1
|
Furtado TP, Osadchiy V, Furtado MH. Semen static oxidation-reduction potential is not helpful in evaluating male fertility. Andrology 2024. [PMID: 39388524 DOI: 10.1111/andr.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Infertility affects a significant percentage of couples worldwide, with male infertility contributing substantially in a considerable number of cases. Research indicates that oxidative stress is a critical factor impacting male fertility. OBJECTIVE To explore the relationship between semen static oxidation-reduction potential (sORP), sperm parameters, and validated biomarkers of oxidative stress in infertile men. MATERIALS AND METHODS This cross-sectional study involved 202 men diagnosed with idiopathic male factor infertility and male partners from couples with unexplained infertility. Multivariable linear regression to query the associations between sORP, sperm parameters, and oxidative aggression biomarkers (lipid peroxidation, mitochondrial membrane potential, annexin V, and sperm DNA fragmentation). RESULTS SORP has no linear association with any semen analysis parameter. Furthermore, its relationship with validated biomarkers of oxidative stress was inconsistent. sORP was inversely related to lipid peroxidation (multivariable linear regression coefficient: -0.64), positively associated with sperm DNA fragmentation (multivariable linear regression coefficient: 3.20), and unrelated to mitochondrial membrane potential or annexin V. CONCLUSIONS There is no clear or consistent relationship between sORP and validated oxidative aggression biomarkers or sperm parameters. Our findings suggest that sORP is unlikely to be helpful in the evaluation of a male with idiopathic infertility.
Collapse
Affiliation(s)
| | - Vadim Osadchiy
- Department of Urology David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Marcelo Horta Furtado
- Andrology Department, MF Fertilidade Masculina, Belo Horizonte, Brazil
- Reproduction Laboratory, Cell Biology Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Calamai C, Chelli E, Ammar O, Tanturli M, Vignozzi L, Muratori M. Reliable Detection of Excessive Sperm Ros Production in Subfertile Patients: How Many Men with Oxidative Stress? Antioxidants (Basel) 2024; 13:1123. [PMID: 39334782 PMCID: PMC11429313 DOI: 10.3390/antiox13091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Sperm oxidative stress has been extensively associated to male infertility. However, tests to detect this parameter have not been yet introduced in clinical practice and no definitive data are present on the extent of oxidative stress in male infertility. In this study, we used a novel and reliable flow cytometric method to reveal sperm ROS production in subfertile patients (n = 131) and in healthy donors (n = 31). Oxidative stress was higher in subfertile patients (14.22 [10.21-22.08]%) than in healthy donors (9.75 [8.00-14.90]% (p < 0.01)), but no correlation was found with age, semen quality or sDF. We also failed to detect an increase in sperm ROS production with semen viscosity or leukocytospermia, but a sharp impact of semen bacteria was evident (with bacteria: 31.61 [14.08-46.78]% vs. without bacteria: 14.20 [10.12-22.00]%, p < 0.01). Finally, after establishing a threshold as the 95th percentile in healthy donors, we found that 29% of subfertile patients exceeded this threshold. The percentage decreased to 25.56% when we excluded subjects with bacteriospermia and increased to 60.87% when only these patients were considered. In conclusion, 29% of subfertile patients showed an excessive sperm ROS production. Surprisingly, this parameter appears to be independent from routine semen analysis and even sDF determination, promising to provide additional information on male infertility.
Collapse
Affiliation(s)
- Costanza Calamai
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Elena Chelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Oumaima Ammar
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, I-50134 Florence, Italy
| | - Michele Tanturli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
- Andrology, Women's Endocrinology and Gender Incongruence Unit, AOU Careggi, I-50134 Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| |
Collapse
|
3
|
Ogawa S, Ota K, Nishizawa K, Shinagawa M, Katagiri M, Kikuchi H, Kobayashi H, Takahashi T, Yoshida H. Micronutrient Antioxidants for Men (Menevit ®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes. Antioxidants (Basel) 2024; 13:635. [PMID: 38929074 PMCID: PMC11200383 DOI: 10.3390/antiox13060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress (OS) affects men's health and impairs spermatogenesis. Micronutrient antioxidants are available for male infertility as complemental support; however, their efficacy remains debatable. This study aimed to investigate whether antioxidants can help to reduce sperm OS and improve semen analysis and quality. We included 171 male partners of couples planning to undergo assisted reproductive technology (ART). Male partners, aged 29-41 years, of couples intending to conceive were self-selected to take daily antioxidants (n = 84) containing folic acid and zinc, or not to take antioxidants (n = 52) for 6 months. We analyzed the alterations in serum oxidant levels, sperm parameters, OS, and deoxyribonucleic acid fragmentation after 3 and 6 months. Additionally, implantation, clinical pregnancy, and miscarriage rates after vitrified-warmed embryo transfer were compared between those taking antioxidants and those not taking them after 6 months. In men with high static oxidation-reduction potential (sORP), we observed a significant improvement in sperm concentration and sORP. The high-quality blastocyst rate tended to increase, and implantation and clinical pregnancy rates also significantly increased after 6 months of intervention. The micronutrient antioxidants could improve sperm function by reducing OS and improving ART outcomes. Therefore, micronutrient antioxidants may be a viable treatment option for male infertility.
Collapse
Affiliation(s)
- Seiji Ogawa
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, 1-1-4 Hanedakuko, Ota, Tokyo 144-0041, Japan
| | - Kuniaki Ota
- Department of Obstetrics and Gynecology, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Okayama, Japan
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Fukushima, Japan;
| | - Kaori Nishizawa
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Masumi Shinagawa
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Mikiko Katagiri
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Hiroyuki Kikuchi
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Hideyuki Kobayashi
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
- Department of Urology, Toho University, 5-21-16 Omori-Nishi, Ota, Tokyo 143-8540, Japan
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Fukushima, Japan;
| | - Hiroaki Yoshida
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| |
Collapse
|
4
|
Rasmussen JMK, Dalgaard MIR, Alipour H, Dardmeh F, Christiansen OB. Seminal Oxidative Stress and Sperm DNA Fragmentation in Men from Couples with Infertility or Unexplained Recurrent Pregnancy Loss. J Clin Med 2024; 13:833. [PMID: 38337527 PMCID: PMC10856715 DOI: 10.3390/jcm13030833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: This case-control study examined whether men from couples with unexplained recurrent pregnancy loss (RPL) or infertility exhibited higher seminal oxidative stress (OS) and sperm DNA fragmentation (SDF) compared to fertile controls. (2) Methods: The study included 30 participants from each group: unexplained RPL, unexplained infertility, and proven fertility. Data were collected at Aalborg University Hospital tertiary RPL and fertility treatment clinics (Aalborg, Denmark), excluding couples with mixed conditions for homogeneity. Semen samples were analyzed using computer-aided sperm analysis (CASA) for concentration, motility, and morphology. SDF was assessed via a CASA-based sperm chromatin dispersion test. OS was measured as static oxidation-reduction potential (sORP). (3) Results: The results showed no significant OS differences between groups. The RPL group had significantly lower SDF levels than the control group. A significant positive correlation between SDF and OS was observed in the infertility group. Overall, this study did not find significant differences in OS levels between men from couples with unexplained RPL or infertility and fertile controls, while SDF levels were lower in the RPL group compared to controls. (4) Conclusion: In conclusion, despite the existing literature suggesting that OS and SDF are negative prognostic factors, our findings suggest they may not be reliable diagnostic markers for RPL and infertility.
Collapse
Affiliation(s)
| | - Maya Isabella Riise Dalgaard
- Department of Obstetrics and Gynecology, Aalborg University Hospital, 9000 Aalborg, Denmark; (J.M.K.R.); (M.I.R.D.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark;
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark;
| | - Ole Bjarne Christiansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, 9000 Aalborg, Denmark; (J.M.K.R.); (M.I.R.D.)
- Department of Clinical Medicine, Aalborg University, 9260 Gistrup, Denmark
| |
Collapse
|
5
|
Abu-Khudir R, Almutairi HH, Abd El-Rahman SS, El-Said KS. The Palliative and Antioxidant Effects of Hesperidin against Lead-Acetate-Induced Testicular Injury in Male Wistar Rats. Biomedicines 2023; 11:2390. [PMID: 37760831 PMCID: PMC10525152 DOI: 10.3390/biomedicines11092390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lead (Pb)-induced reprotoxicity is a detrimental consequence of Pb exposure, which results in abnormal spermatogenesis, testicular degeneration, and pathogenic sperm changes. The association between impaired male reproductive function and Pb-induced oxidative stress (OS) has been demonstrated, with consequent testicular antioxidant deficiency. The current study investigated the protective role of the natural antioxidant hesperidin (HSD) against lead-acetate (PbAc)-induced testicular toxicity. Male Wistar rats (n = 40) were randomly divided into four experimental groups: Group I (negative control) received 2.0 mL/kg BW 0.9% saline; Group II received 100 mg/kg BW PbAc; Group III received 100 mg/kg BW HSD; and Group IV received HSD two hours before PbAc using the abovementioned doses. The treatments were administered daily for 30 consecutive days. The results showed that HSD treatment significantly restored PbAc-induced decrease in body, epididymal, and testicular weights as well as in semen parameters, reproductive hormones, and testicular markers of OS. Reduced MDA levels and improved testicular histopathological findings were also observed. Collectively, this study sheds light on the preventive role of HSD against PbAc-induced testicular injury, which is mediated via the suppression of OS and the modulation of reproductive hormones as well as the plausibility of HSD being used as a supplementary therapeutic option for recovery.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Karim Samy El-Said
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
6
|
Tomita K, Udayanga KGS, Satoh M, Hashimoto S, Morimoto Y. Relation between semen oxidative reduction potential in initial semen examination and IVF outcomes. Reprod Med Biol 2023; 22:e12501. [PMID: 36726595 PMCID: PMC9884324 DOI: 10.1002/rmb2.12501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
Purpose The MiOXSYS system is a new technique to analyze the semen oxidative reduction potential (ORP) that may use to classify the level of sperm DNA integrity. It does not clearly explain how the semen ORP values could help to change the IVF outcomes. We have analyzed correlations between semen ORP value and the IVF results. Methods Four hundred and thirty couples were enrolled. The male counterparts were divided into two groups according to their semen ORP values and compared the fertilization rate, cell cleavage rate, and embryo quality, following the IVF procedures. The relations between ORP values and the clinical pregnancy, live birth, and abortion rates were analyzed. Results The ORP values show negative and positive correlations with some conventional semen parameters. The fertilization and the cleavage rate did not show any differences in those two groups, but the transferable embryo rate was significantly high in patients with high semen ORP. However, the patients with high ORP show a tendency to lower clinical pregnancy with a low abortion rate compared to the low ORP group. Conclusion The main purpose of measuring the ORP value in semen is still questionable and shows controversial results.
Collapse
Affiliation(s)
| | | | - Manabu Satoh
- HORAC Grand Front Osaka ClinicOsakaJapan
- IVF Namba ClinicOsakaJapan
| | - Shu Hashimoto
- Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | | |
Collapse
|
7
|
Gill K, Machalowski T, Harasny P, Kups M, Grabowska M, Duchnik E, Sipak O, Fraczek M, Kurpisz M, Kurzawa R, Piasecka M. Male Infertility Coexists with Decreased Sperm Genomic Integrity and Oxidative Stress in Semen Irrespective of Leukocytospermia. Antioxidants (Basel) 2022; 11:1987. [PMID: 36290709 PMCID: PMC9598546 DOI: 10.3390/antiox11101987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Our research was designed to verify the relationship between male infertility, basic semen characteristics (with respect to detailed sperm morphology), sperm DNA fragmentation (SDF), oxidation-reduction potential in semen (ORP), and leukocytospermia. The obtained results showed that infertile groups (with or without leukocytospermia) had significantly lower basic semen characteristics and higher SDF, raw ORP, and static ORP (sORP) than fertile controls. The thresholds of 13% SDF (AUC = 0.733) and 1.40 sORP (AUC = 0.857) were predictive values for discriminating infertile from fertile men. In infertile groups, a higher prevalence and risk for >13% SDF and >1.40 sORP were revealed. Unexpectedly, leukocytospermic subjects had lower sORP, prevalence, and risk for >1.40 sORP than leukocytospermic-negative men. These groups did not differ in SDF and raw ORP. Both SDF and sORP negatively correlated with basic semen parameters but positively correlated with sperm head and midpiece defects. sORP positively correlated with sperm tail defects, immature sperm cells with excess residual cytoplasm, and SDF. In turn, raw ORP negatively correlated with sperm count but positively correlated with SDF and sORP. These findings indicate that (1) there is a relationship between male infertility, SDF, and OS in semen; (2) in infertile men, there is a clinically significant risk of SDF and OS irrespective of leukocytospermia; and (3) the assessment of SDF and oxidative stress should be independent of leukocytospermia.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Tomasz Machalowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, 72-010 Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Michal Kups
- Department of Urology and Oncological Urology, Regional Specialist Hospital in Szczecin, 71-455 Szczecin, Poland
- The Fertility Partnership Vitrolive in Szczecin, 70-483 Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Rafal Kurzawa
- The Fertility Partnership Vitrolive in Szczecin, 70-483 Szczecin, Poland
- Department of Gynecology and Reproductive Health, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Malgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
| |
Collapse
|
8
|
Abstract
The dramatic rise in obesity has recently made it a global health issue. About 1.9 billion were overweight, and 650 million global populations were obese in 2016. Obese women suffer longer conception time, lowered fertility rates, and greater rates of miscarriage. Obesity alters hormones such as adiponectin and leptin, affecting all levels within the hypothalamic-pituitary-gonadal axis. Advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are inflammatory cytokines that may play an important role in the pathophysiology of ovarian dysfunction in obesity. In obese males, there are altered sperm parameters, reduced testosterone, increased estradiol, hypogonadism, and epigenetic modifications transmitted to offspring. The focus of this article is on the possible adverse effects on reproductive health resulting from obesity and sheds light on different molecular pathways linking obesity with infertility in both female and male subjects. Electronic databases such as Google Scholar, Embase, Science Direct, PubMed, and Google Search Engine were utilized to find obesity and infertility-related papers. The search strategy is detailed in the method section. Even though multiple research work has shown that obesity impacts fertility in both male and female negatively, it is significant to perform extensive research on the molecular mechanisms that link obesity to infertility. This is to find therapeutics that may be developed aiming at these mechanisms to manage and prevent the negative effects of obesity on the reproductive system.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Physiology, Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
9
|
Panner Selvam MK, Baskaran S, O’Connell S, Almajed W, Hellstrom WJG, Sikka SC. Association between Seminal Oxidation-Reduction Potential and Sperm DNA Fragmentation-A Meta-Analysis. Antioxidants (Basel) 2022; 11:antiox11081563. [PMID: 36009282 PMCID: PMC9404741 DOI: 10.3390/antiox11081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Seminal oxidative stress and sperm DNA damage are potential etiologies of male factor infertility. The present study aims to evaluate the relationship between oxidation-reduction potential (ORP), a measure of oxidative stress, and sperm DNA fragmentation (SDF) by conducting a systematic review and meta-analysis of relevant clinical data. A literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The COVIDENCE tool was used to screen and identify studies evaluating seminal ORP and SDF. Studies (n = 7) that measured seminal ORP and SDF of 3491 semen samples were included in the analysis. The fixed-effects model revealed a significant pooled correlation coefficient (r = 0.24; p < 0.001) between seminal ORP and SDF. Furthermore, subgroup analyses indicated that the pooled correlation coefficient between ORP and sperm chromatin dispersion (SCD) assay was less than other SDF assays (0.23 vs. 0.29). There was a moderate level of heterogeneity (I2 = 42.27%) among the studies, indicating a lack of publication bias. This is the first meta-analysis to reveal a positive correlation between seminal ORP and SDF. Furthermore, this study indicates the role of oxidative stress in the development of sperm DNA damage and thus warrants prospectively exploring the clinical value of these sperm function tests.
Collapse
Affiliation(s)
- Manesh Kumar Panner Selvam
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (M.K.P.S.); (S.C.S.); Tel.: +1-(504)988-2754 (M.K.P.S.)
| | - Saradha Baskaran
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Samantha O’Connell
- Office of Academic Affairs and Provost, Tulane University, New Orleans, LA 70112, USA
| | - Wael Almajed
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Wayne J. G. Hellstrom
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Suresh C. Sikka
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (M.K.P.S.); (S.C.S.); Tel.: +1-(504)988-2754 (M.K.P.S.)
| |
Collapse
|
10
|
Henkel R, Morris A, Vogiatzi P, Saleh R, Sallam H, Boitrelle F, Garrido N, Arafa M, Gül M, Rambhatla A, Rosas IM, Agarwal A, Leisegang K, Siebert TI. Predictive value of seminal oxidation-reduction potential (ORP) analysis for reproductive outcomes of intracytoplasmic sperm injection (ICSI) cycles. Reprod Biomed Online 2022; 45:1007-1020. [DOI: 10.1016/j.rbmo.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
11
|
Nowicka-Bauer K, Malcher A, Włoczkowska O, Kamieniczna M, Olszewska M, Kurpisz MK. Evaluation of seminal plasma HSPA2 protein as a biomarker of human spermatogenesis status. Reprod Biol 2021; 22:100597. [PMID: 34959194 DOI: 10.1016/j.repbio.2021.100597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
In mammals, testicular Heat shock-related 70 kDa protein 2 (HSPA2) is a chaperon strictly linked to spermatogenesis status, whereas its presence in spermatozoa ensures successful oocyte fertilization. However, there is little information on this protein in seminal plasma in infertile males. Based on our previous two independent studies, we have selected HSPA2 to evaluate this seminal plasma protein is a potential biomarker of correct spermatogenesis. Using immunoblotting and mass spectrometry (MS) we have screened human seminal plasma samples for the presence of HSPA2. Samples were obtained from individuals with normozoospermia, cryptozoospermia, non-obstructive and obstructive azoospermia. Our results showed a lack of HSPA2 in seminal plasma in all azoospermic males however, in cryptozoospermia the results were extremely diversified. Additionally, the application of 2-dimensional gel electrophoresis (2-DE) indicated the presence of additional protein isoforms suggesting possible mechanisms underlying the male infertility. Our findings suggest seminal plasma HSPA2 protein as a possible biomarker not only of spermatogenesis status, especially in cryptozoospermic males, but also as a biomarker predicting the success of reproductive treatment including assisted reproductive techniques (ART).
Collapse
Affiliation(s)
| | - Agnieszka Malcher
- Institute of Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - Olga Włoczkowska
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland
| | | | - Marta Olszewska
- Institute of Human Genetics Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
12
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
13
|
Majzoub A, Arafa M, El Ansari W, Mahdi M, Agarwal A, Al-Said S, Elbardisi H. Correlation of oxidation reduction potential and total motile sperm count: its utility in the evaluation of male fertility potential. Asian J Androl 2021; 22:317-322. [PMID: 31339113 PMCID: PMC7275803 DOI: 10.4103/aja.aja_75_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress (OS) is detrimental to sperm functions, and the oxidation reduction potential (ORP) is a good measure of OS as it considers the balance between oxidants and reductants. Total motile sperm count (TMSC) is viewed as the single most important semen analysis parameter that can predict male infertility severity, and its correlation with ORP has never been undertaken. The objectives of this study were to assess the correlation between ORP and TMSC, to identify the ORP cutoff value based on the TMSC result, and to compare this cutoff value with previously reported ORP cutoff values in literature. One thousand one hundred and sixty-eight infertile patients and 100 fertile controls were enrolled. Demographic and semen data of the participants were retrieved and analyzed. Wilcoxon's rank-sum test compared variables between infertile men and fertile controls; Spearman's correlation assessed the static ORP (sORP)-TMSC relationship for the whole sample and among each group individually. Using a 20×106 TMSC threshold, receiver operator characteristic (ROC) analysis determined the sORP cutoff associated with the highest predictive values. TMSC was significantly negatively correlated with sORP across all participants (r = 0.86, P < 0.001), among infertile patients (r = 0.729, P < 0.001), and among fertile controls (r = 0.53, P < 0.001). A 20-million TMSC threshold determined an sORP cutoff value of 2.34 mV/106 sperm/ml to be associated with 82.9% sensitivity, 82.8% specificity, 91.5% positive predictive value (PPV), 68.5% negative predictive value (NPV), and 82.9% overall accuracy. Compared with previously reported cutoff values in searched literature, the 2.34 mV/106 sperm/ml cutoff value identified in our study yielded the highest overall diagnostic accuracy in the evaluation of infertile men.
Collapse
Affiliation(s)
- Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar.,Department of Andrology, Cairo University, Cairo 12613, Egypt
| | - Walid El Ansari
- Department of Surgery, Hamad Medical Corporation, Doha 00974, Qatar.,College of Medicine, Qatar University, Doha 00974, Qatar.,School of Health and Education, University of Skövde, Skövde 54128, Sweden
| | - Mohammed Mahdi
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar
| | - Ashok Agarwal
- Department of Urology, Glickman Urology and Kidney Institute, Cleveland Clinic Foundation, OH 44195, USA
| | - Sami Al-Said
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar
| | - Haitham Elbardisi
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar
| |
Collapse
|
14
|
Nago M, Arichi A, Omura N, Iwashita Y, Kawamura T, Yumura Y. Aging increases oxidative stress in semen. Investig Clin Urol 2021; 62:233-238. [PMID: 33660452 PMCID: PMC7940853 DOI: 10.4111/icu.20200066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/16/2020] [Accepted: 12/09/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose As age increases, oxidative stress increases, sperm motility decreases, and DNA fragmentation increases. To date, reports of age-related effects on semen have focused on reactive oxygen species (ROS) or total antioxidant capacity (TAC) as indicators of oxidative stress. However, assessments of ROS and TAC must be considered within a more comprehensive context in order to correctly evaluate oxidative stress and interpret findings. In this regard, the purpose of this study was to investigate the relationship between the static oxidation reduction potential (sORP) and paternal age with the goal of using the sORP as an indicator of semen oxidative stress. Materials and Methods Semen samples from 173 men were analyzed for the following parameters: volume, motility, and beat cross frequency (BCF). The sORP was measured by using the MiOXSYS™ system. The correlation between semen parameters and the sORP level was analyzed as a function of age. The rate of sORP positivity was compared between men <34 and ≥34 years of age, with a positive sORP defined as a level ≥1.38. Results Volume, motility, and BCF were negatively correlated with age (p<0.001). The semen sORP level was positively correlated with age (p<0.05). The rate of sORP positivity was significantly increased in men ≥34 years of age compared with that in men <34 years of age (33% compared with 12%, respectively; p<0.01). Conclusions The sORP may play a role in age-related decreases in semen parameters (volume, motility, and BCF). The rate of sORP positivity increased significantly after 34 years of age.
Collapse
Affiliation(s)
- Mitsuru Nago
- Denentoshi Ladies Clinic, Yokohama, Kanagawa, Japan.
| | - Akane Arichi
- Denentoshi Ladies Clinic, Yokohama, Kanagawa, Japan
| | - Naoki Omura
- Denentoshi Ladies Clinic, Yokohama, Kanagawa, Japan
| | | | | | - Yasushi Yumura
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Karabulut S, Korkmaz O, Yılmaz E, Keskin I. Seminal oxidation-reduction potential as a possible indicator of impaired sperm parameters in Turkish population. Andrologia 2020; 53:e13956. [PMID: 33381879 DOI: 10.1111/and.13956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress (OS) has been shown to have a key role in male infertility. Recently, a new measurement method has been developed to measure the overall oxidation-reduction potential (ORP) in a semen sample known as the MiOXSYS system. The aim of this study was to investigate the correlation of sperm parameters with oxidative stress levels determined by ORP and to evaluate whether the current limit is able to distinguish abnormal sperm parameters from normal ones in Turkish population. Semen samples of 121 patients who applied for infertility investigation were divided into two groups as (OS +; n:39) and (OS -; n:82). Semen parameters were compared between groups. Sperm concentration, total motility and progressive motility were found to be significantly lower in OS (+) patients compared to those OS (-), while immotile sperm count was significantly higher in OS (+) patients. Oxidative stress determined by MiOXSYS system was found to be related to reduced sperm parameters in Turkish population, which may be used as an indicator of poor sperm parameters and a support to routine semen analysis. In addition, recommended reference value was found to be reliable in distinguishing normal from impaired semen parameters.
Collapse
Affiliation(s)
- Seda Karabulut
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Oya Korkmaz
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Elif Yılmaz
- Medistate Hospital, IVF Center, Istanbul, Turkey
| | - Ilknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
16
|
Cicek OSY, Kaya G, Alyuruk B, Doger E, Girisen T, Filiz S. The association of seminal oxidation reduction potential with sperm parameters in patients with unexplained and male factor ınfertility. Int Braz J Urol 2020; 47:112-119. [PMID: 33047916 PMCID: PMC7712687 DOI: 10.1590/s1677-5538.ibju.2019.0751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/07/2020] [Indexed: 01/28/2023] Open
Abstract
Purpose: Understanding the effects of high oxidation reduction potential (ORP) levels on sperm parameters will help to identify patients with unexplained and male factor infertility who may have seminal oxidative stress and determine if ORP testing is needed. This study aimed to evaluate the association between seminal ORP and conventional sperm parameters. Materials and Methods: A total of 58 patients who provided a semen sample for simultaneous evaluation of sperm parameters and ORP between January and September 2019 were enrolled in this retrospective study. To identify normal and high ORP levels, a static ORP (sORP) cut-off value of 1.36mV/106sperm/mL was used. Sperm parameters were compared between infertile men with normal sORP (control group, n=23) and high sORP values (study group, n=35). Results: Men with sORP values >1.36mV/106sperm/mL had significantly lower total sperm count (TSC) (p <0.001), sperm concentration (p <0.001) and total motile sperm count (TMSC) (p <0.001). In addition, progressive motility (p=0.04) and fast forward progressive motility (p <0.001) were significantly lower in the study group. A negative correlation was found between sORP and TSC (r=-0.820, p <0.001), sperm concentration (r=-0.822, p <0.001), TMSC (r=-0.808, p <0.001) and progressive motility (r=-0.378, p=0.004). Non-progressive motility positively correlated with sORP (r=0.344, p=0.010). Conclusions: This study has shown that TSC, sperm concentration, progressive motility and TMSC are associated with seminal oxidative stress, indicated by a sORP cut-off of 1.36mV/106sperm/mL. Presence of oligozoospermia, reduced progressive motilty or low TMSC in sperm analysis should raise the suspicion of oxidative stress and warrants seminal ROS testing.
Collapse
Affiliation(s)
- Ozge Senem Yucel Cicek
- Department of Obstetrics and Gynecology, Kocaeli University, Faculty of Medicine, Izmit, Kocaeli, Turkey.,Kocaeli University Assisted Reproductive Technologies Clinic; İIzmit, Kocaeli, Turkey
| | - Gozde Kaya
- Kocaeli University Assisted Reproductive Technologies Clinic; İIzmit, Kocaeli, Turkey
| | - Begum Alyuruk
- Kocaeli University Assisted Reproductive Technologies Clinic; İIzmit, Kocaeli, Turkey
| | - Emek Doger
- Department of Obstetrics and Gynecology, Kocaeli University, Faculty of Medicine, Izmit, Kocaeli, Turkey.,Kocaeli University Assisted Reproductive Technologies Clinic; İIzmit, Kocaeli, Turkey
| | - Tugba Girisen
- Kocaeli University Assisted Reproductive Technologies Clinic; İIzmit, Kocaeli, Turkey
| | - Serdar Filiz
- Kocaeli University Assisted Reproductive Technologies Clinic; İIzmit, Kocaeli, Turkey.,Department of Histology and Embryology, Kocaeli University, İzmit, Kocaeli, Turkey
| |
Collapse
|
17
|
Blanco E, Vázquez L, del Pozo M, Roy R, Petit-Domínguez MD, Quintana C, Casero E. Evaluation of oxidative stress: Nanoparticle-based electrochemical sensors for hydrogen peroxide determination in human semen samples. Bioelectrochemistry 2020; 135:107581. [DOI: 10.1016/j.bioelechem.2020.107581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/25/2022]
|
18
|
Garcia-Segura S, Ribas-Maynou J, Lara-Cerrillo S, Garcia-Peiró A, Castel AB, Benet J, Oliver-Bonet M. Relationship of Seminal Oxidation-Reduction Potential with Sperm DNA Integrity and pH in Idiopathic Infertile Patients. BIOLOGY 2020; 9:biology9090262. [PMID: 32882928 PMCID: PMC7564726 DOI: 10.3390/biology9090262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Seminal oxidative stress (OS) is one of the most promising factors to describe the causes of idiopathic male infertility. Redox balance is essential in several biological processes related to fertility, so alterations such as high reactive oxygen species (ROS) levels or low antioxidant agent levels can compromise it. MiOXSYS has been developed to evaluate the seminal static oxidation-reduction potential (sORP) and it has been proposed as an effective diagnostic biomarker. However, its relationship with parameters like sperm DNA fragmentation (SDF), chromatin compaction status or seminal pH requires further analysis, making it the object of this study. Semen and sORP analysis were performed for all samples. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL) and Comet assay were used to assess SDF and chromomycin a3 (CMA3) test to assess sperm chromatin compaction. Regarding sORP measures, it was found that alkaline pH has an effect on sample reproducibility. To our knowledge, this unexpected effect has not been previously described. A statistical analysis showed that sORP correlated negatively with CMA3 positive cells and sperm motility, but not with SDF. As redox dysregulation, which occurs mainly at the testicular and epididymal level, causes chromatin compaction problems and leaves DNA exposed to damage, an excess of ROS could be counterbalanced further by a seminal supply of antioxidant molecules, explaining the negative correlation with CMA3 positive cells but no correlation with SDF. Our results show that the study of idiopathic infertility would benefit from a combined approach comprising OS analysis, SDF and chromatin compaction analysis.
Collapse
Affiliation(s)
- Sergio Garcia-Segura
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Av. Can Domenech s/n, Bellaterra, 08193 Catalunya, Spain;
- Correspondence: (S.G.-S.); (J.B.); (M.O.-B.)
| | - Jordi Ribas-Maynou
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Av. Can Domenech s/n, Bellaterra, 08193 Catalunya, Spain;
| | - Sandra Lara-Cerrillo
- CIMAB, Barcelona Male Infertility Centre, C. Vallcorba 1-3, Sant Quirze del Vallès, 08192 Catalunya, Spain; (S.L.-C.); (A.G.-P.)
| | - Agustín Garcia-Peiró
- CIMAB, Barcelona Male Infertility Centre, C. Vallcorba 1-3, Sant Quirze del Vallès, 08192 Catalunya, Spain; (S.L.-C.); (A.G.-P.)
| | - Ana Belén Castel
- Instituto de Fertilidad, C. Calçat 6, 07011 Palma Mallorca, Spain;
| | - Jordi Benet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Av. Can Domenech s/n, Bellaterra, 08193 Catalunya, Spain;
- Correspondence: (S.G.-S.); (J.B.); (M.O.-B.)
| | - Maria Oliver-Bonet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Av. Can Domenech s/n, Bellaterra, 08193 Catalunya, Spain;
- Genosalut, Camí dels Reis 308, 07010 Palma Mallorca, Spain
- Correspondence: (S.G.-S.); (J.B.); (M.O.-B.)
| |
Collapse
|
19
|
Barbăroșie C, Agarwal A, Henkel R. Diagnostic value of advanced semen analysis in evaluation of male infertility. Andrologia 2020; 53:e13625. [PMID: 32458468 DOI: 10.1111/and.13625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Conventional semen analysis is the standard of care to initially evaluate the fertility status of a male patient. However, it has some limitations and among these are failure to correctly identify the aetiology underlying fertility problems, intra- and inter-observer variability and incomplete information about sperm function. Considering these drawbacks, advanced semen tests have been developed to assess male infertility, including sperm function tests, oxidative stress (OS) and sperm DNA fragmentation (SDF) tests. This review illustrates the commonly utilised sperm function techniques, along with the assays used to assess SDF and OS and their diagnostic value.
Collapse
Affiliation(s)
- Cătălina Barbăroșie
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
20
|
Panner Selvam MK, Finelli R, Agarwal A, Henkel R. Evaluation of seminal oxidation-reduction potential in male infertility. Andrologia 2020; 53:e13610. [PMID: 32399973 DOI: 10.1111/and.13610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022] Open
Abstract
The role of oxidative stress in male infertility has been broadly recognised, and the search for a new marker to determine the redox environment in semen has gained considerable interest. Oxidation-reduction potential (ORP) or redox potential, is a measure of the electron transfer from antioxidants to oxidants and provides information on the redox balance. In this review, the benefits of ORP as a new oxidative stress marker, the protocol for its evaluation and the importance of its measurement in the context of male infertility are discussed. In association with the standard semen analysis, seminal ORP has been analysed to evaluate semen quality and male fertility status. However, further studies are required to establish its use in assisted reproductive techniques (ART) practice.
Collapse
Affiliation(s)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
21
|
de Oliveira FA, Costa WS, B Sampaio FJ, Gregorio BM. Resveratrol attenuates metabolic, sperm, and testicular changes in adult Wistar rats fed a diet rich in lipids and simple carbohydrates. Asian J Androl 2020; 21:201-207. [PMID: 30198494 PMCID: PMC6413558 DOI: 10.4103/aja.aja_67_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-fat diets affect male reproduction and sexual function. Therefore, we evaluated the effects of prolonged resveratrol administration on the metabolic, sperm, and testicular parameters of rats fed a cafeteria diet. Male Wistar rats were divided at weaning into control (C, n = 20) and cafeteria (CAF, n = 16) groups. At 3 months, half of them were given daily supplementations of resveratrol (C-R, n = 10; CAF-R, n = 8) at a dosage of 30 mg kg-1 body mass for 2 months. Animals were killed at 5 months of age, and blood, spermatozoa, and testes were collected for further analysis. Data were analyzed by one-way ANOVA, and P < 0.05 was considered statistically significant. The CAF diet promoted hyperglycemia (P < 0.0001), and treatment with resveratrol reversed this condition (P < 0.0001). The CAF diet reduced sperm viability and motility, while resveratrol improved these parameters (P < 0.05). Regarding testicular morphology, the height of the seminiferous epithelium was reduced in the CAF group compared with that of the C group (P = 0.0007). Spermatogenic cell proliferation was also reduced in the CAF group compared with that of the C group. However, the CAF-R showed an increase in cell proliferation rate compared with that of the untreated CAF group (P = 0.0024). Although it did not modify body mass, the consumption of a CAF diet promoted hyperglycemia, adverse testicular morphology remodeling, and abnormal sperm, which were attenuated by treatment with resveratrol, thus suggesting a protective effect of this antioxidant on spermatogenesis.
Collapse
Affiliation(s)
- Fabiana A de Oliveira
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Waldemar S Costa
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Francisco J B Sampaio
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Bianca M Gregorio
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
22
|
Douglas C, Parekh N, Kahn LG, Henkel R, Agarwal A. A Novel Approach to Improving the Reliability of Manual Semen Analysis: A Paradigm Shift in the Workup of Infertile Men. World J Mens Health 2019; 39:172-185. [PMID: 31749341 PMCID: PMC7994658 DOI: 10.5534/wjmh.190088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Conventional semen analysis (SA) is an essential component of the male infertility workup, but requires laboratories to rigorously train and monitor technicians as well as regularly perform quality assurance assessments. Without such measures there is room for error and, consequently, unreliable results. Furthermore, clinicians often rely heavily on SA results when making diagnostic and treatment decisions, however conventional SA is only a surrogate marker of male fecundity and does not guarantee fertility. Considering these challenges, the last several decades have seen the development of many advances in SA methodology, including tests for sperm DNA fragmentation, acrosome reaction, and capacitation. While these new diagnostic tests have improved the scope of information available to clinicians, they are expensive, time-consuming, and require specialized training. The latest advance in laboratory diagnostics is the measurement of seminal oxidation-reduction potential (ORP). The measurement of ORP in an easy, reproducible manner using a new tool called the Male Infertility Oxidative Stress System (MiOXSYS) has demonstrated ORP's potential as a feasible adjunct test to conventional SA. Additionally, the measurement of ORP by this device has been shown to be predictive of both poor semen quality and male infertility. Assessing ORP is a novel approach to both validating manual SA results and identifying patients who may benefit from treatment of male oxidative stress infertility.
Collapse
Affiliation(s)
- Christopher Douglas
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA.,Texas College of Osteopathic Medicine, Fort Worth, TX, USA
| | - Neel Parekh
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA.,Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Linda G Kahn
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA.,Department of Pediatrics, New York University School of Medicine, New York City, NY, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA.
| |
Collapse
|
23
|
Agarwal A, Parekh N, Panner Selvam MK, Henkel R, Shah R, Homa ST, Ramasamy R, Ko E, Tremellen K, Esteves S, Majzoub A, Alvarez JG, Gardner DK, Jayasena CN, Ramsay JW, Cho CL, Saleh R, Sakkas D, Hotaling JM, Lundy SD, Vij S, Marmar J, Gosalvez J, Sabanegh E, Park HJ, Zini A, Kavoussi P, Micic S, Smith R, Busetto GM, Bakırcıoğlu ME, Haidl G, Balercia G, Puchalt NG, Ben-Khalifa M, Tadros N, Kirkman-Browne J, Moskovtsev S, Huang X, Borges E, Franken D, Bar-Chama N, Morimoto Y, Tomita K, Srini VS, Ombelet W, Baldi E, Muratori M, Yumura Y, La Vignera S, Kosgi R, Martinez MP, Evenson DP, Zylbersztejn DS, Roque M, Cocuzza M, Vieira M, Ben-Meir A, Orvieto R, Levitas E, Wiser A, Arafa M, Malhotra V, Parekattil SJ, Elbardisi H, Carvalho L, Dada R, Sifer C, Talwar P, Gudeloglu A, Mahmoud AMA, Terras K, Yazbeck C, Nebojsa B, Durairajanayagam D, Mounir A, Kahn LG, Baskaran S, Pai RD, Paoli D, Leisegang K, Moein MR, Malik S, Yaman O, Samanta L, Bayane F, Jindal SK, Kendirci M, Altay B, Perovic D, Harlev A. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J Mens Health 2019; 37:296-312. [PMID: 31081299 PMCID: PMC6704307 DOI: 10.5534/wjmh.190055] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022] Open
Abstract
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA.
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Manesh Kumar Panner Selvam
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Medical Bioscience, University of the Western Cape, Cape Town, South Africa
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Sheryl T Homa
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, Australia
| | - Sandro Esteves
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ahmad Majzoub
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Urology, Hamad Medical Corporation and Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Juan G Alvarez
- Centro Androgen, La Coruña, Spain and Harvard Medical School, Boston, MA, USA
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Channa N Jayasena
- Section of Investigative Medicine, Imperial College London, UK
- Department of Andrology, Hammersmith Hospital, London, UK
| | | | - Chak Lam Cho
- Department of Surgery, Union Hospital, Shatin, Hong Kong
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - James M Hotaling
- Department of Urology, University of Utah, Salt Lake City, UT, USA
| | - Scott D Lundy
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Jaime Gosalvez
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Armand Zini
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Sava Micic
- Uromedica Polyclinic, Kneza Milosa, Belgrade, Serbia
| | - Ryan Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | | | | | - Gerhard Haidl
- Department of Dermatology, University Hospital Bonn, Bonn, Germany
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Umberto I Hospital, Ancona, Italy
| | - Nicolás Garrido Puchalt
- IVI Foundation Edificio Biopolo - Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Moncef Ben-Khalifa
- University Hospital, School of Médicine and PERITOX Laboratory, Amiens, France
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jackson Kirkman-Browne
- Centre for Human Reproductive Science, IMSR, College of Medical & Dental Sciences, The University of Birmingham Edgbaston, UK
- The Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Drive, Edgbaston, UK
| | - Sergey Moskovtsev
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Daniel Franken
- Department of Obstetrics & Gynecology, Andrology Unit Faculties of Health Sciences, Tygerberg Hospital, Tygerberg, South Africa
| | - Natan Bar-Chama
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kazuhisa Tomita
- IVF Japan Group, Horac Grand Front Osaka Clinic, Osaka, Japan
| | | | - Willem Ombelet
- Genk Institute for Fertility Technology, Genk, Belgium
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DeNothe, University of Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Unit of Sexual Medicine and Andrology, Center of Excellence DeNothe, University of Florence, Florence, Italy
| | - Yasushi Yumura
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Marlon P Martinez
- Section of Urology, University of Santo Tomas Hospital, Manila, Philippines
| | | | | | - Matheus Roque
- Origen, Center for Reproductive Medicine, Rio de Janeiro, Brazil
| | | | - Marcelo Vieira
- Division of Urology, Infertility Center ALFA, São Paulo, Brazil
- Head of Male Infertility Division, Andrology Department, Brazilian Society of Urology, Rio de Janeiro, Brazil
| | - Assaf Ben-Meir
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Hebrew-University Hadassah Medical Center, Jerusalem, Israel
| | - Raoul Orvieto
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
- Tarnesby-Tarnowski Chair for Family Planning and Fertility Regulation, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eliahu Levitas
- Soroka University Medical Center, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
| | - Amir Wiser
- IVF Unit, Meir Medical Center, Kfar Sava, Israel
- Sackler Medicine School, Tel Aviv University, Tel Aviv, Israel
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
| | - Vineet Malhotra
- Department of Andrology and Urology, Diyos Hospital, New Delhi, India
| | - Sijo Joseph Parekattil
- PUR Clinic, South Lake Hospital, Clermont, FL, USA
- University of Central Florida, Orlando, FL, USA
| | | | - Luiz Carvalho
- Baby Center, Institute for Reproductive Medicine, São Paulo, Brazil
- College Institute of Clinical Research and Teaching Development, São Paulo, Brazil
| | - Rima Dada
- Lab for Molecular Reproduction and Genetics, Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Christophe Sifer
- Department of Reproductive Biology, Hôpitaux Universitaires Paris Seine Saint-Denis, Bondy, France
| | - Pankaj Talwar
- Department of Reproductive Medicine and Embryology, Manipal Hospital, New Delhi, India
| | - Ahmet Gudeloglu
- Department of Urology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ahmed M A Mahmoud
- Department of Endocrinology/ Andrology, University Hospital Ghent, Ghent, Belgium
| | - Khaled Terras
- Department of Reproductive Medicine, Hannibal International Clinic, Tunis, Tunisia
| | - Chadi Yazbeck
- Department of Obstetrics, Gynecology and Reproductive Medicine, Pierre Cherest and Hartman Clinics, Paris, France
| | - Bojanic Nebojsa
- Clinic of Urology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
| | - Ajina Mounir
- Department of Embryology, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Linda G Kahn
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
| | - Rishma Dhillon Pai
- Department of Obstetrics and Gynaecology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Donatella Paoli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Cape Town, South Africa
| | | | | | - Onder Yaman
- Department of Urology, School of Medicine, University of Ankara, Ankara, Turkey
| | - Luna Samanta
- Redox Biology Laboratory, Department of Zoology and Center of Excellence in Environment and Public Health, Ravenshaw University, Cutrack, India
| | - Fouad Bayane
- Marrakech Fertility Institute, Marrakech, Morocco
| | | | - Muammer Kendirci
- Department of Urology, Istinye University Faculty of Medicine, Liv Hospital Ulus, Istanbul, Turkey
| | - Baris Altay
- Department of Urology, Ege University School of Medicine, İzmir, Turkey
| | | | - Avi Harlev
- Fertility and IVF Unit, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
24
|
Homa ST, Vassiliou AM, Stone J, Killeen AP, Dawkins A, Xie J, Gould F, Ramsay JWA. A Comparison Between Two Assays for Measuring Seminal Oxidative Stress and their Relationship with Sperm DNA Fragmentation and Semen Parameters. Genes (Basel) 2019; 10:E236. [PMID: 30893955 PMCID: PMC6471935 DOI: 10.3390/genes10030236] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress (OS) is a significant cause of DNA fragmentation and is associated with poor embryo development and recurrent miscarriage. The aim of this study was to compare two different methods for assessing seminal OS and their ability to predict sperm DNA fragmentation and abnormal semen parameters. Semen samples were collected from 520 men attending for routine diagnostic testing following informed consent. Oxidative stress was assessed using either a chemiluminescence assay to measure reactive oxygen species (ROS) or an electrochemical assay to measure oxidation reduction potential (sORP). Sperm DNA fragmentation (DFI) and sperm with immature chromatin (HDS) were assessed using sperm chromatin structure assay (SCSA). Semen analysis was performed according to WHO 2010 guidelines. Reactive oxygen species sORP and DFI are negatively correlated with sperm motility (p = 0.0012, 0.0002, <0.0001 respectively) and vitality (p < 0.0001, 0.019, <0.0001 respectively). The correlation was stronger for sORP than ROS. Reactive oxygen species (p < 0.0001), sORP (p < 0.0001), DFI (p < 0.0089) and HDS (p < 0.0001) were significantly elevated in samples with abnormal semen parameters, compared to those with normal parameters. Samples with polymorphonuclear leukocytes (PMN) have excessive ROS levels compared to those without (p < 0.0001), but sORP and DFI in this group are not significantly increased. DNA fragmentation was significantly elevated in samples with OS measured by ROS (p = 0.0052) or sORP (p = 0.004). The results demonstrate the multi-dimensional nature of oxidative stress and that neither assay can be used alone in the diagnosis of OS, especially in cases of leukocytospermia.
Collapse
Affiliation(s)
- Sheryl T Homa
- Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
- Department of Andrology, The Doctors Laboratory, London W1G 9RT, UK.
| | - Anna M Vassiliou
- Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
- Department of Andrology, The Doctors Laboratory, London W1G 9RT, UK.
| | - Jesse Stone
- Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| | - Aideen P Killeen
- Department of Andrology, The Doctors Laboratory, London W1G 9RT, UK.
| | - Andrew Dawkins
- Department of Andrology, The Doctors Laboratory, London W1G 9RT, UK.
| | - Jingyi Xie
- Department of Andrology, The Doctors Laboratory, London W1G 9RT, UK.
| | - Farley Gould
- Department of Andrology, The Doctors Laboratory, London W1G 9RT, UK.
| | | |
Collapse
|
25
|
Arafa M, Henkel R, Agarwal A, Majzoub A, Elbardisi H. Correlation of oxidation–reduction potential with hormones, semen parameters and testicular volume. Andrologia 2019; 51:e13258. [DOI: 10.1111/and.13258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohamed Arafa
- Urology Department Hamad Medical Corporation Doha Qatar
- Andrology Department Cairo University Cairo Egypt
- Urology Department Weill Cornell Medicine-Qatar Doha Qatar
- Department of Urology, American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio
| | - Ralf Henkel
- Department of Urology, American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio
- Department of Medical Bioscience University of the Western Cape Bellville South Africa
| | - Ashok Agarwal
- Department of Urology, American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio
| | - Ahmad Majzoub
- Urology Department Hamad Medical Corporation Doha Qatar
- Urology Department Weill Cornell Medicine-Qatar Doha Qatar
- Department of Urology, American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio
| | - Haitham Elbardisi
- Urology Department Hamad Medical Corporation Doha Qatar
- Urology Department Weill Cornell Medicine-Qatar Doha Qatar
| |
Collapse
|
26
|
Roychoudhury S, Saha MR, Saha MM. Environmental Toxicants and Male Reproductive Toxicity: Oxidation-Reduction Potential as a New Marker of Oxidative Stress in Infertile Men. NETWORKING OF MUTAGENS IN ENVIRONMENTAL TOXICOLOGY 2019. [DOI: 10.1007/978-3-319-96511-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Agarwal A, Qiu E, Sharma R. Laboratory assessment of oxidative stress in semen. Arab J Urol 2017; 16:77-86. [PMID: 29713538 PMCID: PMC5922001 DOI: 10.1016/j.aju.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 02/01/2023] Open
Abstract
Objectives To evaluate different laboratory assessments of oxidative stress (OS) in semen and identify a cost-efficient and highly sensitive instrument capable of providing a comprehensive measure of OS in a clinical setting, as early intervention and an accurate diagnostic test are important because they help maintain a balance of free radicals and antioxidants; otherwise, excessive OS could lead to sperm damage and result in male infertility. Materials and methods A systematic literature search was performed through a MedLine database search using the keywords ‘semen’ AND ‘oxygen reduction potential’. We also reviewed the references of retrieved articles to search for other potentially relevant research articles and additional book chapters discussing laboratory assessments for OS, ranging from 1994 to 2017. A total of 29 articles and book chapters involving OS-related laboratory assays were included. We excluded animal studies and articles written in languages other than English. Results Direct laboratory techniques include: chemiluminescence, nitro blue tetrazolium, cytochrome C reduction test, fluorescein probe, electron spin resonance and oxidation–reduction potential (ORP). Indirect laboratory techniques include: measurement of Endtz test, lipid peroxidation, chemokines, antioxidants/micronutrients/vitamins, ascorbate, total antioxidant capacity, or DNA damage. Each of these laboratory techniques has its advantages and disadvantages. Conclusion Traditional OS laboratory assessments have their limitations. Amongst the prevalent laboratory techniques, ORP is novel and better option as it can be easily used in a clinical setting to provide a comprehensive review of OS. However, more studies are needed to evaluate its reproducibility across various laboratory centres.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Emily Qiu
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
28
|
Agarwal A, Bui AD. Oxidation-reduction potential as a new marker for oxidative stress: Correlation to male infertility. Investig Clin Urol 2017; 58:385-399. [PMID: 29124237 PMCID: PMC5671957 DOI: 10.4111/icu.2017.58.6.385] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/15/2017] [Indexed: 01/08/2023] Open
Abstract
Male infertility affects men worldwide. Oxidative stress (OS), characterized by an overabundance of reactive oxygen species (ROS) or a deficiency of antioxidants, is one of the major causes of male infertility. OS causes damage at the molecular level, which impairs lipids, proteins, and DNA. The cyclic cascade of redox reactions weakens sperm function which leads to poor semen parameters and eventual sterility. There is a need for advanced diagnostic tests that can quickly and accurately detect OS. Most commonly used assays can only measure single constituents of OS. However, the MiOXSYS System introduces a new strategy to detect OS by measuring the oxidation-reduction potential (ORP)--a direct evaluation of the redox balance between ROS and antioxidants. The MiOXSYS System has shown promise as a diagnostic tool in the evaluation of male infertility. This review explores the concept of ORP, details the principle of the MiOXSYS System, and summarizes the findings in clinical studies that support ORP measurement in semen.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Albert Danh Bui
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH, USA.,Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| |
Collapse
|