1
|
Hashiba K, Taguchi M, Sakamoto S, Otsu A, Maeda Y, Suzuki Y, Ebe H, Okazaki A, Harashima H, Sato Y. Impact of Lipid Tail Length on the Organ Selectivity of mRNA-Lipid Nanoparticles. NANO LETTERS 2024; 24. [PMID: 39373269 PMCID: PMC11487653 DOI: 10.1021/acs.nanolett.4c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The delivery of mRNA molecules to organs beyond the liver is valuable for therapeutic applications. Functionalized lipid nanoparticles (LNPs) using exogenous mechanisms can regulate in vivo mRNA expression profiles from hepatocytes to extrahepatic tissues but lead to process complexity and cost escalation. Here, we report that mRNA expression gradually shifts from the liver to the spleen in an ionizable lipid tail length-dependent manner. Remarkably, this simple chemical strategy held true even when different ionizable lipid head structures were employed. As a potential mechanism underlying this discovery, our data suggest that 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) is enriched on the surface of mRNA/LNPs with short-tail lipids. This feature limits their interaction with biological components, avoiding their rapid hepatic clearance. We also show that spleen-targeting LNPs loaded with SARS-CoV-2 receptor-binding domain (RBD) mRNA can efficiently induce immune responses and neutralize activity following intramuscular vaccination priming and boosting.
Collapse
Affiliation(s)
- Kazuki Hashiba
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Masamitsu Taguchi
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Sachiko Sakamoto
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Ayaka Otsu
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Yoshiki Maeda
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Yuichi Suzuki
- Laboratory
for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Hirofumi Ebe
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Arimichi Okazaki
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Hideyoshi Harashima
- Laboratory
for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Laboratory
for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
3
|
Nicol PB, Paulson D, Qian G, Liu XS, Irizarry R, Sahu AD. Robust identification of perturbed cell types in single-cell RNA-seq data. Nat Commun 2024; 15:7610. [PMID: 39218971 PMCID: PMC11366752 DOI: 10.1038/s41467-024-51649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Single-cell transcriptomics has emerged as a powerful tool for understanding how different cells contribute to disease progression by identifying cell types that change across diseases or conditions. However, detecting changing cell types is challenging due to individual-to-individual and cohort-to-cohort variability and naive approaches based on current computational tools lead to false positive findings. To address this, we propose a computational tool, scDist, based on a mixed-effects model that provides a statistically rigorous and computationally efficient approach for detecting transcriptomic differences. By accurately recapitulating known immune cell relationships and mitigating false positives induced by individual and cohort variation, we demonstrate that scDist outperforms current methods in both simulated and real datasets, even with limited sample sizes. Through the analysis of COVID-19 and immunotherapy datasets, scDist uncovers transcriptomic perturbations in dendritic cells, plasmacytoid dendritic cells, and FCER1G+NK cells, that provide new insights into disease mechanisms and treatment responses. As single-cell datasets continue to expand, our faster and statistically rigorous method offers a robust and versatile tool for a wide range of research and clinical applications, enabling the investigation of cellular perturbations with implications for human health and disease.
Collapse
Affiliation(s)
| | | | - Gege Qian
- University of California San Diego School of Medicine, San Diego, CA, USA
| | | | | | - Avinash D Sahu
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Galati D, Mallardo D, Nicastro C, Zanotta S, Capitelli L, Lombardi C, Baino B, Cavalcanti E, Sale S, Labonia F, Boenzi R, Atripaldi L, Ascierto PA, Bocchino M. The Dysregulation of the Monocyte-Dendritic Cell Interplay Is Associated with In-Hospital Mortality in COVID-19 Pneumonia. J Clin Med 2024; 13:2481. [PMID: 38731010 PMCID: PMC11084469 DOI: 10.3390/jcm13092481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The monocyte-phagocyte system (MPS), including monocytes/macrophages and dendritic cells (DCs), plays a key role in anti-viral immunity. We aimed to analyze the prognostic value of the MPS components on in-hospital mortality in a cohort of 58 patients (M/F; mean age ± SD years) with COVID-19 pneumonia and 22 age- and sex-matched healthy controls. Methods: We measured frequencies and absolute numbers of peripheral blood CD169+ monocytes, conventional CD1c+ and CD141+ (namely cDC2 and cDC1), and plasmacytoid CD303+ DCs by means of multi-parametric flow cytometry. A gene profile analysis of 770 immune-inflammatory-related human genes and 20 SARS-CoV-2 genes was also performed. Results: Median frequencies and absolute counts of CD169-expressing monocytes were significantly higher in COVID-19 patients than in controls (p 0.04 and p 0.01, respectively). Conversely, percentages and absolute numbers of all DC subsets were markedly depleted in patients (p < 0.0001). COVID-19 cases with absolute counts of CD169+ monocytes above the median value of 114.68/μL had significantly higher in-hospital mortality (HR 4.96; 95% CI: 1.42-17.27; p = 0.02). Interleukin (IL)-6 concentrations were significantly increased in COVID-19 patients (p < 0.0001 vs. controls), and negatively correlated with the absolute counts of circulating CD1c+ cDC2 (r = -0.29, p = 0.034) and CD303+ pDC (r = -0.29, p = 0.036) subsets. Viral genes were upregulated in patients with worse outcomes along with inflammatory mediators such as interleukin (IL)-1 beta, tumor necrosis-α (TNF-α) and the anticoagulant protein (PROS1). Conversely, surviving patients had upregulated genes related to inflammatory and anti-viral-related pathways along with the T cell membrane molecule CD4. Conclusions: Our results suggest that the dysregulated interplay between the different components of the MPS along with the imbalance between viral gene expression and host anti-viral immunity negatively impacts COVID-19 outcomes. Although the clinical scenario of COVID-19 has changed over time, a deepening of its pathogenesis remains a priority in clinical and experimental research.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Domenico Mallardo
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Carmine Nicastro
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Ludovica Capitelli
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Carmen Lombardi
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Bianca Baino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Silvia Sale
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Francesco Labonia
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Rita Boenzi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Luigi Atripaldi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Paolo Antonio Ascierto
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Marialuisa Bocchino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| |
Collapse
|
5
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Lin QXX, Rajagopalan D, Gamage AM, Tan LM, Venkatesh PN, Chan WOY, Kumar D, Agrawal R, Chen Y, Fong SW, Singh A, Sun LJ, Tan SY, Chai LYA, Somani J, Lee B, Renia L, Ng LFP, Ramanathan K, Wang LF, Young B, Lye D, Singhal A, Prabhakar S. Longitudinal single cell atlas identifies complex temporal relationship between type I interferon response and COVID-19 severity. Nat Commun 2024; 15:567. [PMID: 38238298 PMCID: PMC10796319 DOI: 10.1038/s41467-023-44524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/18/2023] [Indexed: 01/22/2024] Open
Abstract
Due to the paucity of longitudinal molecular studies of COVID-19, particularly those covering the early stages of infection (Days 1-8 symptom onset), our understanding of host response over the disease course is limited. We perform longitudinal single cell RNA-seq on 286 blood samples from 108 age- and sex-matched COVID-19 patients, including 73 with early samples. We examine discrete cell subtypes and continuous cell states longitudinally, and we identify upregulation of type I IFN-stimulated genes (ISGs) as the predominant early signature of subsequent worsening of symptoms, which we validate in an independent cohort and corroborate by plasma markers. However, ISG expression is dynamic in progressors, spiking early and then rapidly receding to the level of severity-matched non-progressors. In contrast, cross-sectional analysis shows that ISG expression is deficient and IFN suppressors such as SOCS3 are upregulated in severe and critical COVID-19. We validate the latter in four independent cohorts, and SOCS3 inhibition reduces SARS-CoV-2 replication in vitro. In summary, we identify complexity in type I IFN response to COVID-19, as well as a potential avenue for host-directed therapy.
Collapse
Affiliation(s)
- Quy Xiao Xuan Lin
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Deepa Rajagopalan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Akshamal M Gamage
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Le Min Tan
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Prasanna Nori Venkatesh
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Wharton O Y Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Dilip Kumar
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Yao Chen
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Louisa J Sun
- Alexandra Hospital, Singapore, 159964, Singapore
| | - Seow-Yen Tan
- Changi General Hospital, Singapore, 529889, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jyoti Somani
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- National University Hospital, Singapore, 119074, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, 168753, Singapore
| | - Barnaby Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- National Centre for Infectious diseases, Singapore, 308442, Singapore
- Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - David Lye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- National Centre for Infectious diseases, Singapore, 308442, Singapore
- Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Amit Singhal
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore.
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), A*STAR, Singapore, 138648, Singapore.
| | - Shyam Prabhakar
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore.
| |
Collapse
|
7
|
Zhang J, Xia Y, Li X, He R, Xie X. Case report: A case of Acute Macular Neuroretinopathy secondary to Influenza A virus during Long COVID. Front Immunol 2024; 14:1302504. [PMID: 38288123 PMCID: PMC10822910 DOI: 10.3389/fimmu.2023.1302504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Ocular abnormalities have been reported in association with viral infections, including Long COVID, a debilitating illness caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This report presents a case of a female patient diagnosed with Acute Macular Neuroretinopathy (AMN) following an Influenza A virus infection during Long COVID who experienced severe inflammation symptoms and ocular complications. We hypothesize that the rare occurrence of AMN in this patient could be associated with the immune storm secondary to the viral infection during Long COVID.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihao Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodong Li
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Runxi He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Wang Y, Liang Q, Chen F, Zheng J, Chen Y, Chen Z, Li R, Li X. Immune-Cell-Based Therapy for COVID-19: Current Status. Viruses 2023; 15:2148. [PMID: 38005826 PMCID: PMC10674523 DOI: 10.3390/v15112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. The interplay between innate and adaptive immune responses plays a crucial role in managing COVID-19. Cell therapy has recently emerged as a promising strategy to modulate the immune system, offering immense potential for the treatment of COVID-19 due to its customizability and regenerative capabilities. This review provides an overview of the various subsets of immune cell subsets implicated in the pathogenesis of COVID-19 and a comprehensive summary of the current status of immune cell therapy in COVID-19 treatment.
Collapse
Affiliation(s)
- Yiyuan Wang
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziye Chen
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Li
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojuan Li
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Korobova ZR, Arsentieva NA, Totolian AA. Macrophage-Derived Chemokine MDC/CCL22: An Ambiguous Finding in COVID-19. Int J Mol Sci 2023; 24:13083. [PMID: 37685890 PMCID: PMC10487728 DOI: 10.3390/ijms241713083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Macrophage-derived chemokine (MDC/CCL22) is a chemokine of the C-C subfamily. It is involved in T-cellular maturation and migration. Our previous research shows that plasma CCL22/MDC tends to show a statistically significant depletion of concentrations in acute patients and convalescents when compared to healthy donors. In the current work, we investigate existing views on MDC/CCL22 dynamics in association with various pathologies, including respiratory diseases and, specifically, COVID-19. Additionally, we present our explanations for the observed decrease in MDC/CCL22 concentrations in COVID-19. The first hypothesis we provide implies that viral products bind to MDC/CCL22 and block its activity. Another explanation for this phenomenon is based on dendritic cells population and the inhibition of their function.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| | - Areg A. Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| |
Collapse
|
10
|
Fraser R, Orta-Resendiz A, Dockrell D, Müller-Trutwin M, Mazein A. Severe COVID-19 versus multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. Eur Respir Rev 2023; 32:32/167/220197. [PMID: 36889788 PMCID: PMC10032586 DOI: 10.1183/16000617.0197-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 03/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with diverse host response immunodynamics and variable inflammatory manifestations. Several immune-modulating risk factors can contribute to a more severe coronavirus disease 2019 (COVID-19) course with increased morbidity and mortality. The comparatively rare post-infectious multisystem inflammatory syndrome (MIS) can develop in formerly healthy individuals, with accelerated progression to life-threatening illness. A common trajectory of immune dysregulation forms a continuum of the COVID-19 spectrum and MIS; however, severity of COVID-19 or the development of MIS is dependent on distinct aetiological factors that produce variable host inflammatory responses to infection with different spatiotemporal manifestations, a comprehensive understanding of which is necessary to set better targeted therapeutic and preventative strategies for both.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - David Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
11
|
Romo-Rodríguez R, Gutiérrez-de Anda K, López-Blanco JA, Zamora-Herrera G, Cortés-Hernández P, Santos-López G, Márquez-Domínguez L, Vilchis-Ordoñez A, Ramírez-Ramírez D, Balandrán JC, Parra-Ortega I, Resendis-Antonio O, Domínguez-Ramírez L, López-Macías C, Bonifaz LC, Arriaga-Pizano LA, Cérbulo-Vázquez A, Ferat-Osorio E, Chavez-González A, Treviño S, Brambila E, Ramos-Sánchez MÁ, Toledo-Tapia R, Domínguez F, Bayrán-Flores J, Cruz-Oseguera A, Reyes-Leyva JR, Méndez-Martínez S, Ayón-Aguilar J, Treviño-García A, Monjaraz E, Pelayo R. Chronic Comorbidities in Middle Aged Patients Contribute to Ineffective Emergency Hematopoiesis in Covid-19 Fatal Outcomes. Arch Med Res 2023; 54:197-210. [PMID: 36990888 PMCID: PMC10015105 DOI: 10.1016/j.arcmed.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Background and Aims . Mexico is among the countries with the highest estimated excess mortality rates due to the COVID–19 pandemic, with more than half of reported deaths occurring in adults younger than 65 years old. Although this behavior is presumably influenced by the young demographics and the high prevalence of metabolic diseases, the underlying mechanisms have not been determined. Methods . The age–stratified case fatality rate (CFR) was estimated in a prospective cohort with 245 hospitalized COVID–19 cases, followed through time, for the period October 2020–September 2021. Cellular and inflammatory parameters were exhaustively investigated in blood samples by laboratory test, multiparametric flow cytometry and multiplex immunoassays. Results . The CFR was 35.51%, with 55.2% of deaths recorded in middle–aged adults. On admission, hematological cell differentiation, physiological stress and inflammation parameters, showed distinctive profiles of potential prognostic value in patients under 65 at 7 d follow–up. Pre–existing metabolic conditions were identified as risk factors of poor outcomes. Chronic kidney disease (CKD), as single comorbidity or in combination with diabetes, had the highest risk for COVID–19 fatality. Of note, fatal outcomes in middle–aged patients were marked from admission by an inflammatory landscape and emergency myeloid hematopoiesis at the expense of functional lymphoid innate cells for antiviral immunosurveillance, including NK and dendritic cell subsets. Conclusions . Comorbidities increased the development of imbalanced myeloid phenotype, rendering middle–aged individuals unable to effectively control SARS–CoV–2. A predictive signature of high–risk outcomes at day 7 of disease evolution as a tool for their early stratification in vulnerable populations is proposed.
Collapse
Affiliation(s)
- Rubí Romo-Rodríguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México; Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Karla Gutiérrez-de Anda
- Hospital General de Zona 5, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Jebea A López-Blanco
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Gabriela Zamora-Herrera
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México; Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Paulina Cortés-Hernández
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Luis Márquez-Domínguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | | | - Dalia Ramírez-Ramírez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | | | - Israel Parra-Ortega
- Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México, México
| | - Osbaldo Resendis-Antonio
- Instituto Nacional de Medicina Genómica (INMEGEN) & Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Laura C Bonifaz
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Lourdes A Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - Eduardo Ferat-Osorio
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Antonieta Chavez-González
- Unidad de Investigación Médica en Enfermedades Oncológicas, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico
| | - Miguel Ángel Ramos-Sánchez
- Unidad de Medicina Familiar 57. Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México; Hospital General de Zona 20, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Ricardo Toledo-Tapia
- Hospital General de Zona 20, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Fabiola Domínguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Jorge Bayrán-Flores
- Hospital General de Zona 5, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Alejandro Cruz-Oseguera
- Hospital General de Zona 5, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Julio Roberto Reyes-Leyva
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México
| | - Socorro Méndez-Martínez
- Coordinación de Planeación y Enlace Institucional, Instituto Mexicano del Seguro Social, Delegación Puebla, México
| | - Jorge Ayón-Aguilar
- Coordinación Médica de Investigación en Salud, Instituto Mexicano del Seguro Social, Delegación Puebla, México
| | - Aurora Treviño-García
- Órganos de Operación Administrativa Desconcentrada, Instituto Mexicano del Seguro Social, Delegación Puebla, México
| | - Eduardo Monjaraz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México; Unidad de Educación e Investigación, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
12
|
Jędrzejewski T, Pawlikowska M, Sobocińska J, Wrotek S. COVID-19 and Cancer Diseases-The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges. Int J Mol Sci 2023; 24:ijms24054864. [PMID: 36902290 PMCID: PMC10003402 DOI: 10.3390/ijms24054864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Coriolus versicolor (CV) is a common species from the Polyporaceae family that has been used in traditional Chinese herbal medicine for over 2000 years. Among well-described and most active compounds identified in CV are polysaccharopeptides, such as polysaccharide peptide (PSP) and Polysaccharide-K (PSK, krestin), which, in some countries, are already used as an adjuvant agent in cancer therapy. In this paper, research advances in the field of anti-cancer and anti-viral action of CV are analyzed. The results of data obtained in in vitro and in vivo studies using animal models as well as in clinical research trials have been discussed. The present update provides a brief overview regarding the immunomodulatory effects of CV. A particular focus has been given to the mechanisms of direct effects of CV on cancer cells and angiogenesis. A potential use of CV compounds in anti-viral treatment, including therapy against COVID-19 disease, has also been analyzed based on the most recent literature. Additionally, the significance of fever in viral infection and cancer has been debated, providing evidence that CV affects this phenomenon.
Collapse
|
13
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
14
|
Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A. Current status in cellular-based therapies for prevention and treatment of COVID-19. Crit Rev Clin Lab Sci 2023:1-25. [PMID: 36825325 DOI: 10.1080/10408363.2023.2177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
Collapse
Affiliation(s)
- Dima Hattab
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
15
|
Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I, Azkur AK, Yang ZW, Chen XX, Zhang AZ, Hu JQ, Liu GH, Akdis M, Akdis CA, Gao YD. Recent developments in the immunopathology of COVID-19. Allergy 2023; 78:369-388. [PMID: 36420736 PMCID: PMC10108124 DOI: 10.1111/all.15593] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Fen Wang
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Zhao-Wei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xue Chen
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ai-Zhi Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Ghiglioni DG, Cozzi ETL, Castagnoli R, Bruschi G, Maffeis L, Marchisio PG, Marseglia GL, Licari A. Omalizumab may protect allergic patients against COVID-19: A systematic review. World Allergy Organ J 2023; 16:100741. [PMID: 36644451 PMCID: PMC9826982 DOI: 10.1016/j.waojou.2023.100741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023] Open
Abstract
Omalizumab, which downregulates the immunoglobulin E (IgE) receptor site on plasmacytoid dendritic cells and thereby increases interferon-α (INF-α) production, may shorten the duration of viral infections by enhancing the antiviral immunity. A systematic review was conducted to investigate whether previous anti-IgE treatment with omalizumab could protect against SARS-CoV-2 disease ("COVID-19") (infection, disease duration, and severity), and whether IFN-α upregulation could be involved. The research included articles published from March 2020 to January 2022. An accurate search was performed on bibliographic biomedical database (MEDLINE - Pubmed, SCOPUS, EMBASE, BIOMED CENTRAL, Google scholar, COCHRANE LIBRARY, ClinicalTrial.gov) including cohorts, case reports and reviews. Different methods were used, based on the study design, to assess the quality of eligible studies. Several authors link omalizumab to a possible protection against viruses, but they often refer to studies carried out before the pandemic and with viruses other than SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) (eg, rhinoviruses -RV). Few cases of COVID-19 patients treated with omalizumab have been recorded, and, in most of them, no increased susceptibility to severe disease was observed. According to these data, the current indication is to continue omalizumab therapy during the pandemic. Moreover, although omalizumab may enhance the antiviral immune response even for SARS-CoV-2, further studies are needed to confirm this hypothesis. It would be helpful to establish a registry of omalizumab-treated (or in treatment) patients who have developed COVID-19. Finally, randomized controlled trials could be able to demonstrate the effect of omalizumab in protecting against severe SARS-CoV-2, through IFN-α upregulation or other immunological pathways.
Collapse
Affiliation(s)
- Daniele Giovanni Ghiglioni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, SC Pediatria Pneumoinfettivologia, Milan, Italy,Corresponding author. Via della Commenda 9, 20122, Milano
| | | | - Riccardo Castagnoli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | | | - Laura Maffeis
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, SC Pediatria Immunoinfettivologia, Milan, Italy
| | - Paola Giovanna Marchisio
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, SC Pediatria Pneumoinfettivologia, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Barmania F, Mellet J, Holborn MA, Pepper MS. Genetic Associations with Coronavirus Susceptibility and Disease Severity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:119-140. [PMID: 37378764 DOI: 10.1007/978-3-031-28012-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global public health emergency, and the disease it causes is highly variable in its clinical presentation. Host genetic factors are increasingly recognised as a determinant of infection susceptibility and disease severity. Several initiatives and groups have been established to analyse and review host genetic epidemiology associated with COVID-19 outcomes. Here, we review the genetic loci associated with COVID-19 susceptibility and severity focusing on the common variants identified in genome-wide association studies.
Collapse
Affiliation(s)
- Fatima Barmania
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Megan A Holborn
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
18
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
19
|
Morante-Palacios O, Godoy-Tena G, Calafell-Segura J, Ciudad L, Martínez-Cáceres EM, Sardina JL, Ballestar E. Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells. Nucleic Acids Res 2022; 50:10981-10994. [PMID: 36305821 PMCID: PMC9638940 DOI: 10.1093/nar/gkac941] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for effective activation of naïve T cells. DCs’ immunological properties are modulated in response to various stimuli. Active DNA demethylation is crucial for DC differentiation and function. Vitamin C, a known cofactor of ten-eleven translocation (TET) enzymes, drives active demethylation. Vitamin C has recently emerged as a promising adjuvant for several types of cancer; however, its effects on human immune cells are poorly understood. In this study, we investigate the epigenomic and transcriptomic reprogramming orchestrated by vitamin C in monocyte-derived DC differentiation and maturation. Vitamin C triggers extensive demethylation at NF-κB/p65 binding sites, together with concordant upregulation of antigen-presentation and immune response-related genes during DC maturation. p65 interacts with TET2 and mediates the aforementioned vitamin C-mediated changes, as demonstrated by pharmacological inhibition. Moreover, vitamin C increases TNFβ production in DCs through NF-κB, in concordance with the upregulation of its coding gene and the demethylation of adjacent CpGs. Finally, vitamin C enhances DC’s ability to stimulate the proliferation of autologous antigen-specific T cells. We propose that vitamin C could potentially improve monocyte-derived DC-based cell therapies.
Collapse
Affiliation(s)
- Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol Hospital, LCMN, Germans Trias iPujol Research Institute (IGTP), 08916, Badalona, Barcelona, Spain
- Department of Cell Biology, Physiology, Immunology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Esteban Ballestar
- To whom correspondence should be addressed. Tel: +34 935572800; Fax: +34 934651472;
| |
Collapse
|
20
|
Jonny J, Putranto TA, Irfon R, Sitepu EC. Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Front Immunol 2022; 13:989685. [PMID: 36148241 PMCID: PMC9485669 DOI: 10.3389/fimmu.2022.989685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Finding a vaccine that can last a long time and effective against viruses with high mutation rates such as SARS-CoV-2 is still a challenge today. The various vaccines that have been available have decreased in effectiveness and require booster administration. As the professional antigen presenting cell, Dendritic Cells can also activate the immune system, especially T cells. This ability makes dendritic cells have been developed as vaccines for some types of diseases. In SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their presence can be detected in the long term. Hence, this condition shows that the formation of T cell immunity is essential to prevent and control the course of the disease. The construction of vaccines oriented to induce strong T cells response can be formed by utilizing dendritic cells. In this article, we discuss and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-CoV-2 infection and summarizing the crucial role of dendritic cells in the formation of T cell immunity. We arrange the basis concept of developing dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for SARS-CoV-2 has the potential to be an effective vaccine that solves existing problems.
Collapse
|
21
|
Chavda VP, Patel AB, Vora LK, Apostolopoulos V, Uhal BD. Dendritic cell-based vaccine: the state-of-the-art vaccine platform for COVID-19 management. Expert Rev Vaccines 2022; 21:1395-1403. [PMID: 35929957 DOI: 10.1080/14760584.2022.2110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A correlation between new coronaviruses and host immunity, as well as the role of defective immune function in host response, would be extremely helpful in understanding coronavirus disease (COVID-19) pathogenicity, and a coherent structure of treatments and vaccines. As existing vaccines may be inadequate for new viral variants emerging in various regions of the world, it is a vital requirement for fresh and effective therapeutic alternatives. AREA COVERED Immunotherapy may give a viable protective option for COVID-19, a disease that is currently a big burden on global health and economic systems. Herein, we have outlined three dendritic cell (DC)-based vaccines for COVID-19 which are in human clinical trials and have shown encouraging outcomes. EXPERT OPINION With existing knowledge of the virus, and the nature of DC, DC-based vaccines may be proven to be effective in inducing long-lasting protective immunity, especially T cell responses.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad - 380058, Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Dagla I, Iliou A, Benaki D, Gikas E, Mikros E, Bagratuni T, Kastritis E, Dimopoulos MA, Terpos E, Tsarbopoulos A. Plasma Metabolomic Alterations Induced by COVID-19 Vaccination Reveal Putative Biomarkers Reflecting the Immune Response. Cells 2022; 11:1241. [PMID: 35406806 PMCID: PMC8997405 DOI: 10.3390/cells11071241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccination is currently the most effective strategy for the mitigation of the COVID-19 pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs) against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune response after vaccination remain poorly understood, while there is significant heterogeneity in the immune response among individuals. Metabolomics have often been used to provide a deeper understanding of immune cell responses, but in the context of COVID-19 vaccination such data are scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics were used to provide insights based on the baseline metabolic profile and metabolic alterations induced after mRNA vaccination in paired blood plasma samples collected and analysed before the first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before the second dose, two groups, "low" and "high" responders, were defined. Distinct plasma metabolic profiles were observed in relation to the level of immune response, highlighting the role of amino acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore, levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of response and severity of inflammation.
Collapse
Affiliation(s)
- Ioanna Dagla
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece;
| | - Aikaterini Iliou
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Dimitra Benaki
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 157 71 Athens, Greece;
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Anthony Tsarbopoulos
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece;
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 27 Athens, Greece
| |
Collapse
|
23
|
SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Promote a Proinflammatory Activation Profile on Human Dendritic Cells. Cells 2021; 10:cells10123279. [PMID: 34943787 PMCID: PMC8699033 DOI: 10.3390/cells10123279] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells, and their function is essential to configure adaptative immunity and avoid excessive inflammation. DCs are predicted to play a crucial role in the clinical evolution of the infection by the severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. DCs interaction with the SARS-CoV-2 Spike protein, which mediates cell receptor binding and subsequent fusion of the viral particle with host cell, is a key step to induce effective immunity against this virus and in the S protein-based vaccination protocols. Here we evaluated human DCs in response to SARS-CoV-2 S protein, or to a fragment encompassing the receptor binding domain (RBD) challenge. Both proteins increased the expression of maturation markers, including MHC molecules and costimulatory receptors. DCs interaction with the SARS-CoV-2 S protein promotes activation of key signaling molecules involved in inflammation, including MAPK, AKT, STAT1, and NFκB, which correlates with the expression and secretion of distinctive proinflammatory cytokines. Differences in the expression of ACE2 along the differentiation of human monocytes to mature DCs and inter-donor were found. Our results show that SARS-CoV-2 S protein promotes inflammatory response and provides molecular links between individual variations and the degree of response against this virus.
Collapse
|
24
|
Pandolfi S, Chirumbolo S, Ricevuti G, Valdenassi L, Bjørklund G, Lysiuk R, Doşa MD, Lenchyk L, Fazio S. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality: Time for a suitable proposal. Basic Clin Pharmacol Toxicol 2021; 130:225-239. [PMID: 34811895 PMCID: PMC9011697 DOI: 10.1111/bcpt.13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
The COVID‐19 pandemic is a highly dramatic concern for mankind. In Italy, the pandemic exerted its major impact throughout the period of February to June 2020. To date, the awkward amount of more than 134,000 deaths has been reported. Yet, post‐mortem autopsy was performed on a very modest number of patients who died from COVID‐19 infection, leading to a first confirmation of an immune‐thrombosis of the lungs as the major COVID‐19 pathogenesis, likewise for SARS. Since then (June–August 2020), no targeted early therapy considering this pathogenetic issue was approached. The patients treated with early anti‐inflammatory, anti‐platelet, anticoagulant and antibiotic therapy confirmed that COVID‐19 was an endothelial inflammation with immuno‐thrombosis. Patients not treated or scarcely treated with the most proper and appropriate therapy and in the earliest, increased the hospitalization rate in the intensive care units and also mortality, due to immune‐thrombosis from the pulmonary capillary district and alveoli. The disease causes widespread endothelial inflammation, which can induce damage to various organs and systems. Therapy must be targeted in this consideration, and in this review, we demonstrate how early anti‐inflammatory therapy may treat endothelia inflammation and immune‐thrombosis caused by COVID‐19, by using drugs we are going to recommend in this paper.
Collapse
Affiliation(s)
- Sergio Pandolfi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy.,Unit of Neurosurgery, Villa Mafalda Health Clinics, Rome, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | | | - Luigi Valdenassi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Geir Bjørklund
- Department of Direction Board, Council for Nutritional an Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|