1
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
2
|
Lapi F, Marconi E, Aprile PL, Rossi A, Fornasari D, Cricelli C. Effectiveness of paracetamol-NSAID combinations for upper and lower respiratory tract infections: a preliminary evaluation in primary care. Eur J Clin Pharmacol 2024; 80:781-783. [PMID: 38367044 DOI: 10.1007/s00228-024-03651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Affiliation(s)
- Francesco Lapi
- Health Search, Italian College of General Practitioners and Primary Care, Via del Sansovino 179, 50142, Florence, Italy.
| | - Ettore Marconi
- Health Search, Italian College of General Practitioners and Primary Care, Via del Sansovino 179, 50142, Florence, Italy
| | | | - Alessandro Rossi
- Italian College of General Practitioners and Primary Care, Florence, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Claudio Cricelli
- Italian College of General Practitioners and Primary Care, Florence, Italy
| |
Collapse
|
3
|
Hu S, Liang Y, Chen J, Gao X, Zheng Y, Wang L, Jiang J, Zeng M, Luo M. Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases. J Tissue Eng 2024; 15:20417314241265897. [PMID: 39092451 PMCID: PMC11292707 DOI: 10.1177/20417314241265897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients' quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.
Collapse
Affiliation(s)
- Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Losol P, Sokolowska M, Hwang YK, Ogulur I, Mitamura Y, Yazici D, Pat Y, Radzikowska U, Ardicli S, Yoon JE, Choi JP, Kim SH, van de Veen W, Akdis M, Chang YS, Akdis CA. Epithelial Barrier Theory: The Role of Exposome, Microbiome, and Barrier Function in Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:705-724. [PMID: 37957791 PMCID: PMC10643858 DOI: 10.4168/aair.2023.15.6.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023]
Abstract
Allergic diseases are a major public health problem with increasing prevalence. These immune-mediated diseases are characterized by defective epithelial barriers, which are explained by the epithelial barrier theory and continuously emerging evidence. Environmental exposures (exposome) including global warming, changes and loss of biodiversity, pollution, pathogens, allergens and mites, laundry and dishwasher detergents, surfactants, shampoos, body cleaners and household cleaners, microplastics, nanoparticles, toothpaste, enzymes and emulsifiers in processed foods, and dietary habits are responsible for the mucosal and skin barrier disruption. Exposure to barrier-damaging agents causes epithelial cell injury and barrier damage, colonization of opportunistic pathogens, loss of commensal bacteria, decreased microbiota diversity, bacterial translocation, allergic sensitization, and inflammation in the periepithelial area. Here, we review scientific evidence on the environmental components that impact epithelial barriers and microbiome composition and their influence on asthma and allergic diseases. We also discuss the historical overview of allergic diseases and the evolution of the hygiene hypothesis with theoretical evidence.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yu-Kyoung Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jeong-Eun Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea.
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
5
|
Kianfar S, Salimi V, Jahangirifard A, Mirtajani SB, Vaezi MA, Yavarian J, Mokhtari-Azad T, Tavakoli-Yaraki M. 15-lipoxygenase and cyclooxygenase expression profile and their related modulators in COVID-19 infection. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102587. [PMID: 37716021 DOI: 10.1016/j.plefa.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The role of the lipoxygenase (LOX) and cyclooxygenase (COX) enzymes in maintaining cellular homeostasis and regulating immune responses promoted us in this study to analyze the pattern of changes in 15-lipoxygenase and cyclooxygenase isoforms and their related cytokines in SARS-CoV-2 infection. METHODS 15-LOX-1, 15-LOX-2, COX-1 and COX-2 gene expression levels were determined using qRT-PCR in nasopharynx specimens from patients with severe [N = 40] and non-severe [N = 40] confirmed SARS-CoV-2 infections and healthy controls. Circulating levels of lL-6, lL-10, PGE2, and IFN-γ were measured in patients and healthy controls using ELISA assay. The associations between the measured variables and the patient's clinic-pathological characteristics were assessed for all groups. RESULTS The expression level of 15-LOX-1 was elevated significantly in male patients with severe infection; although female patients showed a different expression profile. 15-LOX-2 expression level was considerably increased in male patients with severe infection; while changes in its expression remained inconclusive in female patients. The relationship between 15-LOX expression and the male gender was prominent. Both COX isoforms expression showed elevation in male and female patients that were correlated with disease severity. The simultaneous increase in lL-6, PGE2 and IFN-γ levels also decrease in lL-10 in patients with severe infection indicating the possible regulatory network related to the COX and 15-LOX enzymes in the output of the SARS-CoV-2 infection. CONCLUSION The results of this study determined the pattern of possible changes in key enzymes of prostaglandin and eicosanoids synthesis pathway and their mediators, which can be helpful in mapping the SARS-CoV-2 pathogenicity and pharmaceutical approaches.
Collapse
Affiliation(s)
- Sara Kianfar
- Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Jahangirifard
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Bashir Mirtajani
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship & Antimicrobial Resistance, Tehran university of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yin R, Huang KX, Huang LA, Ji M, Zhao H, Li K, Gao A, Chen J, Li Z, Liu T, Shively JE, Kandeel F, Li J. Indole-Based and Cyclopentenylindole-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Pharmaceuticals (Basel) 2023; 16:1203. [PMID: 37765011 PMCID: PMC10534865 DOI: 10.3390/ph16091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, growing evidence of the relationship between G-protein coupled receptor 44 (GPR44) and the inflammation-cancer system has garnered tremendous interest, while the exact role of GPR44 has not been fully elucidated. Currently, there is a strong and urgent need for the development of non-invasive in vivo GPR44 positron emission tomography (PET) radiotracers that can be used to aid the exploration of the relationship between inflammation and tumor biologic behavior. Accordingly, the choosing and radiolabeling of existing GPR44 antagonists containing a fluorine group could serve as a viable method to accelerate PET tracers development for in vivo imaging to this purpose. The present study aims to evaluate published (2000-present) indole-based and cyclopentenyl-indole-based analogues of the GPR44 antagonist to guide the development of fluorine-18 labeled PET tracers that can accurately detect inflammatory processes. The selected analogues contained a crucial fluorine nuclide and were characterized for various properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile. Overall, 26 compounds with favorable to strong binding properties were identified. This review highlights the potential of GPR44 analogues for the development of PET tracers to study inflammation and cancer development and ultimately guide the development of targeted clinical therapies.
Collapse
Affiliation(s)
- Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hanyi Zhao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kathy Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Tianxiong Liu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Borras E, McCartney MM, Rojas DE, Hicks TL, Tran NK, Tham T, Juarez MM, Franzi L, Harper RW, Davis CE, Kenyon NJ. Oxylipin concentration shift in exhaled breath condensate (EBC) of SARS-CoV-2 infected patients. J Breath Res 2023; 17:10.1088/1752-7163/acea3d. [PMID: 37489864 PMCID: PMC10446499 DOI: 10.1088/1752-7163/acea3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Infection of airway epithelial cells with severe acute respiratory coronavirus 2 (SARS-CoV-2) can lead to severe respiratory tract damage and lung injury with hypoxia. It is challenging to sample the lower airways non-invasively and the capability to identify a highly representative specimen that can be collected in a non-invasive way would provide opportunities to investigate metabolomic consequences of COVID-19 disease. In the present study, we performed a targeted metabolomic approach using liquid chromatography coupled with high resolution chromatography (LC-MS) on exhaled breath condensate (EBC) collected from hospitalized COVID-19 patients (COVID+) and negative controls, both non-hospitalized and hospitalized for other reasons (COVID-). We were able to noninvasively identify and quantify inflammatory oxylipin shifts and dysregulation that may ultimately be used to monitor COVID-19 disease progression or severity and response to therapy. We also expected EBC-based biochemical oxylipin changes associated with COVID-19 host response to infection. The results indicated ten targeted oxylipins showing significative differences between SAR-CoV-2 infected EBC samples and negative control subjects. These compounds were prostaglandins A2 and D2, LXA4, 5-HETE, 12-HETE, 15-HETE, 5-HEPE, 9-HODE, 13-oxoODE and 19(20)-EpDPA, which are associated with specific pathways (i.e. P450, COX, 15-LOX) related to inflammatory and oxidative stress processes. Moreover, all these compounds were up-regulated by COVID+, meaning their concentrations were higher in subjects with SAR-CoV-2 infection. Given that many COVID-19 symptoms are inflammatory in nature, this is interesting insight into the pathophysiology of the disease. Breath monitoring of these and other EBC metabolites presents an interesting opportunity to monitor key indicators of disease progression and severity.
Collapse
Affiliation(s)
- Eva Borras
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
- These authors contributed equally: Eva Borras, Mitchell M. McCartney
| | - Mitchell M. McCartney
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
- These authors contributed equally: Eva Borras, Mitchell M. McCartney
| | - Dante E. Rojas
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
| | - Tristan L Hicks
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
| | - Nam K Tran
- UC Davis Lung Center, University of California Davis, CA
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento CA, USA
| | - Tina Tham
- UC Davis Lung Center, University of California Davis, CA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Maya M Juarez
- UC Davis Lung Center, University of California Davis, CA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Lisa Franzi
- UC Davis Lung Center, University of California Davis, CA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Richart W. Harper
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Cristina E. Davis
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Nicholas J. Kenyon
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento CA, USA
| |
Collapse
|
8
|
Paprocka R, Wiese-Szadkowska M, Kołodziej P, Kutkowska J, Balcerowska S, Bogucka-Kocka A. Evaluation of Biological Activity of New 1,2,4-Triazole Derivatives Containing Propionic Acid Moiety. Molecules 2023; 28:molecules28093808. [PMID: 37175218 PMCID: PMC10180335 DOI: 10.3390/molecules28093808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
To this day, the quest to find new drugs is still a challenge due to the growing demands of patients suffering from chronic inflammatory diseases and the need for the individualization of therapy. The aim of this research was to synthesize new 1,2,4-triazole derivatives containing propanoic acid moiety and to investigate their anti-inflammatory, antibacterial and anthelmintic activity. Compounds 3a-3g were obtained in reactions of amidrazones 1a-1g with succinic anhydride. Several analyses of proton and carbon nuclear magnetic resonance (1H NMR, 13C NMR, respectively), as well as high-resolution mass spectra (HRMS), confirmed the structures of 1,2,4-triazole derivatives 3a-3g. Toxicity, antiproliferative activity and influence on cytokine release (TNF-α: Tumor Necrosis Factor-α, IL-6: Interleukin-6, IFN-γ: Interferon-γ, and IL-10: Interleukin-10) of the compounds 3a-3g were evaluated in peripheral blood mononuclear cells culture. Moreover, mitogen-stimulated cell culture was used for biological activity tests. The antimicrobial and anthelmintic activity of derivatives 3a-3g were studied against Gram-positive and Gram-negative bacterial strains and Rhabditis sp. culture. Despite the lack of toxicity, compounds 3a-3g significantly reduced the level of TNF-α. Derivatives 3a, 3c and 3e also decreased the release of IFN-γ. Taking all of the results into consideration, compounds 3a, 3c and 3e show the most beneficial anti-inflammatory effects.
Collapse
Affiliation(s)
- Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University in Lublin, Chodźki Str. 4A, 20-093 Lublin, Poland
| | - Jolanta Kutkowska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland
| | - Sara Balcerowska
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University in Lublin, Chodźki Str. 4A, 20-093 Lublin, Poland
| |
Collapse
|