-trio pedigree (SFTPA1 (5), SFTPA2 (4), SFTPB (4), SFTPC (2), and SFTPD (2)), and identified SP SNP associations by applying quantitative genetic principles. The results showed (a) Two SNPs, SFTPB rs7316 (p = 0.0083) and SFTPC rs1124 (p = 0.0154), each associated with CF. (b) Three intragenic SNP-SNP interactions, SFTPB (rs2077079, rs3024798), and SFTPA1 (rs1136451, rs1059057 and rs4253527), associated with CF. (c) A total of 34 intergenic SNP-SNP interactions among the 4 SP genes to be associated with CF. (d) No SNP-SNP interaction was observed between SFTPA1 or SFTPA2 and SFTPD. (e) Equal number of SNP-SNP interactions were observed between SFTPB and SFTPA1/SFTPA2 (n = 7) and SP-B and SFTPD (n = 7). (f) SFTPC exhibited significant SNP-SNP interactions with SFTPA1/SFTPA2 (n = 11), SFTPB (n = 4) and SFTPD (n = 3). (g) A single SFTPB SNP was associated with mild CF after Bonferroni correction, and several intergenic interactions that are associated (p < 0.01) with either mild or moderate/severe CF were observed. These collectively indicate that complex SNP-SNP interactions of the SP genes may contribute to the pulmonary disease in CF patients. We speculate that SPs may serve as modifiers for the varied progression of pulmonary disease in CF and/or its severity.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Susan L. DiAngelo
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Meixia Ye
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Neal J. Thomas
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Xiaojie Liao
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Tony R. Lin
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Stuart Warren
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
- Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|