1
|
Hu H, Yu L, Cheng Y, Xiong Y, Qi D, Li B, Zhang X, Zheng F. Identification and validation of oxidative stress-related diagnostic markers for recurrent pregnancy loss: insights from machine learning and molecular analysis. Mol Divers 2024:10.1007/s11030-024-10947-0. [PMID: 39225907 DOI: 10.1007/s11030-024-10947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
It has been recognized that oxidative stress (OS) is implicated in the etiology of recurrent pregnancy loss (RPL), yet the biomarkers reflecting oxidative stress in association with RPL remain scarce. The dataset GSE165004 was retrieved from the Gene Expression Omnibus (GEO) database. From the GeneCards database, a compendium of 789 genes related to oxidative stress-related genes (OSRGs) was compiled. By intersecting differentially expressed genes (DEGs) in normal and RPL samples with OSRGs, differentially expressed OSRGs (DE-OSRGs) were identified. In addition, four machine learning algorithms were employed for the selection of diagnostic markers for RPL. The Receiver Operating Characteristic (ROC) curves for these genes were generated and a predictive nomogram for the diagnostic markers was established. The functions and pathways associated with the diagnostic markers were elucidated, and the correlations between immune cells and diagnostic markers were examined. Potential therapeutics targeting the diagnostic markers were proposed based on data from the Comparative Toxicogenomics Database and ClinicalTrials.gov. The candidate biomarker genes from the four models were further validated in RPL tissue samples using RT-PCR and immunohistochemistry. A set of 20 DE-OSRGs was identified, with 4 genes (KRAS, C2orf69, CYP17A1, and UCP3) being recognized by machine learning algorithms as diagnostic markers exhibiting robust diagnostic capabilities. The nomogram constructed demonstrated favorable predictive accuracy. Pathways including ribosome, peroxisome, Parkinson's disease, oxidative phosphorylation, Huntington's disease, and Alzheimer's disease were co-enriched by KRAS, C2orf69, and CYP17A1. Cell chemotaxis terms were commonly enriched by all four diagnostic markers. Significant differences in the abundance of five cell types, namely eosinophils, monocytes, natural killer cells, regulatory T cells, and T follicular helper cells, were observed between normal and RPL samples. A total of 180 drugs were predicted to target the diagnostic markers, including C544151, D014635, and CYP17A1. In the validation cohort of RPL patients, the LASSO model demonstrated superiority over other models. The expression levels of KRAS, C2orf69, and CYP17A1 were significantly reduced in RPL, while UCP3 levels were elevated, indicating their suitability as molecular markers for RPL. Four oxidative stress-related diagnostic markers (KRAS, C2orf69, CYP17A1, and UCP3) have been proposed to diagnose and potentially treat RPL.
Collapse
Affiliation(s)
- Hui Hu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 800 Yuntai Road, Pudong New District, Shanghai, 200123, China
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Li Yu
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China
| | - Yating Cheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yao Xiong
- Reproductive Center, Zhongshan Hospital of Wuhan University, Wuhan, 430060, China
| | - Daoxi Qi
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| |
Collapse
|
2
|
Zhou XH, Hua MM, Tang JN, Wu BG, Wang XM, Shi CG, Yang Y, Wu J, Wu B, Zhang BL, Sun YS, Zhang TC, Shi HJ. Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411). Asian J Androl 2024:00129336-990000000-00213. [PMID: 39091129 DOI: 10.4103/aja202442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 08/04/2024] Open
Abstract
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Collapse
Affiliation(s)
- Xue-Hai Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Dhawan V, Malhotra N, Singh N, Dadhwal V, Dada R. Yoga and its effect on sperm genomic integrity, gene expression, telomere length and perceived quality of life in early pregnancy loss. Sci Rep 2024; 14:11711. [PMID: 38777848 PMCID: PMC11111444 DOI: 10.1038/s41598-024-62380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Achieving successful pregnancy outcomes is a delicate interplay between the maternal and the fetal counterparts. Paternal factors play a critical role in health and disease of offspring. Early pregnancy loss (EPL) is a psychologically devastating condition affecting the quality of life (QOL). Thus, it needs to be managed by a mind body integrated approach like yoga.The prospective single arm exploratory studyincluded male partners of couples experiencing recurrent pregnancy loss (RPL, n = 30), and recurrent implantation failure (RIF, n = 30) and semen samples wereassessed at the beginning and completion of yoga (6 weeks) (WHO 2010).A significant increase in the sperm concentration, motility, decrease in seminal ROS, DFI and increase in relative sperm telomere length was found at the end of yoga. The relative expression of genes critical for early embryonic developmentnormalized towards the levels of controls. WHOQOL-BREF questionnaire scores to assess QOL also showed improvement.Integration of regular practice yoga into our lifestyle may help in improving seminal redox status, genomic integrity, telomere length, normalizing gene expression and QOL, highlighting the need to use an integrated, holistic approach in management of such cases. This is pertinent for decreasing the transmission of mutation and epimutation load to the developing embryo, improving pregnancy outcomes and decreasing genetic and epigenetic disease burden in the next generation.
Collapse
Affiliation(s)
- Vidhu Dhawan
- Department of Anatomy, Laboratory of Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neena Malhotra
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Singh
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Vatsla Dadhwal
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Laboratory of Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
4
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
5
|
Inversetti A, Bossi A, Cristodoro M, Larcher A, Busnelli A, Grande G, Salonia A, Di Simone N. Recurrent pregnancy loss: a male crucial factor-A systematic review and meta-analysis. Andrology 2023. [PMID: 37881014 DOI: 10.1111/andr.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Recurrent pregnancy loss (RPL), defined as two or more failed clinical pregnancies, affects 1%-3% of couples trying to conceive. Nowadays up to 50% of cases remain idiopathic. In this context, paternal factors evaluation is still very limited. The aim is to address the topic of the male factor in RPL with a broad approach, analyzing collectively data on sperm DNA fragmentation (SDF) and semen parameters. We systematically searched in Pubmed/MEDLINE and Google Scholar from inception to February 2023. A protocol has been registered on PROSPERO (ID number CRD42022278616). PRISMA guidelines were followed. METHODS Pooled results from 20 studies revealed a higher DNA fragmentation rate in the RPL group compared to controls (mean difference [MD] 9.21, 95% CI 5.58-12.85, p < 0.00001, I2 98%). Age, body mass index (BMI), smoking, and alcohol intake were not associated with DNA fragmentation. Subgroup analysis by different SDF assays (TUNEL and COMET at a neutral pH vs. indirect assessment with other assays) and ethnicity did not highlight different results (p = 0.25 and 0.44). RESULTS Results pooled from 25 studies showed a significant difference comparing RPL and control groups regarding ejaculation volume (MD -0.24, 95% CI -0.43; -0.06, p 0.01, I2 66%), total sperm number (MD -10.03, 95% CI -14.65; -5.41, p < 0.0001, I2 76%), total sperm motility (MD -11.20, 95% CI -16.15; -6.25, p < 0.0001, I2 96%), progressive sperm motility (MD -7.34, 95% CI -10.87; -3.80, p < 0.0001, I2 97%), and normal sperm morphology (MD -5.99, 95% CI -9.08; -2.90, p 0.0001, I2 98%). A sub-analysis revealed that Asian and Africans, but not white-European RPL men had lower progressive sperm motility compared to controls. CONCLUSION In conclusion, current review and meta-analysis findings suggested that SDF and some specific semen parameters were associated with RPL in a multi-ethnic evaluation. This effort opens future direction on a growing awareness of, first, how the male factor plays a key role and, second, how appropriate would be to establish a direct dialogue between the gynecologist and the urologist. PATIENT SUMMARY We performed a systematic review and meta-analysis on the male component of RPL. We found that sperm DNA fragmentation and some specific sperm parameters are significantly associated with RPL.
Collapse
Affiliation(s)
- Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Arianna Bossi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Alessandro Larcher
- Department of Urology and Division of Experimental Oncology, URI Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Busnelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giuseppe Grande
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Andrea Salonia
- Department of Urology and Division of Experimental Oncology, URI Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
6
|
Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, Pinotti R, Swan SH. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update 2023; 29:157-176. [PMID: 36377604 DOI: 10.1093/humupd/dmac035] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Numerous studies have reported declines in semen quality and other markers of male reproductive health. Our previous meta-analysis reported a significant decrease in sperm concentration (SC) and total sperm count (TSC) among men from North America-Europe-Australia (NEA) based on studies published during 1981-2013. At that time, there were too few studies with data from South/Central America-Asia-Africa (SAA) to reliably estimate trends among men from these continents. OBJECTIVE AND RATIONALE The aim of this study was to examine trends in sperm count among men from all continents. The broader implications of a global decline in sperm count, the knowledge gaps left unfilled by our prior analysis and the controversies surrounding this issue warranted an up-to-date meta-analysis. SEARCH METHODS We searched PubMed/MEDLINE and EMBASE to identify studies of human SC and TSC published during 2014-2019. After review of 2936 abstracts and 868 full articles, 44 estimates of SC and TSC from 38 studies met the protocol criteria. Data were extracted on semen parameters (SC, TSC, semen volume), collection year and covariates. Combining these new data with data from our previous meta-analysis, the current meta-analysis includes results from 223 studies, yielding 288 estimates based on semen samples collected 1973-2018. Slopes of SC and TSC were estimated as functions of sample collection year using simple linear regression as well as weighted meta-regression. The latter models were adjusted for predetermined covariates and examined for modification by fertility status (unselected by fertility versus fertile), and by two groups of continents: NEA and SAA. These analyses were repeated for data collected post-2000. Multiple sensitivity analyses were conducted to examine assumptions, including linearity. OUTCOMES Overall, SC declined appreciably between 1973 and 2018 (slope in the simple linear model: -0.87 million/ml/year, 95% CI: -0.89 to -0.86; P < 0.001). In an adjusted meta-regression model, which included two interaction terms [time × fertility group (P = 0.012) and time × continents (P = 0.058)], declines were seen among unselected men from NEA (-1.27; -1.78 to -0.77; P < 0.001) and unselected men from SAA (-0.65; -1.29 to -0.01; P = 0.045) and fertile men from NEA (-0.50; -1.00 to -0.01; P = 0.046). Among unselected men from all continents, the mean SC declined by 51.6% between 1973 and 2018 (-1.17: -1.66 to -0.68; P < 0.001). The slope for SC among unselected men was steeper in a model restricted to post-2000 data (-1.73: -3.23 to -0.24; P = 0.024) and the percent decline per year doubled, increasing from 1.16% post-1972 to 2.64% post-2000. Results were similar for TSC, with a 62.3% overall decline among unselected men (-4.70 million/year; -6.56 to -2.83; P < 0.001) in the adjusted meta-regression model. All results changed only minimally in multiple sensitivity analyses. WIDER IMPLICATIONS This analysis is the first to report a decline in sperm count among unselected men from South/Central America-Asia-Africa, in contrast to our previous meta-analysis that was underpowered to examine those continents. Furthermore, data suggest that this world-wide decline is continuing in the 21st century at an accelerated pace. Research on the causes of this continuing decline and actions to prevent further disruption of male reproductive health are urgently needed.
Collapse
Affiliation(s)
- Hagai Levine
- Braun School of Public Health and Community Medicine, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Niels Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Jaime Mendiola
- Division of Preventive Medicine and Public Health, University of Murcia School of Medicine and Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), Murcia, Spain
| | - Dan Weksler-Derri
- Clalit Health Services, Kiryat Ono, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maya Jolles
- Braun School of Public Health and Community Medicine, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Pinotti
- Gustave L. and Janet W. Levy Library, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Jena SR, Nayak J, Kumar S, Kar S, Samanta L. Comparative proteome profiling of seminal components reveal impaired immune cell signalling as paternal contributors in recurrent pregnancy loss patients. Am J Reprod Immunol 2023; 89:e13613. [PMID: 35998016 DOI: 10.1111/aji.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/06/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) is usually evaluated from a women's perspective, however, recent evidence implies involvement of male factors as paternally expressed genes predominate placenta. During fertilization, prior to implantation the immune system purposefully produces early pregnancy factors with potent immunomodulatory properties for adaptation to antigenically dissimilar embryo. Therefore, it is hypothesized that paternal immunological factors play a role in RPL. METHOD OF STUDY Comparative proteome profiling (label free liquid chromatography mass spectroscopy: LC-MS/MS) of the seminal extracellular vesicles (SEVs), extracellular vesicle free seminal plasma (EVF-SP) and spermatozoa was carried out in semen of RPL patients (n = 21) and fertile donors (n = 21). This was followed by pathway and protein-protein interaction analysis, and validation of key proteins' expression (western blot). RESULTS A total of 68, 28 and 49 differentially expressed proteins in SEVs, EVF-SP and spermatozoa of RPL patients, respectively, were found to be involved in inflammatory response, immune cell signalling and apoptosis. In SEVs, underexpressed GDF-15 and overexpressed C3 imply distorted maternal immune response to paternal antigens leading to impaired decidualization. Dysregulated TGFβ signalling in EVF-SP surmises defective modulation of inflammatory response and induction of immune tolerance to seminal antigens in the female reproductive tract through generation of regulatory T cells. Retained histone variants in spermatozoa construe defective expression of early paternal genes, while underexpressed PTN may inflict defective angiogenesis resulting in expulsion of decidua. CONCLUSIONS Impaired modulation of immune response and improper placental development due to altered cytokine levels in seminal components may be the contributing paternal factors in RPL.
Collapse
Affiliation(s)
- Soumya Ranjan Jena
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Jasmine Nayak
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Sugandh Kumar
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sujata Kar
- Department of Obstetrics & Gynaecology, Kar Clinic and Hospital Pvt. Ltd., Bhubaneswar, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| |
Collapse
|
8
|
Yu W, Bao S. Association of male factors with recurrent pregnancy loss. J Reprod Immunol 2022; 154:103758. [PMID: 36332367 DOI: 10.1016/j.jri.2022.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
The role of male factors in recurrent pregnancy loss (RPL) is receiving increased attention since sperm quantity and quality, male genetic mutations, as well as epigenetic modifications, have all been associated with RPL. A growing number of studies have been published on the relationship between male factors and RPL; however, these reports are limited due to small sample sizes, inconsistent inclusion criteria, and detection methods. Herein, we investigate the effects of several male factors on RPL from a genetic and non-genetic perspective to aid clinicians in determining the etiology and optimal treatment strategy for patients with RPL.
Collapse
Affiliation(s)
- Weiling Yu
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology,Shanghai First Maternity and Infant Hospital, School of Medicine,Tongji University, Shanghai 200092, China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology,Shanghai First Maternity and Infant Hospital, School of Medicine,Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Wang M, Wang Q, Jiang H, Du Y, Zhang X. Exploring the pharmacological mechanism of Shengjing capsule on male infertility by a network pharmacology approach. BMC Complement Med Ther 2022; 22:299. [DOI: 10.1186/s12906-022-03774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Shengjing capsule (SJC) is a traditional Chinese medicine (TCM) and has gained widespread clinical application for the treatment of male infertility (MI). However, the pharmacological mechanism of SJC against MI remains vague to date.
Method
The active ingredients of SJC and their targets were identified from the database, and MI-related genes were retrieved from several databases. Protein–protein interaction (PPI) data were obtained to construct the PPI networks. The candidate targets of SJC against MI were identified through topological analysis of the PPI network. Functional enrichment analysis of candidate targets was performed, and the key target genes were identified from the gene-pathway network.
Results
We identified 154 active ingredients and 314 human targets of SJC, as well as 564 MI-related genes. Eight pharmacological network diagrams illustrating the interactions among herbs, active ingredients, targets, and pathways, were constructed. The four dominating network maps included a compound-target network of SJC, a compound-anti-MI targets network, a candidate targets PPI network, a pathway-gene network, and a drug-key compounds-hub targets-pathways network. Systematic analysis indicated that the targets of SJC in the treatment of MI mainly involved RPS6, MAPK1, MAPK3, MDM2, and DDX5. Pathway enrichment analysis showed that SJC had the potential to impact multiple biological pathways, such as cancer-related pathways, viral/bacterial infection-related pathways, and signal transduction-related pathways.
Conclusion
Our results preliminarily revealed the pharmacological basis and molecular mechanism SJC in treating MI, but further experimental research is required to verify these findings.
Collapse
|
10
|
Xue F, Liu Y, Lv Z, Zhang J, Xiong S, Zha L, Liu Z, Shu J. Regulatory effects of differential dietary energy levels on spermatogenesis and sperm motility of yellow-feathered breeder cocks. Front Vet Sci 2022; 9:964620. [PMID: 36246315 PMCID: PMC9556827 DOI: 10.3389/fvets.2022.964620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
The semen quality of breeder cocks profoundly impacted the numbers of matched layer hens and the economic benefits of the poultry industry. Adequacy and balance of poultry nutrition, especially the energy provision, critically modulated the reproductive potential of breeder cocks, however, the underlying mechanism was still unclear. For the purpose of this study, a total of 90 yellow-feathered 13-week-old roosters with the same age in days and similar body weight (1,437 ± 44.3 g) were selected and randomly divided into the low energy diet (LE), the moderate energy diet (ME), and the high energy diet (HE) treatments. The phenotypic parameters related to reproduction include semen quality, fertility, and hatchability, and the testis morphological parameters, including seminiferous epithelium length (SEL), seminiferous tubule perimeter (STP), seminiferous tubule area (STA), and Johnsen score, were measured to investigate the regulatory effects of different energy diets on reproductive performances. Furthermore, spermatogenesis and sperm motility-related genes, which included the sry-related high mobility group box (SOX) gene family and sperm-associated antigen (SPAG) gene family, and mitochondria apoptosis-related genes, such as Cyt-C, Bcl-2, and Bax, were measured to determine the underlying mechanism of energy on the reproductive performances. The The results showed that the gonadosomatic index and sperm motility in the ME treatment significantly increased compared with the LE treatment. Chickens in the ME treatment showed a preferable performance of testis development, especially a significant increment of SEL and Johnsen Score, compared with the LE and HE treatments. Finally, spermatogenesis-related genes, which included SPAG6, SPAG16, SOX5, SOX6, and SOX13, and apoptosis-related genes of mitochondria, such as the Cyt-C and Bcl-2, were significantly upregulated in the ME treatment. This study concluded that proper energy provision stimulated regular energy metabolism for spermatogenesis and sperm capacitation, which finally increased semen quality and reproductive performances of breeder cocks.
Collapse
Affiliation(s)
- Fuguang Xue
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Ziyang Lv
- College of Economics and Management, Jiangxi Agricultural University, Nanchang, China
| | - Jian Zhang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shiyuan Xiong
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Liqing Zha
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyu Liu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- *Correspondence: Jingting Shu
| |
Collapse
|
11
|
Choi KH, Kim H, Kim MH, Kwon HJ. Semiconductor Work and Adverse Pregnancy Outcomes Associated with Male Workers: A Retrospective Cohort Study. Ann Work Expo Health 2020; 63:870-880. [PMID: 31421636 DOI: 10.1093/annweh/wxz061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/18/2019] [Accepted: 07/18/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES A hazardous work environment in semiconductor factories is a threat to the workers' health. Semiconductor manufacturing characteristically requires young workers, and reproductive toxicity is an important issue. Studies investigating reproductive toxicity among individuals working in the semiconductor manufacturing industry have primarily focused on outcomes in women. Information on the reproductive health of male semiconductor factory workers is limited. This study aimed to evaluate the association between workplace exposures among male workers in a Korean semiconductor company and adverse pregnancy outcomes. METHODS Based on the data from the 2015 Semiconductor Health Survey (SHS), which evaluated the workplace exposures, pregnancy outcomes, and general health of 21 969 employees of the semiconductor industry in South Korea, we included 3868 male workers with 7504 pregnancy outcomes identified by self-reports for this retrospective cohort study. Data regarding the pregnancy outcomes, order of pregnancy, and the years of the outcomes were collected via the SHS questionnaire. Adverse pregnancy outcomes were defined as preterm labor, spontaneous abortion, and stillbirth. Workplace exposures were classified as fabrication, assembly, others, lab, and office work (reference group). A generalized estimating equations model including repeated events of individuals and producing relative risk (RR) and 95% confidence interval (CI) was used to estimate the association between workplace exposure and adverse pregnancy outcomes. Analyses were adjusted for work location, spouse's employment in semiconductor production work, educational level, marital status, risky alcohol drinking, smoking status, body mass index, order of pregnancy, and age and year of pregnancy outcome, which were based on a priori decisions. RESULTS The adjusted risk for adverse outcomes was higher [RR (95% CI): 1.47 (1.04, 2.07)] among assembly process workers compared with the office workers. Adjusted risks for adverse outcomes among workers in assembly and fabrication, whose spouses also worked in semiconductor production, were 1.60 (95% CI: 1.04, 2.46) and 1.74 (95% CI: 1.18, 2.57) times higher, respectively, compared with the office workers with spouses not working in semiconductor production. CONCLUSIONS Based on these findings, semiconductor work might be considered a risk factor for reproductive toxicity among male workers, especially for those whose spouses have the same job.
Collapse
Affiliation(s)
- Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Dongnam-gu, Cheonan, Chungnam, Korea
| | - Hyunjoo Kim
- Department of Occupational and Environmental Medicine, Ewha Womans University Mokdong Hospital, Yangcheon-gu, Seoul, Korea
| | | | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, Dongnam-gu, Cheonan, Chungnam, Korea
| |
Collapse
|
12
|
Aitken RJ, Drevet JR. The Importance of Oxidative Stress in Determining the Functionality of Mammalian Spermatozoa: A Two-Edged Sword. Antioxidants (Basel) 2020; 9:antiox9020111. [PMID: 32012712 PMCID: PMC7070991 DOI: 10.3390/antiox9020111] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
This article addresses the importance of oxidative processes in both the generation of functional gametes and the aetiology of defective sperm function. Functionally, sperm capacitation is recognized as a redox-regulated process, wherein a low level of reactive oxygen species (ROS) generation is intimately involved in driving such events as the stimulation of tyrosine phosphorylation, the facilitation of cholesterol efflux and the promotion of cAMP generation. However, the continuous generation of ROS ultimately creates problems for spermatozoa because their unique physical architecture and unusual biochemical composition means that they are vulnerable to oxidative stress. As a consequence, they are heavily dependent on the antioxidant protection afforded by the fluids in the male and female reproductive tracts and, during the precarious process of insemination, seminal plasma. If this antioxidant protection should be compromised for any reason, then the spermatozoa experience pathological oxidative damage. In addition, situations may prevail that cause the spermatozoa to become exposed to high levels of ROS emanating either from other cells in the immediate vicinity (particularly neutrophils) or from the spermatozoa themselves. The environmental and lifestyle factors that promote ROS generation by the spermatozoa are reviewed in this article, as are the techniques that might be used in a diagnostic context to identify patients whose reproductive capacity is under oxidative threat. Understanding the strengths and weaknesses of ROS-monitoring methodologies is critical if we are to effectively identify those patients for whom treatment with antioxidants might be considered a rational management strategy.
Collapse
Affiliation(s)
- Robert J. Aitken
- Priority Research Centre for Reproductive Sciences, Faculty of Science and Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Correspondence:
| | - Joel R. Drevet
- GReD Institute, INSERM U1103—CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC building, 28 place Henri Dunant, 63001 Clermont-Ferrand, France;
| |
Collapse
|
13
|
Yoga: Impact on sperm genome and epigenome - clinical consequences. Ann Neurosci 2020; 26:49-51. [PMID: 31975772 PMCID: PMC6894624 DOI: 10.5214/ans.0972.7531.260202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Dhawan V, Kumar M, Deka D, Malhotra N, Dadhwal V, Singh N, Dada R. Meditation & yoga: Impact on oxidative DNA damage & dysregulated sperm transcripts in male partners of couples with recurrent pregnancy loss. Indian J Med Res 2019; 148:S134-S139. [PMID: 30964091 PMCID: PMC6469372 DOI: 10.4103/ijmr.ijmr_1988_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives Recurrent pregnancy loss (RPL) is one of the devastating complications of pregnancy and current focus lies in addressing the management of paternal factors. Dysregulation in selective transcripts delivered to oocyte at fertilization can result in pregnancy losses and adversely affect embryogenesis. The objective of this study was to assess the effect of yoga-based lifestyle intervention (YBLI) on seminal oxidative stress (OS), DNA damage and spermatozoal transcript levels. Methods The present study was a part of a prospective ongoing exploratory study and 30 male partners of couples with RPL were included from August 2016 to June 2017. Semen samples were obtained at baseline and at the end of YBLI (21 days). Gene expression analysis was performed by quantitative polymerase chain reaction on spermatozoal FOXG1, SOX3, OGG1, PARP1, RPS6, RBM9, RPS17 and RPL29. The levels of seminal OS and sperm DNA damage was assessed by measuring levels of reactive oxygen species (ROS) by chemiluminescence and DNA fragmentation index (DFI) by sperm chromatin structure assay. Results SOX3, OGG1 and PARP1 were observed to be upregulated, while FOXG1, RPS6, RBM9, RPS17 and RPL29 showed downregulation. A significant reduction in ROS levels, an increase in sperm motility, sperm count (done twice) and a decrease in DFI was seen after YBLI. Interpretation & conclusions Adopting YBLI may help in a significant decline in oxidative DNA damage and normalization of sperm transcript levels. This may not only improve pregnancy outcomes but also improve the health trajectory of the offspring.
Collapse
Affiliation(s)
- Vidhu Dhawan
- Department of Anatomy, Laboratory of Molecular Reproduction & Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Department of Anatomy, Laboratory of Molecular Reproduction & Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Deka
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Neena Malhotra
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Vatsla Dadhwal
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Singh
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Laboratory of Molecular Reproduction & Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|