1
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
2
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Li Z, Luo Z, Hu D. Assessing Fecal Microbial Diversity and Hormone Levels as Indicators of Gastrointestinal Health in Reintroduced Przewalski's Horses ( Equus ferus przewalskii). Animals (Basel) 2024; 14:2616. [PMID: 39272401 PMCID: PMC11393964 DOI: 10.3390/ani14172616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/15/2024] Open
Abstract
Diarrhea serves as a vital health indicator for assessing wildlife populations post-reintroduction. Upon release into the wild, wild animals undergo adaptation to diverse habitats and dietary patterns. While such changes prompt adaptive responses in the fecal microbiota, they also render these animals susceptible to gastrointestinal diseases, particularly diarrhea. This study investigates variations in fecal microorganisms and hormone levels between diarrhea-afflicted and healthy Przewalski's horses. The results demonstrate a significant reduction in the alpha diversity of the fecal bacterial community among diarrheal Przewalski's horses, accompanied by notable alterations in taxonomic composition. Firmicutes, Proteobacteria, and Bacteroidetes emerge as dominant phyla across all fecal samples, irrespective of health status. However, discernible differences in fecal bacterial abundance are observed between healthy and diarrhea-stricken individuals at the genus level, specifically, a diminished relative abundance of Pseudobutyrivibrio is observed. The majority of the bacteria that facilitate the synthesis of short-chain fatty acids, Christensenellaceae_R_7_group (Christensenellaceae), NK4A214_group (Ruminococcus), Lachnospiraceae_XPB1014_group (Lachnospiraceae), [Eubacterium]_coprostanoligenes_group (Eubacterium), Rikenellaceae_RC9_gut_group, Lachnospiraceae_AC2044_group (Lachnospiraceae), and Prevotellaceae_UcG_001 (Prevotella) are noted in diarrhea-affected Przewalski's horses, while Erysipelotrichaceae, Phoenicibacter, Candidatus_Saccharimonas (Salmonella), and Mogibacterium are present in significantly increased amounts. Moreover, levels of immunoglobulin IgA and cortisol are significantly elevated in the diarrhea group compared with the non-diarrhea group. Overall, this study underscores substantial shifts in fecal bacterial diversity, abundance, and hormone levels in Przewalski's horses during episodes of diarrhea.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Zhengwei Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| |
Collapse
|
4
|
Mincheva G, Felipo V, Moreno-Manzano V, Benítez-Páez A, Llansola M. Extracellular vesicles from mesenchymal stem cells alter gut microbiota and improve neuroinflammation and motor impairment in rats with mild liver damage. Neurotherapeutics 2024:e00445. [PMID: 39242290 DOI: 10.1016/j.neurot.2024.e00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Gut microbiota perturbation and motor dysfunction have been reported in steatosis patients. Rats with mild liver damage (MLD) show motor dysfunction mediated by neuroinflammation and altered GABAergic neurotransmission in the cerebellum. The extracellular vesicles (EV) from mesenchymal stem cells (MSC) have emerged as a promising therapeutic proxy whose molecular basis relies partly upon TGFβ action. This study aimed to assess if MSC-EVs improve motor dysfunction in rats with mild liver damage and analyze underlying mechanisms, including the role of TGFβ, cerebellar neuroinflammation and gut microbiota. MLD in rats was induced by carbon tetrachloride administration and EVs from normal (C-EVs) or TGFβ-siRNA treated MSCs (T-EV) were injected. Motor coordination, locomotor gait, neuroinflammation and TNF-α-activated pathways modulating GABAergic neurotransmission in the cerebellum, microbiota composition in feces and microbial-derived metabolites in plasma were analyzed. C-EVs reduced glial and TNFα-P2X4-BDNF-TrkB pathway activation restoring GABAergic neurotransmission in the cerebellum and improving motor coordination and all the altered gait parameters. T-EVs also improved motor coordination and some gait parameters, but the mechanisms involved differed from those of C-EVs. MLD rats showed increased content of some Bacteroides species in feces, correlating with decreased kynurenine aside from motor alterations. These alterations were all normalized by C-EVs, whereas T-EVs only restored kynurenine levels. Our results support the value of MSC-EVs on improving motor dysfunction in MLD and unveil a possible mechanism by which altered microbiota may contribute to neuroinflammation and motor impairment. Some of the underlying mechanisms are TGFβ-dependent.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Alfonso Benítez-Páez
- Host-Microbe Interactions in Metabolic Health Laboratory, Centro de Investigación Principe Felipe, Valencia, Spain; Microbiome, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC). Paterna-Valencia, Spain..
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
5
|
Zachos KA, Gamboa JA, Dewji AS, Lee J, Brijbassi S, Andreazza AC. The interplay between mitochondria, the gut microbiome and metabolites and their therapeutic potential in primary mitochondrial disease. Front Pharmacol 2024; 15:1428242. [PMID: 39119601 PMCID: PMC11306032 DOI: 10.3389/fphar.2024.1428242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.
Collapse
Affiliation(s)
- Kassandra A. Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jann Aldrin Gamboa
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aleena S. Dewji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Lee
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
7
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
8
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
9
|
Schoeps VA, Zhou X, Horton MK, Zhu F, McCauley KE, Nasr Z, Virupakshaiah A, Gorman MP, Benson LA, Weinstock‐Guttman B, Waldman A, Banwell BL, Bar‐Or A, Marrie RA, van Domselaar G, O'Mahony J, Mirza AI, Bernstein CN, Yeh EA, Casper TC, Lynch SV, Tremlett H, Baranzini S, Waubant E. Short-chain fatty acid producers in the gut are associated with pediatric multiple sclerosis onset. Ann Clin Transl Neurol 2024; 11:169-184. [PMID: 37955284 PMCID: PMC10791026 DOI: 10.1002/acn3.51944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
OBJECTIVE The relationship between multiple sclerosis and the gut microbiome has been supported by animal models in which commensal microbes are required for the development of experimental autoimmune encephalomyelitis. However, observational study findings in humans have only occasionally converged when comparing multiple sclerosis cases and controls which may in part reflect confounding by comorbidities and disease duration. The study of microbiome in pediatric-onset multiple sclerosis offers unique opportunities as it is closer to biological disease onset and minimizes confounding by comorbidities and environmental exposures. METHODS A multicenter case-control study in which 35 pediatric-onset multiple sclerosis cases were 1:1 matched to healthy controls on age, sex, self-reported race, ethnicity, and recruiting site. Linear mixed effects models, weighted correlation network analyses, and PICRUSt2 were used to identify microbial co-occurrence networks and for predicting functional abundances based on marker gene sequences. RESULTS Two microbial co-occurrence networks (one reaching significance after adjustment for multiple comparisons; q < 0.2) were identified, suggesting interdependent bacterial taxa that exhibited association with disease status. Both networks indicated a potentially protective effect of higher relative abundance of bacteria observed in these clusters. Functional predictions from the significant network suggested a contribution of short-chain fatty acid producers through anaerobic fermentation pathways in healthy controls. Consistent family-level findings from an independent Canadian-US study (19 case/control pairs) included Ruminococaccaeae and Lachnospiraceae (p < 0.05). Macronutrient intake was not significantly different between cases and controls, minimizing the potential for dietary confounding. INTERPRETATION Our results suggest that short-chain fatty acid producers may be important contributors to multiple sclerosis onset.
Collapse
Affiliation(s)
- Vinicius A. Schoeps
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Xiaoyuan Zhou
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Mary K. Horton
- Division of EpidemiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Feng Zhu
- Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathryn E. McCauley
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Zahra Nasr
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Akash Virupakshaiah
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Mark P. Gorman
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Leslie A. Benson
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | | | - Amy Waldman
- Department of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Brenda L. Banwell
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amit Bar‐Or
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruth Ann Marrie
- Department of Internal MedicineUniversity of ManitobaWinnipegManitobaCanada
| | - Gary van Domselaar
- Department of Internal MedicineUniversity of ManitobaWinnipegManitobaCanada
| | - Julia O'Mahony
- Department of Internal MedicineUniversity of ManitobaWinnipegManitobaCanada
| | - Ali I. Mirza
- Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - E. Ann Yeh
- The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | | | - Susan V. Lynch
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Helen Tremlett
- Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sergio Baranzini
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Emmanuelle Waubant
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
10
|
Li O, Xu H, Kim D, Yang F, Bao Z. Roles of Human Gut Microbiota in Liver Cirrhosis Risk: A Two-Sample Mendelian Randomization Study. J Nutr 2024; 154:143-151. [PMID: 37984746 DOI: 10.1016/j.tjnut.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that alterations in gut microbiota composition and diversity are associated with liver cirrhosis. But whether gut microbiota promotes or hampers the genesis and development of liver cirrhosis remains vague. OBJECTIVES This study aimed to establish a causal relationship between gut microbiota and the development of liver fibrosis and cirrhosis. To achieve this, we employed a 2-sample Mendelian randomization (MR) analysis utilizing genome-wide association study (GWAS) summary statistics. This approach enabled us to assess the potential impact of gut microbiota on liver cirrhosis. METHODS The independent genetic instruments of gut microbiota were obtained from the MiBioGen (up to 18,340 participants), which is a large-scale genome-wide genotype and 16S fecal microbiome dataset. Cirrhosis data were derived from the FinnGen biobank analysis, which included 214,403 individuals of European ancestry (811 patients and 213,592 controls). To assess the causal relationship between gut microbiota and cirrhosis, we applied 4 different methods of MR analysis: the inverse-variance weighted method (IVW), the MR-Egger regression, the weighted median analysis (WME), and the weighted mode. Furthermore, sensitivity analyses were conducted to evaluate heterogeneity and horizontal pleiotropy. RESULTS Results of MR analyses provided evidence of a causal association between 4 microbiota features and cirrhosis, including 2 family [Lachnosiraceae: odds ratio (OR): 1.82626178; 95% confidence interval (CI): 1.05208209, 3.17012532; P = 0.0323194; Lactobacillaceae : OR: 0.62897502; 95% CI: 0.42513162, 0.93055788; P = 0.02033345] and 2 genus [Butyricicoccus: OR: 0.41432215; 95% CI: 0.22716865, 0.75566257; P = 0.0040564; Lactobacillus: OR: 0.6663767; 95% CI: 0.45679511, 0.97211616; P = 0.03513627]. CONCLUSIONS Our findings offered compelling evidence of a causal association between gut microbiota and cirrhosis in European population and identified specific bacteria taxa that may regulate the genesis and progression of liver fibrosis and cirrhosis, may offer a new direction for the treatment of cirrhosis.
Collapse
Affiliation(s)
- Ouyang Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Han Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Dayoung Kim
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Jing Y, Yang D, Bai F, Wang Q, Zhang C, Yan Y, Li Z, Li Y, Chen Z, Li J, Yu Y. Spinal cord injury-induced gut dysbiosis influences neurological recovery partly through short-chain fatty acids. NPJ Biofilms Microbiomes 2023; 9:99. [PMID: 38092763 PMCID: PMC10719379 DOI: 10.1038/s41522-023-00466-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Spinal cord injury (SCI) can reshape gut microbial composition, significantly affecting clinical outcomes in SCI patients. However, mechanisms regarding gut-brain interactions and their clinical implications have not been elucidated. We hypothesized that short-chain fatty acids (SCFAs), intestinal microbial bioactive metabolites, may significantly affect the gut-brain axis and enhance functional recovery in a mouse model of SCI. We enrolled 59 SCI patients and 27 healthy control subjects and collected samples. Thereafter, gut microbiota and SCFAs were analyzed using 16 S rDNA sequencing and gas chromatography-mass spectrometry, respectively. We observed an increase in Actinobacteriota abundance and a decrease in Firmicutes abundance. Particularly, the SCFA-producing genera, such as Faecalibacterium, Megamonas, and Agathobacter were significantly downregulated among SCI patients compared to healthy controls. Moreover, SCI induced downregulation of acetic acid (AA), propionic acid (PA), and butyric acid (BA) in the SCI group. Fecal SCFA contents were altered in SCI patients with different injury course and injury segments. Main SCFAs (AA, BA, and PA) were administered in combination to treat SCI mice. SCFA supplementation significantly improved locomotor recovery in SCI mice, enhanced neuronal survival, promoted axonal formation, reduced astrogliosis, and suppressed microglial activation. Furthermore, SCFA supplementation downregulated NF-κB signaling while upregulating neurotrophin-3 expression following SCI. Microbial sequencing and metabolomics analysis showed that SCI patients exhibited a lower level of certain SCFAs and related bacterial strains than healthy controls. SCFA supplementation can reduce inflammation and enhance nourishing elements, facilitating the restoration of neurological tissues and the improvement of functional recuperation. Trial registration: This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on February 13, 2017 (ChiCTR-RPC-17010621).
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Degang Yang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Department of Spinal and Neural Function Reconstruction, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Fan Bai
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Qiuying Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Chao Zhang
- Department of Neurosurgery, Linyi People's Hospital, Shangdong, 276034, China
| | - Yitong Yan
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Yan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
| | - Zhiguo Chen
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| | - Jianjun Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, and School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
| |
Collapse
|
12
|
Guo Z, Yiu N, Hu Z, Zhou W, Long X, Yang M, Liao J, Zhang G, Lu Q, Zhao M. Alterations of fecal microbiome and metabolome in pemphigus patients. J Autoimmun 2023; 141:103108. [PMID: 37714737 DOI: 10.1016/j.jaut.2023.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
The role of gut microbiome and metabolic substances in the development of autoimmune diseases has gradually been revealed. However, the relevant gut features in pemphigus have not been well clarified. We collected stool samples from pemphigus patients and healthy controls (HCs). Metagenomic sequencing and liquid chromatography-mass spectrometry (LC/MS) metabolome sequencing were performed to analyze the compositional and metabolic alternations of the gut microbiome in pemphigus patients and HCs. We observed the reduced richness and diversity and greater heterogeneity in pemphigus patients, which was characterized by a significant decrease in Firmicutes and an increase in Proteobacteria. At the species level, Intestinal pathogenic bacteria such as Escherichia coli and Bacteroides fragilis were significantly enriched, while anti-inflammatory bacteria and butyric acid-producing bacteria were significantly reduced, which were related to clinical indicators (Dsg1/3 and PDAI). 4 species were selected by the machine learning algorithm to better distinguish pemphigus patients from healthy people. Metabolomic analysis showed that the composition of pemphigus patients was different from that of HCs. PE (18:3 (6Z,9Z, 12Z)/14:1 (9Z)) was the main metabolic substance in pemphigus and involved in a variety of metabolic pathways. While Retinol, flavonoid compounds and various amino acids decreased significantly compared with HCs. Furthermore, we found that differences in the levels of these metabolites correlated with changes in the abundance of specific species. Our study provides a comprehensive picture of gut microbiota and metabolites in pemphigus patients and suggests a potential mechanism of the aberrant gut microbiota and metabolites in the pathogenesis of pemphigus.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Nam Yiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Wenyu Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Jieyue Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Guiying Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
13
|
Diaz-Marugan L, Kantsjö JB, Rutsch A, Ronchi F. Microbiota, diet, and the gut-brain axis in multiple sclerosis and stroke. Eur J Immunol 2023; 53:e2250229. [PMID: 37470461 DOI: 10.1002/eji.202250229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Intestinal microbiota can influence the phenotype and function of immune cell responses through the dissemination of bacterial antigens or metabolites. Diet is one of the major forces shaping the microbiota composition and metabolism, contributing to host homeostasis and disease susceptibility. Currently, nutrition is a complementary and alternative approach to the management of metabolic and neurological diseases and cancer. However, the knowledge of the exact mechanism of action of diet and microbiota on the gut-brain communication is only developing in recent years. Here, we reviewed the current knowledge on the effect of diet and microbiota on the gut-brain axis in patients with two different central nervous system diseases, multiple sclerosis and stroke. We have also highlighted the open questions in the field that we believe are important to address to gain a deeper understanding of the mechanisms by which diet can directly or indirectly affect the host via the microbiota. We think this will open up new approaches to the treatment, diagnosis, and monitoring of various diseases.
Collapse
Affiliation(s)
- Laura Diaz-Marugan
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
- Departamento de Medicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Johan B Kantsjö
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
| | - Andrina Rutsch
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
| | - Francesca Ronchi
- Charité - Universitaetsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH): Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Berlin, Germany
| |
Collapse
|
14
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
15
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054624. [PMID: 36901634 PMCID: PMC10001679 DOI: 10.3390/ijerph20054624] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white matter of the brain and spinal cord. It is considered one of the most common neurological diseases of non-traumatic origin in young people, especially in women. Recent studies point to a possible association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and inconclusive. OBJECTIVE To conduct a systematic review on the relationship between gut microbiota and multiple sclerosis. METHOD The systematic review was conducted in the first quarter of 2022. The articles included were selected and compiled from different electronic databases: PubMed, Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were: "multiple sclerosis", "gut microbiota", and "microbiome". RESULTS 12 articles were selected for the systematic review. Among the studies that analysed alpha and beta diversity, only three found significant differences with respect to the control. In terms of taxonomy, the data are contradictory, but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed. CONCLUSIONS Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls. Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the chronic inflammation that characterises this disease. Therefore, future studies should consider the characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Ana Campos-Rios
- Laboratory of Neuroscience, CINBIO, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| |
Collapse
|
17
|
Righetto I, Gasparotto M, Casalino L, Vacca M, Filippini F. Exogenous Players in Mitochondria-Related CNS Disorders: Viral Pathogens and Unbalanced Microbiota in the Gut-Brain Axis. Biomolecules 2023; 13:biom13010169. [PMID: 36671555 PMCID: PMC9855674 DOI: 10.3390/biom13010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Billions of years of co-evolution has made mitochondria central to the eukaryotic cell and organism life playing the role of cellular power plants, as indeed they are involved in most, if not all, important regulatory pathways. Neurological disorders depending on impaired mitochondrial function or homeostasis can be caused by the misregulation of "endogenous players", such as nuclear or cytoplasmic regulators, which have been treated elsewhere. In this review, we focus on how exogenous agents, i.e., viral pathogens, or unbalanced microbiota in the gut-brain axis can also endanger mitochondrial dynamics in the central nervous system (CNS). Neurotropic viruses such as Herpes, Rabies, West-Nile, and Polioviruses seem to hijack neuronal transport networks, commandeering the proteins that mitochondria typically use to move along neurites. However, several neurological complications are also associated to infections by pandemic viruses, such as Influenza A virus and SARS-CoV-2 coronavirus, representing a relevant risk associated to seasonal flu, coronavirus disease-19 (COVID-19) and "Long-COVID". Emerging evidence is depicting the gut microbiota as a source of signals, transmitted via sensory neurons innervating the gut, able to influence brain structure and function, including cognitive functions. Therefore, the direct connection between intestinal microbiota and mitochondrial functions might concur with the onset, progression, and severity of CNS diseases.
Collapse
Affiliation(s)
- Irene Righetto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, via Pietro Castellino, 111, 80131 Naples, Italy
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, via Pietro Castellino, 111, 80131 Naples, Italy
- Correspondence: (M.V.); (F.F.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
- Correspondence: (M.V.); (F.F.)
| |
Collapse
|
18
|
Shrode RL, Knobbe JE, Cady N, Yadav M, Hoang J, Cherwin C, Curry M, Garje R, Vikas P, Sugg S, Phadke S, Filardo E, Mangalam AK. Breast cancer patients from the Midwest region of the United States have reduced levels of short-chain fatty acid-producing gut bacteria. Sci Rep 2023; 13:526. [PMID: 36631533 PMCID: PMC9834383 DOI: 10.1038/s41598-023-27436-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
As geographical location can impact the gut microbiome, it is important to study region-specific microbiome signatures of various diseases. Therefore, we profiled the gut microbiome of breast cancer (BC) patients of the Midwestern region of the United States. The bacterial component of the gut microbiome was profiled utilizing 16S ribosomal RNA sequencing. Additionally, a gene pathway analysis was performed to assess the functional capabilities of the bacterial microbiome. Alpha diversity was not significantly different between BC and healthy controls (HC), however beta diversity revealed distinct clustering between the two groups at the species and genera level. Wilcoxon Rank Sum test revealed modulation of several gut bacteria in BC specifically reduced abundance of those linked with beneficial effects such as Faecalibacterium prausnitzii. Machine learning analysis confirmed the significance of several of the modulated bacteria found by the univariate analysis. The functional analysis showed a decreased abundance of SCFA (propionate) production in BC compared to HC. In conclusion, we observed gut dysbiosis in BC with the depletion of SCFA-producing gut bacteria suggesting their role in the pathobiology of breast cancer. Mechanistic understanding of gut bacterial dysbiosis in breast cancer could lead to refined prevention and treatment.
Collapse
Affiliation(s)
- Rachel L. Shrode
- grid.214572.70000 0004 1936 8294Department of Informatics, University of Iowa, Iowa City, IA 52242 USA
| | - Jessica E. Knobbe
- grid.214572.70000 0004 1936 8294Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Nicole Cady
- grid.214572.70000 0004 1936 8294Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA ,grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Meeta Yadav
- grid.214572.70000 0004 1936 8294Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294College of Dentistry, University of Iowa, Iowa City, IA 52242 USA
| | - Jemmie Hoang
- grid.214572.70000 0004 1936 8294College of Nursing, University of Iowa, Iowa City, IA 52242 USA
| | - Catherine Cherwin
- grid.214572.70000 0004 1936 8294College of Nursing, University of Iowa, Iowa City, IA 52242 USA
| | - Melissa Curry
- grid.412584.e0000 0004 0434 9816Holden Comprehensive Cancer Center, University of Iowa Hospital and Clinics, Iowa City, IA 52242 USA
| | - Rohan Garje
- grid.214572.70000 0004 1936 8294Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Praveen Vikas
- grid.214572.70000 0004 1936 8294Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Sonia Sugg
- grid.214572.70000 0004 1936 8294Department of Surgery, University of Iowa, Iowa City, IA 52242 USA
| | - Sneha Phadke
- grid.214572.70000 0004 1936 8294Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | | | - Ashutosh K. Mangalam
- grid.214572.70000 0004 1936 8294Department of Informatics, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294College of Dentistry, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294University of Iowa, 25 S Grand Ave, 1080-ML, Iowa City, IA 52246 USA
| |
Collapse
|
19
|
Thirion F, Sellebjerg F, Fan Y, Lyu L, Hansen TH, Pons N, Levenez F, Quinquis B, Stankevic E, Søndergaard HB, Dantoft TM, Poulsen CS, Forslund SK, Vestergaard H, Hansen T, Brix S, Oturai A, Sørensen PS, Ehrlich SD, Pedersen O. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med 2023; 15:1. [PMID: 36604748 PMCID: PMC9814178 DOI: 10.1186/s13073-022-01148-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multiple sclerosis is a chronic immune-mediated disease of the brain and spinal cord resulting in physical and cognitive impairment in young adults. It is hypothesized that a disrupted bacterial and viral gut microbiota is a part of the pathogenesis mediating disease impact through an altered gut microbiota-brain axis. The aim of this study is to explore the characteristics of gut microbiota in multiple sclerosis and to associate it with disease variables, as the etiology of the disease remains only partially known. METHODS Here, in a case-control setting involving 148 Danish cases with multiple sclerosis and 148 matched healthy control subjects, we performed shotgun sequencing of fecal microbial DNA and associated bacterial and viral microbiota findings with plasma cytokines, blood cell gene expression profiles, and disease activity. RESULTS We found 61 bacterial species that were differentially abundant when comparing all multiple sclerosis cases with healthy controls, among which 31 species were enriched in cases. A cluster of inflammation markers composed of blood leukocytes, CRP, and blood cell gene expression of IL17A and IL6 was positively associated with a cluster of multiple sclerosis-related species. Bacterial species that were more abundant in cases with disease-active treatment-naïve multiple sclerosis were positively linked to a group of plasma cytokines including IL-22, IL-17A, IFN-β, IL-33, and TNF-α. The bacterial species richness of treatment-naïve multiple sclerosis cases was associated with number of relapses over a follow-up period of 2 years. However, in non-disease-active cases, we identified two bacterial species, Faecalibacterium prausnitzii and Gordonibacter urolithinfaciens, whose absolute abundance was enriched. These bacteria are known to produce anti-inflammatory metabolites including butyrate and urolithin. In addition, cases with multiple sclerosis had a higher viral species diversity and a higher abundance of Caudovirales bacteriophages. CONCLUSIONS Considerable aberrations are present in the gut microbiota of patients with multiple sclerosis that are directly associated with blood biomarkers of inflammation, and in treatment-naïve cases bacterial richness is positively associated with disease activity. Yet, the finding of two symbiotic bacterial species in non-disease-active cases that produce favorable immune-modulating compounds provides a rationale for testing these bacteria as adjunct therapeutics in future clinical trials.
Collapse
Affiliation(s)
- Florence Thirion
- Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, 2600, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yong Fan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Liwei Lyu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Tue H Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nicolas Pons
- Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France
| | - Florence Levenez
- Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France
| | - Benoit Quinquis
- Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Helle B Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, 2600, Glostrup, Denmark
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg University Hospital, 2400, Frederiksberg, Denmark
| | - Casper S Poulsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, 10117, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Medicine, Rønne Hospital, 3700, Bornholm, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Annette Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, 2600, Glostrup, Denmark
| | - Per Soelberg Sørensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, 2600, Glostrup, Denmark
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France
- Department of Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3RX, UK
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, Hellerup, 2900, Copenhagen, Denmark.
| |
Collapse
|
20
|
Qin R, Tian G, Liu J, Cao L. The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Front Cell Infect Microbiol 2022; 12:1069557. [PMID: 36506023 PMCID: PMC9729346 DOI: 10.3389/fcimb.2022.1069557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis is a common gynecological disease, that often leads to pain and infertility. At present, the specific pathogenesis of endometriosis has not been clarified, but it may be closely related to an imbalance of sex hormones in the body, ectopic hyperplasia stimulated by immune inflammation, and invasion and escape based on tumor characteristics. Gut microbiota is associated with many inflammatory diseases. With the further study of the gut microbiota, people are paying increasing attention to its relationship with endometriosis. Studies have shown that there is an association between the gut microbiota and endometriosis. The specific ways and mechanisms by which the gut microbiota participates in endometriosis may involve estrogen, immune inflammation, and tumor characteristics, among others. Therefore, in the future, regulating gut microbiota disorders in various ways can help in the treatment of endometriosis patients. This study reviewed the research on the gut microbiota and endometriosis in order to provide ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Lu Cao,
| |
Collapse
|
21
|
Zhang X, Zhao L, Zhang H, Zhang Y, Ju H, Wang X, Ren H, Zhu X, Dong Y. The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Front Immunol 2022; 13:1003651. [PMID: 36466873 PMCID: PMC9712217 DOI: 10.3389/fimmu.2022.1003651] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 08/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor in adults, characterized by extensive infiltrative growth, high vascularization, and resistance to multiple therapeutic approaches. Among the many factors affecting the therapeutic effect, the immunosuppressive GBM microenvironment that is created by cells and associated molecules via complex mechanisms plays a particularly important role in facilitating evasion of the tumor from the immune response. Accumulating evidence is also revealing a close association of the gut microbiota with the challenges in the treatment of GBM. The gut microbiota establishes a connection with the central nervous system through bidirectional signals of the gut-brain axis, thus affecting the occurrence and development of GBM. In this review, we discuss the key immunosuppressive components in the tumor microenvironment, along with the regulatory mechanism of the gut microbiota involved in immunity and metabolism in the GBM microenvironment. Lastly, we concentrate on the immunotherapeutic strategies currently under investigation, which hold promise to overcome the hurdles of the immunosuppressive tumor microenvironment and improve the therapeutic outcome for patients with GBM.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Xiaoyu Wang
- Department of Neurology, Hongda Hospital, Jinxiang, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
22
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
23
|
Abenavoli L, Maurizi V, Rinninella E, Tack J, Di Berardino A, Santori P, Rasetti C, Procopio AC, Boccuto L, Scarpellini E. Fecal Microbiota Transplantation in NAFLD Treatment. Medicina (B Aires) 2022; 58:medicina58111559. [PMID: 36363516 PMCID: PMC9695159 DOI: 10.3390/medicina58111559] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction: Gut microbiota is not only a taxonomic biologic ecosystem but is also involved in human intestinal and extra-intestinal functions such as immune system modulation, nutrient absorption and digestion, as well as metabolism regulation. The latter is strictly linked to non-alcoholic fatty liver disease (NAFLD) pathophysiology. Materials and methods: We reviewed the literature on the definition of gut microbiota, the concepts of “dysbiosis” and “eubiosis”, their role in NAFLD pathogenesis, and the data on fecal microbiota transplantation (FMT) in these patients. We consulted the main medical databases using the following keywords, acronyms, and their associations: gut microbiota, eubiosis, dysbiosis, bile acids, NAFLD, and FMT. Results: Gut microbiota qualitative and quantitative composition is different in healthy subjects vs. NALFD patients. This dysbiosis is associated with and involved in NAFLD pathogenesis and evolution to non-acoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma (HCC). In detail, microbial-driven metabolism of bile acids (BAs) and interaction with hepatic and intestinal farnesoid nuclear X receptor (FXR) have shown a determinant role in liver fat deposition and the development of fibrosis. Over the use of pre- or probiotics, FMT has shown preclinical and initial clinical promising results in NAFLD treatment through re-modulation of microbial dysbiosis. Conclusions: Promising clinical data support a larger investigation of gut microbiota dysbiosis reversion through FMT in NAFLD using randomized clinical trials to design precision-medicine treatments for these patients at different disease stages.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Valentina Maurizi
- Internal Medicine Residency Program, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Jan Tack
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Arianna Di Berardino
- Clinical Nutrition and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Pierangelo Santori
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Carlo Rasetti
- Clinical Nutrition and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
| | | | - Luigi Boccuto
- Healthcare Genetics and Genomics Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, 105 Sikes Hall, Clemson, SC 29631, USA
| | - Emidio Scarpellini
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Clinical Nutrition and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
- Correspondence: ; Tel.: +3907-3579-3301; Fax: +3907-3579-3306
| |
Collapse
|
24
|
Mosca A, Abreu Y Abreu AT, Gwee KA, Ianiro G, Tack J, Nguyen TVH, Hill C. The clinical evidence for postbiotics as microbial therapeutics. Gut Microbes 2022; 14:2117508. [PMID: 36184735 PMCID: PMC9542959 DOI: 10.1080/19490976.2022.2117508] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An optimally operating microbiome supports protective, metabolic, and immune functions, but disruptions produce metabolites and toxins which can be involved in many conditions. Probiotics have the potential to manage these. However, their use in vulnerable people is linked to possible safety concerns and maintaining their viability is difficult. Interest in postbiotics is therefore increasing. Postbiotics contain inactivated microbial cells or cell components, thus are more stable and exert similar health benefits to probiotics. To review the evidence for the clinical benefits of postbiotics in highly prevalent conditions and consider future potential areas of benefit. There is growing evidence revealing the diverse clinical benefits of postbiotics in many prevalent conditions. Postbiotics could offer a novel therapeutic approach and may be a safer alternative to probiotics. Establishing interaction mechanisms between postbiotics and commensal microorganisms will improve the understanding of potential clinical benefits and may lead to targeted postbiotic therapy.
Collapse
Affiliation(s)
- Alexis Mosca
- Pediatric Gastroenterology and Nutrition Department, APHP Robert Debré, Paris, France
| | - Ana Teresa Abreu Y Abreu
- Gastroenterologist and Neuro-gastroenterologist, Angeles del Pedregal Hospital, Mexico City, Mexico
| | - Kok Ann Gwee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and Gleneagles Hospital, Singapore
| | - Gianluca Ianiro
- Gastroenterology Unit, Fondazione Policlinico Universitario”A. Gemelli” IRCCS, Rome, Italy
| | - Jan Tack
- Department of Gastroenterology, University Hospitals Leuven, Belgium
| | | | - Colin Hill
- APC Microbiome Institute, University College Cork, Ireland,CONTACT Prof. Colin HILL APC Microbiome Institute, University College Cork, Ireland
| |
Collapse
|
25
|
Wu Z, Su R. Pesticide thiram exposure alters the gut microbial diversity of chickens. Front Microbiol 2022; 13:966224. [PMID: 36160266 PMCID: PMC9493260 DOI: 10.3389/fmicb.2022.966224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Thiram is a major dithiocarbamate pesticide commonly found in polluted field crops, feed, and rivers. Environmental thiram exposure has been demonstrated to cause angiogenesis and osteogenesis disorders in chickens, but information regarding thiram influences on gut microbiota, apoptosis, and autophagy in chickens has been insufficient. Here, we explored the effect of thiram exposure on gut microbiota, apoptosis, and autophagy of chickens. Results demonstrated that thiram exposure impaired the morphology and structure of intestinal and liver tissues. Moreover, thiram exposure also triggered liver apoptosis and autophagy. The gut microbiota in chickens exposed to thiram exhibited a significant decline in alpha diversity, accompanied by significant shifts in taxonomic compositions. Bacterial taxonomic analysis indicated that thiram exposure causes a significant reduction in the levels of eight genera, as well as a significant increase in the levels of two phyla and 10 genera. Among decreased bacterial genera, seven genera even cannot be observed in the thiram-induced chickens. In summary, this study demonstrated that thiram exposure not only dramatically altered the gut microbial diversity and composition but also induced liver apoptosis and autophagy in chickens. Importantly, this study also conveyed a key message that the dysbiosis of gut microbiota may be one of the major pathways for thiram to exert its toxic effects.
Collapse
|
26
|
Therapeutic potential of Short Chain Fatty acid production by gut microbiota in Neurodegenerative disorders. Nutr Res 2022; 106:72-84. [DOI: 10.1016/j.nutres.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
|
27
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
28
|
Li Y, Lan Y, Zhang S, Wang X. Comparative Analysis of Gut Microbiota Between Healthy and Diarrheic Horses. Front Vet Sci 2022; 9:882423. [PMID: 35585860 PMCID: PMC9108932 DOI: 10.3389/fvets.2022.882423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence reveals the importance of gut microbiota in animals for regulating intestinal homeostasis, metabolism, and host health. The gut microbial community has been reported to be closely related to many diseases, but information regarding diarrheic influence on gut microbiota in horses remains scarce. This study investigated and compared gut microbial changes in horses during diarrhea. The results showed that the alpha diversity of gut microbiota in diarrheic horses decreased observably, accompanied by obvious shifts in taxonomic compositions. The dominant bacterial phyla (Firmicutes, Bacteroidetes, Spirochaetes, and Kiritimatiellaeota) and genera (uncultured_bacterium_f_Lachnospiraceae, uncultured_bacterium_f_p-251-o5, Lachnospiraceae_AC2044_group, and Treponema_2) in the healthy and diarrheic horses were same regardless of health status but different in abundances. Compared with the healthy horses, the relative abundances of Planctomycetes, Tenericutes, Firmicutes, Patescibacteria, and Proteobacteria in the diarrheic horses were observably decreased, whereas Bacteroidetes, Verrucomicrobia, and Fibrobacteres were dramatically increased. Moreover, diarrhea also resulted in a significant reduction in the proportions of 31 genera and a significant increase in the proportions of 14 genera. Taken together, this study demonstrated that the gut bacterial diversity and abundance of horses changed significantly during diarrhea. Additionally, these findings also demonstrated that the dysbiosis of gut microbiota may be an important driving factor of diarrhea in horses.
Collapse
|
29
|
Improvement of the Gut Microbiota In Vivo by a Short-Chain Fatty Acids-Producing Strain Lactococcus garvieae CF11. Processes (Basel) 2022. [DOI: 10.3390/pr10030604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Gut microbiota has strong connections with health. Regulating and enhancing gut microbiota and increasing the population of beneficial microorganisms constitutes a new approach to increasing the efficiency of health status. Although it has been shown that Lactococcus can adjust gut microbiota and be beneficial for the host, little is known about whether strains of Lactococcus petauri can improve the gut microbiota. This study focused on the influence of Lactococcus petauri CF11 on the gut microbiome composition and the levels of short-chain fatty acids (SCFAs) in vivo in healthy Sprague Dawley rats. The present results showed that strain CF11 was able to induce a higher amount of fecal acetic acid and propionic acid and enhance species richness. Moreover, strain CF11 improved the gut microbiota community structure. In the experimental group, the genera Oscillospira, Coprococcus, and Ruminococcus, which are reported to be able to produce SCFAs, are significantly increased when compared with the control group (p < 0.05). Finally, the functions of genes revealed that 180 pathways were upregulated or downregulated in comparison with the control group. Among them, the top-five clearly enriched pathways regarding metabolism included porphyrin and chlorophyll metabolism; C5-Branched dibasic acid metabolism; valine, leucine, and isoleucine biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis; and ascorbate and aldarate metabolism. Our data suggest that the SCFAs-producing strain CF11 is a potential probiotic.
Collapse
|
30
|
Guo C, Huo YJ, Li Y, Han Y, Zhou D. Gut-brain axis: Focus on gut metabolites short-chain fatty acids. World J Clin Cases 2022; 10:1754-1763. [PMID: 35317140 PMCID: PMC8891794 DOI: 10.12998/wjcc.v10.i6.1754] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/27/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence supports that the gut microbiome, reconsidered as a new organ in the human body, can not only affect the local gut, but also communicate with the brain via multiple pathways related to neuroendocrine, immune, and neural pathways, thereby proposing the new concept of the microbiome-gut-brain (MGB) axis. Recently, the role of short-chain fatty acids (SCFAs), which are the main anaerobic fermented metabolites of the gut microbiota in the MGB axis, has garnered significant attention. SCFAs are involved in a broad range of central neurological diseases, including neurodegenerative diseases, cerebral vascular diseases, epilepsy, neuroimmune inflammatory diseases, and mood disorders. However, the underlying mechanism of SCFA-related distant organ crosstalk is yet to be elucidated. Herein, we summarize current knowledge regarding interactions between SCFAs and the MGB axis, as well as their protective effects against central neurological diseases.
Collapse
Affiliation(s)
- Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Disease, Shanghai 200032, China
| |
Collapse
|
31
|
Zhu Y, Li Y, Zhang Q, Song Y, Wang L, Zhu Z. Interactions Between Intestinal Microbiota and Neural Mitochondria: A New Perspective on Communicating Pathway From Gut to Brain. Front Microbiol 2022; 13:798917. [PMID: 35283843 PMCID: PMC8908256 DOI: 10.3389/fmicb.2022.798917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies shown that neurological diseases are associated with neural mitochondrial dysfunctions and microbiome composition alterations. Since mitochondria emerged from bacterial ancestors during endosymbiosis, mitochondria, and bacteria had analogous genomic characteristics, similar bioactive compounds and comparable energy metabolism pathways. Therefore, it is necessary to rationalize the interactions of intestinal microbiota with neural mitochondria. Recent studies have identified neural mitochondrial dysfunction as a critical pathogenic factor for the onset and progress of multiple neurological disorders, in which the non-negligible role of altered gut flora composition was increasingly noticed. Here, we proposed a new perspective of intestinal microbiota – neural mitochondria interaction as a communicating channel from gut to brain, which could help to extend the vision of gut-brain axis regulation and provide additional research directions on treatment and prevention of responsive neurological disorders.
Collapse
Affiliation(s)
- Yao Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Qiang Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Liang Wang,
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Zuobin Zhu,
| |
Collapse
|
32
|
Lifetime Physical Activity is Associated with Gut Bacteria and Brain Health in People with Multiple Sclerosis: Focus on Physical Activity Intensity. Mult Scler Relat Disord 2022; 59:103639. [DOI: 10.1016/j.msard.2022.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
|
33
|
Liu C, Yang SY, Wang L, Zhou F. The gut microbiome: implications for neurogenesis and neurological diseases. Neural Regen Res 2022; 17:53-58. [PMID: 34100427 PMCID: PMC8451566 DOI: 10.4103/1673-5374.315227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is an increasing recognition of the strong links between the gut microbiome and the brain, and there is persuasive evidence that the gut microbiome plays a role in a variety of physiological processes in the central nervous system. This review summarizes findings that gut microbial composition alterations are linked to hippocampal neurogenesis, as well as the possible mechanisms of action; the existing literature suggests that microbiota influence neurogenic processes, which can result in neurological disorders. We consider this evidence from the perspectives of neuroinflammation, microbial-derived metabolites, neurotrophins, and neurotransmitters. Based on the existing research, we propose that the administration of probiotics can normalize the gut microbiome. This could therefore also represent a promising treatment strategy to counteract neurological impairment.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan, China
| | - Shang-Yu Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan, China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
34
|
Scarpellini E, Rinninella E, Basilico M, Colomier E, Rasetti C, Larussa T, Santori P, Abenavoli L. From Pre- and Probiotics to Post-Biotics: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:37. [PMID: 35010297 PMCID: PMC8750841 DOI: 10.3390/ijerph19010037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS gut microbiota (GM) is a complex ecosystem containing bacteria, viruses, fungi, and yeasts. It has several functions in the human body ranging from immunomodulation to metabolic. GM derangement is called dysbiosis and is involved in several host diseases. Pre-, probiotics, and symbiotics (PRE-PRO-SYMB) have been extensively developed and studied for GM re-modulation. Herein, we review the literature data regarding the new concept of postbiotics, starting from PRE-PRO-SYMB. METHODS we conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials, and case series using the following keywords and acronyms and their associations: gut microbiota, prebiotics, probiotics, symbiotic, and postbiotics. RESULTS postbiotics account for PRO components and metabolic products able to beneficially affect host health and GM. The deeper the knowledge about them, the greater their possible uses: the prevention and treatment of atopic, respiratory tract, and inflammatory bowel diseases. CONCLUSIONS better knowledge about postbiotics can be useful for the prevention and treatment of several human body diseases, alone or as an add-on to PRE-PRO-SYMB.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
- TARGID, KU Leuven, 3000 Leuven, Belgium
| | - Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Martina Basilico
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | | | - Carlo Rasetti
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Tiziana Larussa
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Pierangelo Santori
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
35
|
Kaur S, Thukral SK, Kaur P, Samota MK. Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Sun Y, Zhang Z, Cheng L, Zhang X, Liu Y, Zhang R, Weng P, Wu Z. Polysaccharides confer benefits in immune regulation and multiple sclerosis by interacting with gut microbiota. Food Res Int 2021; 149:110675. [PMID: 34600677 DOI: 10.1016/j.foodres.2021.110675] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pharmacological and clinical studies have consistently demonstrated that polysaccharides exhibit great potential on immune regulation. Polysaccharides can interact directly or indirectly with the immune system, triggering cell-cell communication and molecular recognition, leading to immunostimulatory responses. Gut microbiota is adept at foraging polysaccharides as energy sources and confers benefits in the context of immunity and chronic autoimmune disease, such as multiple sclerosis. A compelling set of interconnectedness between the gut microbiota, natural polysaccharides, and immune regulation has emerged. In this review, we highlighted the available avenues supporting the existence of these interactions, with a focus on cytokines-mediated and SCFAs-mediated pathways. Additionally, the neuroimmune mechanisms for gut microbiota communication with the brain in multiple sclerosis are also discussed, which will lay the ground for ameliorate multiple sclerosis via polysaccharide intervention.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhepeng Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Lu Cheng
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
37
|
Couloume L, Michel L. New concepts on immunology of Multiple Sclerosis. Presse Med 2021; 50:104072. [PMID: 34547375 DOI: 10.1016/j.lpm.2021.104072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/15/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and immune-driven demyelinating disease of the central nervous system (CNS). During the past decade, major advances have been made to understand the development of MS as well as its progressive stage. Here, we discuss some emerging concepts on immunology of MS, including the growing interest in the involvement of gut microbiota and the recent pathological concepts on the progression phase. Finally, we present some immuno-tools recently available that contribute to better understand diversity and function of the immune system.
Collapse
Affiliation(s)
| | - Laure Michel
- Univ Rennes, CHU Rennes, Neurology, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), F-35000 Rennes, France; Unité Mixte de Recherche (UMR) S1236, INSERM, University of Rennes, Etablissement Français du Sang, Rennes, France; Suivi Immunologique des Thérapeutiques Innovantes, Centre Hospitalier Universitaire de Rennes, Etablissement Français du Sang, Rennes, France.
| |
Collapse
|
38
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
39
|
Olsson A, Gustavsen S, Langkilde AR, Hansen TH, Sellebjerg F, Bach Søndergaard H, Oturai AB. Circulating levels of tight junction proteins in multiple sclerosis: Association with inflammation and disease activity before and after disease modifying therapy. Mult Scler Relat Disord 2021; 54:103136. [PMID: 34247104 DOI: 10.1016/j.msard.2021.103136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Tight junction proteins contribute to maintenance of epithelial and endothelial barriers such as the intestinal barrier and the blood brain barrier (BBB). Increased permeability of these barriers has been linked to disease activity in MS and there is currently a lack of easily accessible biomarkers predicting disease activity in MS. AIM To investigate whether levels of circulating tight junction proteins occludin and zonula occludens-1 (ZO-1) are associated with biomarkers of inflammation and disease activity; and to determine whether they could serve as clinical biomarkers. METHODS We prospectively included 72 newly diagnosed patients with relapsing remitting MS or clinically isolated syndrome with no prior disease modifying therapy (DMT) use and 50 healthy controls (HCs). Patients were followed with blood samples, 3 tesla MRI, and clinical evaluation for 12 months. Occludin, ZO-1, calprotectin and soluble urokinase-type plasminogen activator receptor (suPAR) were measured by ELISA; serum neurofilament light (NfL) and IL-6 by single-molecule array (SIMOA). The mRNA expression of IFNG, IL1R1, IL10, IL1B, ARG1 and TNF was measured by quantitative real time polymerase chain reaction (qPCR) in whole blood. RESULTS Plasma occludin levels were higher in MS patients compared with HCs. After 12 months on DMT, occludin levels were reduced by approximately 25% irrespective of 1st or 2nd line DMT (p<0.001). Furthermore, NfL and calprotectin levels were significantly reduced by 31% and 29%, respectively. Occludin and ZO-1 did not correlate with biomarkers of inflammation and did not predict disease activity at baseline or after 12 months. CONCLUSIONS Higher levels of occludin suggest an increased permeability of the BBB and/or the intestinal barrier in MS patients. The reduction of occludin after 12 months on DMTs might reflect repair of these barriers upon treatment. However, plasma levels of ZO-1 and occludin could not predict clinical or MRI disease activity as determined by regression and ROC-curve analysis. Our results do not indicate a clear clinically relevant role for circulating tight junction proteins as biomarkers of disease activity in MS and further investigations in larger cohorts are needed to clarify this issue.
Collapse
Affiliation(s)
- A Olsson
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - S Gustavsen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - A R Langkilde
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - T H Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - H Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - A B Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
40
|
Xi L, Song Y, Qin X, Han J, Chang YF. Microbiome Analysis Reveals the Dynamic Alternations in Gut Microbiota of Diarrheal Giraffa camelopardalis. Front Vet Sci 2021; 8:649372. [PMID: 34124218 PMCID: PMC8192810 DOI: 10.3389/fvets.2021.649372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023] Open
Abstract
The ruminant gut microbial community's importance has been widely acknowledged due to its positive roles in physiology, metabolism, and health maintenance. Diarrhea has been demonstrated to cause adverse effects on gastrointestinal health and intestinal microecosystem, but studies regarding diarrheal influence on gut microbiota in Giraffa camelopardalis have been insufficient to date. Here, this study was performed to investigate and compare gut microbial composition and variability between healthy and diarrheic G. camelopardalis. The results showed that the gut microbial community of diarrheal G. camelopardalis displayed a significant decrease in alpha diversity, accompanied by distinct alterations in taxonomic compositions. Bacterial taxonomic analysis indicated that the dominant bacterial phyla (Proteobacteria, Bacteroidetes, and Firmicutes) and genera (Escherichia Shigella and Acinetobacter) of both groups were the same but different in relative abundance. Specifically, the proportion of Proteobacteria in the diarrheal G. camelopardalis was increased as compared with healthy populations, whereas Bacteroidetes, Firmicutes, Tenericutes, and Spirochaetes were significantly decreased. Moreover, the relative abundance of one bacterial genus (Comamonas) dramatically increased in diarrheic G. camelopardalis, whereas the relative richness of 18 bacterial genera decreased compared with healthy populations. Among them, two bacterial genera (Ruminiclostridium_5 and Blautia) cannot be detected in the gut bacterial community of diarrheal G. camelopardalis. In summary, this study demonstrated that diarrhea could significantly change the gut microbial composition and diversity in G. camelopardalis by increasing the proportion of pathogenic to beneficial bacteria. Moreover, this study first characterized the distribution of gut microbial communities in G. camelopardalis with different health states. It contributed to providing a theoretical basis for establishing a prevention and treatment system for G. camelopardalis diarrhea.
Collapse
Affiliation(s)
- Li Xi
- Department of Animal Science, Shangqiu Normal University, Shangqiu, China.,Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, China
| | - Yumin Song
- Linyi Agricultural Science and Technology Career Academy, Linyi, China
| | - Xinxi Qin
- Department of Animal Science, Shangqiu Normal University, Shangqiu, China
| | - Jincheng Han
- Department of Animal Science, Shangqiu Normal University, Shangqiu, China.,Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, United States
| |
Collapse
|
41
|
Mirzaei R, Bouzari B, Hosseini-Fard SR, Mazaheri M, Ahmadyousefi Y, Abdi M, Jalalifar S, Karimitabar Z, Teimoori A, Keyvani H, Zamani F, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139:111661. [PMID: 34243604 DOI: 10.1016/j.biopha.2021.111661] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
During the past decade, accumulating evidence from the research highlights the suggested effects of bacterial communities of the human gut microbiota and their metabolites on health and disease. In this regard, microbiota-derived metabolites and their receptors, beyond the immune system, maintain metabolism homeostasis, which is essential to maintain the host's health by balancing the utilization and intake of nutrients. It has been shown that gut bacterial dysbiosis can cause pathology and altered bacterial metabolites' formation, resulting in dysregulation of the immune system and metabolism. The short-chain fatty acids (SCFAs), such as butyrate, acetate, and succinate, are produced due to the fermentation process of bacteria in the gut. It has been noted remodeling in the gut microbiota metabolites associated with the pathophysiology of several neurological disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, stress, anxiety, depression, autism, vascular dementia, schizophrenia, stroke, and neuromyelitis optica spectrum disorders, among others. This review will discuss the current evidence from the most significant studies dealing with some SCFAs from gut microbial metabolism with selected neurological disorders.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mazaheri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimitabar
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Olsson A, Gustavsen S, Nguyen TD, Nyman M, Langkilde AR, Hansen TH, Sellebjerg F, Oturai AB, Bach Søndergaard H. Serum Short-Chain Fatty Acids and Associations With Inflammation in Newly Diagnosed Patients With Multiple Sclerosis and Healthy Controls. Front Immunol 2021; 12:661493. [PMID: 34025661 PMCID: PMC8134701 DOI: 10.3389/fimmu.2021.661493] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease characterized by demyelination and neuroaxonal damage in the central nervous system. The etiology is complex and is still not fully understood. Accumulating evidence suggests that our gut microbiota and its metabolites influence the MS pathogenesis. Short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate, are metabolites produced by gut microbiota through fermentation of indigestible carbohydrates. SCFAs and kynurenine metabolites have been shown to have important immunomodulatory properties, and propionate supplementation in MS patients has been associated with long-term clinical improvement. However, the underlying mechanisms of action and its importance in MS remain incompletely understood. We analyzed serum levels of SCFAs and performed targeted metabolomics in relation to biomarkers of inflammation, and clinical and MRI measures in newly diagnosed patients with relapsing-remitting MS before their first disease modifying therapy and healthy controls (HCs). We demonstrated that serum acetate levels were nominally reduced in MS patients compared with HCs. The ratios of acetate/butyrate and acetate/(propionate + butyrate) were significantly lower in MS patients in a multivariate analysis (orthogonal partial least squares discriminant analysis; OPLS-DA). The mentioned ratios and acetate levels correlated negatively with the pro-inflammatory biomarker IFNG, indicating an inverse relation between acetate and inflammation. In contrast, the proportion of butyrate was found higher in MS patients in the multivariate analysis, and both butyrate and valerate correlated positively with proinflammatory cytokines (IFNG and TNF), suggesting complex bidirectional regulatory properties of SCFAs. Branched SCFAs were inversely correlated with clinical disability, at a nominal significance level. Otherwise SCFAs did not correlate with clinical variables or MRI measures. There were signs of an alteration of the kynurenine pathway in MS, and butyrate was positively correlated with the immunomodulatory metabolite 3-hydroxyanthranilic acid. Other variables that influenced the separation between MS and HCs were NfL, ARG1 and IL1R1, D-ribose 5-phosphate, pantothenic acid and D-glucuronic acid. In conclusion, we provide novel results in this rapidly evolving field, emphasizing the complexity of the interactions between SCFAs and inflammation; therefore, further studies are required to clarify these issues before supplementation of SCFAs can be widely recommended.
Collapse
Affiliation(s)
- Anna Olsson
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Stefan Gustavsen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Thao Duy Nguyen
- Department of Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, Lund, Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, Lund, Sweden
| | - Annika R Langkilde
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tue H Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Annette B Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
43
|
B Cells and Microbiota in Autoimmunity. Int J Mol Sci 2021; 22:ijms22094846. [PMID: 34063669 PMCID: PMC8125537 DOI: 10.3390/ijms22094846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Trillions of microorganisms inhabit the mucosal membranes maintaining a symbiotic relationship with the host's immune system. B cells are key players in this relationship because activated and differentiated B cells produce secretory immunoglobulin A (sIgA), which binds commensals to preserve a healthy microbial ecosystem. Mounting evidence shows that changes in the function and composition of the gut microbiota are associated with several autoimmune diseases suggesting that an imbalanced or dysbiotic microbiota contributes to autoimmune inflammation. Bacteria within the gut mucosa may modulate autoimmune inflammation through different mechanisms from commensals ability to induce B-cell clones that cross-react with host antigens or through regulation of B-cell subsets' capacity to produce cytokines. Commensal signals in the gut instigate the differentiation of IL-10 producing B cells and IL-10 producing IgA+ plasma cells that recirculate and exert regulatory functions. While the origin of the dysbiosis in autoimmunity is unclear, compelling evidence shows that specific species have a remarkable influence in shaping the inflammatory immune response. Further insight is necessary to dissect the complex interaction between microorganisms, genes, and the immune system. In this review, we will discuss the bidirectional interaction between commensals and B-cell responses in the context of autoimmune inflammation.
Collapse
|
44
|
Carey RA, Montag D. Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc Med 2021; 7:e000930. [PMID: 33981447 PMCID: PMC8061837 DOI: 10.1136/bmjsem-2020-000930] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The human body is host to a multitude of bacteria, fungi, viruses and other species in the intestine, collectively known as the microbiota. Dietary carbohydrates which bypass digestion and absorption are broken down and fermented by the microbiota to produce short-chain fatty acids (SCFAs). Previous research has established the role of SCFAs in the control of human metabolic pathways. In this review, we evaluate SCFAs as a metabolic regulator and how they might improve endurance performance in athletes. By looking at research conducted in animal models, we identify several pathways downstream of SCFAs, either directly modulating metabolic pathways through second messenger pathways or through neuronal pathways, that contribute to energy utilisation. These pathways contribute to efficient energy metabolism and are thus key to maximising substrate utilisation in endurance exercise. Future research may prove the usefulness of targeted dietary interventions allowing athletes to maximise their performance in competition.
Collapse
Affiliation(s)
- Ryan A Carey
- Global Public Health, Queen Mary University of London, London, UK
| | - Doreen Montag
- Global Public Health, Queen Mary University of London, London, UK
| |
Collapse
|
45
|
Ratajczak W, Mizerski A, Rył A, Słojewski M, Sipak O, Piasecka M, Laszczyńska M. Alterations in fecal short chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) in men with benign prostatic hyperplasia (BPH) and metabolic syndrome (MetS). Aging (Albany NY) 2021; 13:10934-10954. [PMID: 33847600 PMCID: PMC8109139 DOI: 10.18632/aging.202968] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Gut microbiome-derived short-chain fatty acids (SCFAs) emerge in the process of fermentation of polysaccharides that resist digestion (dietary fiber, resistant starch). SCFAs have a very high immunomodulatory potential and ensure local homeostasis of the intestinal epithelium, which helps maintain the intestinal barrier. We analyzed the association between stool SCFAs levels acetic acid (C 2:0), propionic acid (C 3:0), isobutyric acid (C 4:0i), butyric acid (C 4:0n), isovaleric acid (C 5:0i) valeric acid (C 5:0n), isocaproic acid (C 6:0i), and caproic acid (C 6:0n)) in aging man with benign prostatic hyperplasia (BPH) and healthy controls. The study involved 183 men (with BPH, n = 103; healthy controls, n = 80). We assessed the content of SCFAs in the stool samples of the study participants using gas chromatography. The levels of branched SCFAs (branched-chain fatty acids, BCFAs): isobutyric acid (C4:0i) (p = 0.008) and isovaleric acid (C5:0i) (p < 0.001) were significantly higher in patients with BPH than in the control group. In healthy participants isocaproic acid (C6:0i) predominated (p = 0.038). We also analyzed the relationship between stool SCFA levels and serum diagnostic parameters for MetS. We noticed a relationship between C3:0 and serum lipid parameters (mainly triglycerides) in both healthy individuals and patients with BPH with regard to MetS. Moreover we noticed relationship between C4:0i, C5:0i and C6:0i and MetS in both groups. Our research results suggest that metabolites of the intestinal microflora (SCFAs) may indicate the proper function of the intestines in aging men, and increased BCFAs levels are associated with the presence of BPH.
Collapse
Affiliation(s)
- Weronika Ratajczak
- Department of Histology and Development Biology, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland.,Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Arnold Mizerski
- Department of General and Gastroentereological Surgery, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, Szczecin 70-111, Poland
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Małgorzata Piasecka
- Department of Histology and Development Biology, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Maria Laszczyńska
- Department of Histology and Development Biology, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| |
Collapse
|
46
|
Zhang CY, Tan ZJ. Preliminary study on theory of spleen injury caused by exogenous cold and dampness based on intestinal microecology. Shijie Huaren Xiaohua Zazhi 2021; 29:325-331. [DOI: 10.11569/wcjd.v29.i7.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exogenous cold and dampness is most likely to damage spleen Yang, which affects the spleen's function of governing transportation and dispersing essence. Human intestinal flora is widely involved in the regulation of gastrointestinal digestive functions. Therefore, based on the general understanding of the correlation between intestinal microecology and the spleen in modern research, this paper discusses the response mechanism of intestinal microflora to random exposure to cold and dampness environment in the process of gastrointestinal digestive dysfunction, and suggests that intestinal microecology imbalance may be one of the mechanisms of spleen injury caused by exogenous cold and dampness in traditional Chinese medicine.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhou-Jin Tan
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
47
|
Becker A, Abuazab M, Schwiertz A, Walter S, Faßbender KC, Fousse M, Unger MM. Short-chain fatty acids and intestinal inflammation in multiple sclerosis: modulation of female susceptibility by microbial products? AUTOIMMUNITY HIGHLIGHTS 2021; 12:7. [PMID: 33827656 PMCID: PMC8028206 DOI: 10.1186/s13317-021-00149-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune-mediated disease of the central nervous system. Experimental data suggest a role of intestinal microbiota and microbial products such as short-chain fatty acids (SCFAs) in the pathogenesis of MS. A recent clinical study reported beneficial effects (mediated by immunomodulatory mechanisms) after oral administration of the SCFA propionate in MS patients. Based on available evidence, we investigated whether SCFAs and the fecal inflammation marker calprotectin are altered in MS. METHODS 76 subjects (41 patients with relapsing-remitting MS and 35 age-matched controls) were investigated in this case-control study. All subjects underwent clinical assessment with established clinical scales and provided fecal samples for a quantitative analysis of fecal SCFA and fecal calprotectin concentrations. Fecal markers were compared between MS patients and controls, and were analyzed for an association with demographic as well as clinical parameters. RESULTS Median fecal calprotectin concentrations were within normal range in both groups without any group-specific differences. Fecal SCFA concentrations showed a non-significant reduction in MS patients compared to healthy subjects. Female subjects showed significantly reduced SCFA concentrations compared to male subjects. CONCLUSIONS In our cohort of MS patients, we found no evidence of an active intestinal inflammation. Yet, the vast majority of the investigated MS patients was under immunotherapy which might have affected the outcome measures. The sex-associated difference in fecal SCFA concentrations might at least partially explain female predominance in MS. Large-scale longitudinal studies including drug-naïve MS patients are required to determine the role of SCFAs in MS and to distinguish between disease-immanent effects and those caused by the therapeutic regime.
Collapse
Affiliation(s)
- Anouck Becker
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany.
| | - Mosab Abuazab
- Klinik für Neurologie, Gesundheitszentrum Glantal, Liebfrauenberg 32, 55590, Meisenheim, Germany
| | | | - Silke Walter
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany.,Neuroscience Unit, Faculty of Medicine, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Klaus C Faßbender
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Mathias Fousse
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Marcus M Unger
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| |
Collapse
|
48
|
Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Sci Rep 2021; 11:5244. [PMID: 33664396 PMCID: PMC7933417 DOI: 10.1038/s41598-021-84881-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Altered composition of gut bacteria and changes to the production of their bioactive metabolites, the short-chain fatty acids (SCFAs), have been implicated in the development of multiple sclerosis (MS). However, the immunomodulatory actions of SCFAs and intermediaries in their ability to influence MS pathogenesis are uncertain. In this study, levels of serum SCFAs were correlated with immune cell abundance and phenotype as well as with other relevant serum factors in blood samples taken at first presentation of Clinically Isolated Syndrome (CIS; an early form of MS) or MS and compared to healthy controls. There was a small but significant reduction in propionate levels in the serum of patients with CIS or MS compared with healthy controls. The frequencies of circulating T follicular regulatory cells and T follicular helper cells were significantly positively correlated with serum levels of propionate. Levels of butyrate associated positively with frequencies of IL-10-producing B-cells and negatively with frequencies of class-switched memory B-cells. TNF production by polyclonally-activated B-cells correlated negatively with acetate levels. Levels of serum SCFAs associated with changes in circulating immune cells and biomarkers implicated in the development of MS.
Collapse
|
49
|
Li H, Ma L, Li Z, Yin J, Tan B, Chen J, Jiang Q, Ma X. Evolution of the Gut Microbiota and Its Fermentation Characteristics of Ningxiang Pigs at the Young Stage. Animals (Basel) 2021; 11:ani11030638. [PMID: 33673705 PMCID: PMC7997423 DOI: 10.3390/ani11030638] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The current study described the evolution of the gut microbiota of an indigenous pig breeds, Ningxiang pigs (NXP), from one week before weaning to the end of nursery. The results showed that dietary factors mainly drove the evolution of the microbial community of NXP. Our results contributed to a better understanding of the evolutionary characteristics and influencing factors of the gut microbiota of indigenous pig breeds. Abstract The current study aimed to investigate the evolution of gut microbiota and its influencing factors for NXP in youth. The results showed that Shannon index increased from d 21 to d 28 whereas the ACE index increased from d 21 until d 60. Firmicutes, mainly Lactobacillus dominated on d 21. The Bacteroides and Spirochetes showed highest relative abundance on d 28. Fiber-degrading bacteria, mainly Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Muribaculaceae, and Oscillospiraceae_UCG−002, dominated the microbial communities at d 28 and d 35. The microbial communities at d 60 and d 75 contained more Clostridium_sensu_stricto_1, Terrisporobacter and Oscillospiraceae_UCG−005 than other ages, which had significantly positive correlations with acetate and total SCFAs concentration. In conclusion, the evolution of gut microbiota was mainly adapted to the change of dietary factors during NXP growth. The response of fiber-degrading bacteria at different stages may help NXP better adapt to plant-derived feeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaokang Ma
- Correspondence: ; Tel.: +86-0731-84619706; Fax: +86-0731-84612685
| |
Collapse
|
50
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|