1
|
Park Y, Aycan O, Kadem L. Numerical investigation of the flow induced by a transcatheter intra-aortic entrainment pump. Comput Methods Biomech Biomed Engin 2025:1-14. [PMID: 40014031 DOI: 10.1080/10255842.2025.2471517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
This study evaluates the fluid dynamics inside and outside transcatheter blood pump positioned in the aorta. We focus on the pump's impact on blood component damage and arterial wall stress. CFD simulations were performed for rotational speeds ranging from 6000 to 15000 rpm, with a blood flow rate of 1.6 L/min. Results show that significant blood damage may occur at speeds as low as 12000 rpm, and the pump's outflow jet induces elevated wall shear stress, potentially leading to arterial aneurysms. These findings suggest the need for further design improvements to reduce risks when used in prolonged or transplant-related applications.
Collapse
Affiliation(s)
- Yeojin Park
- Laboratory of Cardiovascular Fluid Dynamics, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| | - Osman Aycan
- Laboratory of Cardiovascular Fluid Dynamics, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
- Department of Mechanical Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Türkiye
| | - Lyes Kadem
- Laboratory of Cardiovascular Fluid Dynamics, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Crone V, Hahne M, Knüppel F, Wurm FH, Torner B. Dynamic VAD simulations: Performing accurate simulations of ventricular assist devices in interaction with the cardiovascular system. Int J Artif Organs 2024; 47:624-632. [PMID: 39238170 PMCID: PMC11656629 DOI: 10.1177/03913988241268067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024]
Abstract
Medical advancements, particularly in ventricular assist devices (VADs), have notably advanced heart failure (HF) treatment, improving patient outcomes. However, challenges such as adverse events (strokes, bleeding and thrombosis) persist. Computational fluid dynamics (CFD) simulations are instrumental in understanding VAD flow dynamics and the associated flow-induced adverse events resulting from non-physiological flow conditions in the VAD.This study aims to validate critical CFD simulation parameters for accurate VAD simulations interacting with the cardiovascular system, building upon the groundwork laid by Hahne et al. A bidirectional coupling technique was used to model dynamic (pulsatile) flow conditions of the VAD CFD interacting with the cardiovascular system. Mesh size, time steps and simulation method (URANS, LES) were systematically varied to evaluate their impact on the dynamic pump performance (dynamic H - Q curve) of the HeartMate 3, aiming to find the optimal simulation configuration for accurately reproduce the dynamic H - Q curve. The new Overlapping Ratio (OR) method was developed and applied to quantify dynamic H - Q curves.In particular, mesh and time step sizes were found to have the greatest influence on the calculated pump performance. Therefore, small time steps and large mesh sizes are recommended to obtain accurate dynamic H - Q curves. On the other hand, the influence of the simulation method was not significant in this study. This study contributes to advancing VAD simulations, ultimately enhancing clinical efficacy and patient outcomes.
Collapse
Affiliation(s)
- Vincenz Crone
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Mario Hahne
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Finn Knüppel
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | | | - Benjamin Torner
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Wong ZY, Azimi M, Khamooshi M, Wickramarachchi A, Burrell A, Gregory SD. The impact of small movements with dual lumen cannulae during venovenous extracorporeal membrane oxygenation: A computational fluid dynamics analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108186. [PMID: 38692252 DOI: 10.1016/j.cmpb.2024.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Venovenous Extracorporeal Membrane Oxygenation (VV ECMO) provides respiratory support to patients with severe lung disease failing conventional medical therapy. An essential component of the ECMO circuit are the cannulas, which drain and return blood into the body. Despite being anchored to the patient to prevent accidental removal, minor cannula movements are common during ECMO. The clinical and haemodynamic consequences of these small movements are currently unclear. This study investigated the risk of thrombosis and recirculation caused by small movements of a dual lumen cannula (DLC) in an adult using computational fluid dynamics. METHODS The 3D model of an AVALON Elite DLC (27 Fr) and a patient-specific vena cava and right atrium were generated for an adult patient on ECMO. The baseline cannula position was generated where the return jet enters the tricuspid valve. Alternative cannula positions were obtained by shifting the cannula 5 and 15 mm towards inferior (IVC) and superior (SVC) vena cava, respectively. ECMO settings of 4 L/min blood flow and pulsatile flow at SVC and IVC were applied. Recirculation was defined as a scalar value indicating the infused oxygenated blood inside the drainage lumen, while thrombosis risk was evaluated by shear stress, stagnation volume, washout, and turbulent kinetic energy. RESULTS Recirculation for all models was less than 3.1 %. DLC movements between -5 to 15 mm increased shear stress and turbulence kinetic energy up to 24.7 % and 11.8 %, respectively, compared to the baseline cannula position leading to a higher predicted thrombosis risk. All models obtained a complete washout after nine seconds except for when the cannula migrated 15 mm into the SVC, indicating persisting stasis and circulating zones. CONCLUSION In conclusion, small DLC movements were not associated with an increased risk of recirculation. However, they may increase the risk of thrombosis due to increased shear rate, turbulence, and slower washout of blood. Developing effective cannula securement devices may reduce this risk.
Collapse
Affiliation(s)
- Zhun Yung Wong
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| | - Marjan Azimi
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.
| | - Mehrdad Khamooshi
- School of Mechanical, Medical and Process Engineering and the Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Avishka Wickramarachchi
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| | - Aidan Burrell
- Department of Intensive Care and Hyperbaric Medicine, Alfred Hospital, Melbourne, Australia; ANZ Intensive Care Research Centre (ANZIC-RC), Dept. of Epidemiology and Preventive Medicine, Monash University, Australia
| | - Shaun D Gregory
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia; School of Mechanical, Medical and Process Engineering and the Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Gao X, Xu Z, Chen C, Hao P, He F, Zhang X. Full-scale numerical simulation of hemodynamics based on left ventricular assist device. Front Physiol 2023; 14:1192610. [PMID: 37304828 PMCID: PMC10248007 DOI: 10.3389/fphys.2023.1192610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Ventricular assist devices have been widely used and accepted to treat patients with end-stage heart failure. The role of VAD is to improve circulatory dysfunction or temporarily maintain the circulatory status of patients. In order to be closer to the medical practice, a multi-Domain model of the left ventricular coupled axial flow artificial heart was considered to study the effect of its hemodynamics on the aorta. Because whether LVAD itself was connected between the left ventricular apex and the ascending aorta by catheter in the loop was not very important for the analysis of simulation results, on the premise of ensuring the multi-Domain simulation, the simulation data of the import and export ends of LVAD were imported to simplify the model. In this paper, the hemodynamic parameters in the ascending aorta, such as blood flow velocity vector, wall shear stress distribution, vorticity current intensity, vorticity flow generation, etc., have been calculated. The numerical conclusion of this study showed the vorticity intensity under LVAD was significantly higher than that under patients' conditions and the overall condition is similar to that of a healthy ventricular spin, which can improve heart failure patients' condition while minimizing other pitfalls. In addition, high velocity blood flow during left ventricular assist surgery is mainly concentrated near the lining of the ascending aorta lumen. What's more, the paper proposes to use Q criterion to determine the generation of vorticity flow. The Q criterion of LVAD is much higher than that of patients with heart failure, and the closer the LVAD is to the wall of the ascending aorta, the greater the Q criterion is. All these are beneficial to the effectiveness of LVAD in the treatment of heart failure patients and provide clinical suggestions for the LVAD implantation in clinical practice.
Collapse
Affiliation(s)
- Xinyi Gao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Zhike Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Chenghan Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Pengfei Hao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
- Tsinghua University (School of Materials Science and Engineering)—AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and Anti-Icing, Beijing, China
| | - Feng He
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Xiwen Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Xiang WJ, Huo JD, Wu WT, Wu P. Influence of Inlet Boundary Conditions on the Prediction of Flow Field and Hemolysis in Blood Pumps Using Large-Eddy Simulation. Bioengineering (Basel) 2023; 10:bioengineering10020274. [PMID: 36829767 PMCID: PMC9952191 DOI: 10.3390/bioengineering10020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Inlet boundary conditions (BC) are one of the uncertainties which may influence the prediction of flow field and hemolysis in blood pumps. This study investigated the influence of inlet BC, including the length of inlet pipe, type of inlet BC (mass flow rate or experimental velocity profile) and turbulent intensity (no perturbation, 5%, 10%, 20%) on the prediction of flow field and hemolysis of a benchmark centrifugal blood pump (the FDA blood pump) and a commercial axial blood pump (Heartmate II), using large-eddy simulation. The results show that the influence of boundary conditions on integral pump performance metrics, including pressure head and hemolysis, is negligible. The influence on local flow structures, such as velocity distributions, mainly existed in the inlet. For the centrifugal FDA blood pump, the influence of type of inlet BC and inlet position on velocity distributions can also be observed at the diffuser. Overall, the effects of position of inlet and type of inlet BC need to be considered if local flow structures are the focus, while the influence of turbulent intensity is negligible and need not be accounted for during numerical simulations of blood pumps.
Collapse
Affiliation(s)
- Wen-Jing Xiang
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215000, China
| | - Jia-Dong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215000, China
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210095, China
- Correspondence: (W.-T.W.); (P.W.)
| | - Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215000, China
- Correspondence: (W.-T.W.); (P.W.)
| |
Collapse
|
6
|
Torner B, Frank D, Grundmann S, Wurm FH. Flow simulation-based particle swarm optimization for developing improved hemolysis models. Biomech Model Mechanobiol 2022; 22:401-416. [PMID: 36441414 PMCID: PMC10097800 DOI: 10.1007/s10237-022-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022]
Abstract
AbstractThe improvement and development of blood-contacting devices, such as mechanical circulatory support systems, is a life saving endeavor. These devices must be designed in such a way that they ensure the highest hemocompatibility. Therefore, in-silico trials (flow simulations) offer a quick and cost-effective way to analyze and optimize the hemocompatibility and performance of medical devices. In that regard, the prediction of blood trauma, such as hemolysis, is the key element to ensure the hemocompatibility of a device. But, despite decades of research related to numerical hemolysis models, their accuracy and reliability leaves much to be desired. This study proposes a novel optimization path, which is capable of improving existing models and aid in the development of future hemolysis models. First, flow simulations of three, turbulent blood flow test cases (capillary tube, FDA nozzle, FDA pump) were performed and hemolysis was numerically predicted by the widely-applied stress-based hemolysis models. Afterward, a multiple-objective particles swarm optimization (MOPSO) was performed to tie the physiological stresses of the simulated flow field to the measured hemolysis using an equivalent of over one million numerically determined hemolysis predictions. The results show that our optimization is capable of improving upon existing hemolysis models. However, it also unveils some deficiencies and limits of hemolysis prediction with stress-based models, which will need to be addressed in order to improve its reliability.
Collapse
|
7
|
Li C, Qiu H, Ma J, Wang Y. Numerical study on the performance of centrifugal blood pump with superhydrophobic surface. Int J Artif Organs 2022; 45:1028-1036. [PMID: 36028949 DOI: 10.1177/03913988221114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM In order to reduce the blood damage of an artificial heart pump and optimize its hydraulic performance, a centrifugal blood pump with superhydrophobic characteristics is proposed in this study. METHODS To study the influence of superhydrophobic surface characteristics on the performance of centrifugal blood pumps, the Navier slip model is used to simulate the slip characteristics of superhydrophobic surfaces, which is realized by the user defined function of ANSYS fluent. The user defined functions with different values of slip length are verified by two benchmark solutions of laminar flow and turbulence in the pipeline. The blood pump model adopts the designed centrifugal blood pump, and its head, hydraulic efficiency and hemolysis index are calculated. The Navier slip boundary condition (a constant slip-length of 50 μm) is applied to the walls of the blood pump impeller and a volute at different positions, and the influence of the superhydrophobic surface on the performance of the blood pump at the design point Q = 6 L/min was compared and analyzed. RESULTS The results show that the centrifugal blood pump model used in this paper has good blood compatibility and meets the design requirements; the superhydrophobic surface can significantly reduce the scalar shear stress in the blood pump. At the design point, when the slip length is 50 μm, the mass-average scalar shear stress in the impeller area and the volute area reduction rate is about 5.9%, the hydraulic efficiency growth rate is about 3.8%, the hemolysis index reduction rate is about 18.4%, and the pressure head changes little with a growth rate of 0.3%. CONCLUSIONS Centrifugal blood pumps with superhydrophobic surfaces can improve the efficiency of blood pumps and reduce hemolysis. Based on these encouraging results, vitro investigations for actual blood damage would be practicable.
Collapse
Affiliation(s)
- Chengcheng Li
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huihe Qiu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Jianying Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Ying Wang
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
8
|
Zhang Y, Wu X, Wang Y, Liu H, Liu GM. The hemodynamics and blood trauma in axial blood pump under different operating model. Artif Organs 2022; 46:2159-2170. [PMID: 35735995 DOI: 10.1111/aor.14348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Speed modulation of blood pump has been proved to help restore vascular pulsatility and implemented clinically during treatment for cardiac failure. However, its effect on blood trauma has not been studied thoroughly. In this paper, we study the flow field of an axial pump FW-X under the modes of co-pulse, counter pulse and constant speed to evaluate the blood trauma. Based on the coupling model of cardiovascular system and axial blood pump, aortic pressure and the pump flow were obtained and applied as the boundary conditions at the pump outlet and inlet. The level of shear stress and hemolysis index were derived from computational fluid dynamics (CFD) simulation. Results showed the constant speed mode had the lowest shear stress level and hemolytic index at the expense of diminished pulsatility. Compared with the constant speed mode, the hemolysis index of co-pulse and counter pulse mode was higher, but it was helpful to restore vascular pulsatility. This method can be easily incorporated in the in vitro testing phase to analyze and decrease a pump's trauma before animal experimentation, thereby reducing the cost of blood pump development.
Collapse
Affiliation(s)
- Yunpeng Zhang
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Xiangyu Wu
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Yiming Wang
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Hongtao Liu
- School of Goertek Technology and Industry, Weifang University, Weifang, China
| | - Guang-Mao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Qu Y, Guo Z, Zhang J, Li G, Zhang S, Li D. Hemodynamic investigation and in vitro evaluation of a novel mixed flow blood pump. Artif Organs 2022; 46:1533-1543. [PMID: 35167128 DOI: 10.1111/aor.14210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Ventricular assist devices (VADs) are considered as an effective treatment for patients with advanced heart failure, while complications associated with blood damage remain a burden. Structure design innovation has potential to reduce hemolysis and improve hemocompatibility. METHODS In this research, a novel mixed flow blood pump that integrates structural features of the axial and centrifugal VADs was proposed. The pump consists of an inducer, a mixed impeller supported by two ceramic pivot bearings and a volute. The flow field and laminar viscous shear stress were analyzed by the in-silico simulation. The hydraulic and hemolytic performance were evaluated in vitro by using a 3D printed pump. RESULTS The flow field distribution showed that streamlines in the connection area were smoothly transitioned through structural integration and no irregular flow occurred in the entire flow channel. The axial blades work as a fluid accelerator (generating 18.56% of the energy), and the centrifugal blades provide the main pressure head. The proportion of fluid inside the pump exposed to low laminar viscous shear stress (<50 Pa) and high laminar viscous shear stress (>150 Pa) was 99.02% and 0.03%, respectively. The in vitro hemolysis test results showed that the NIH (Normalized Index of Hemolysis) value of the mixed pump is 0.0079 ± 0.0039 g/100 L (n=6). CONCLUSION It can be concluded that the mixed flow structure is effective to improve hydraulic performance, eliminate flow disturbance and minimize shear stresses. This novel pump design is expected to provide a new direction for the development of next-generation VADs.
Collapse
Affiliation(s)
- Yifei Qu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, P.R. China.,Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, P.R. China
| | - Ziyu Guo
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, P.R. China.,Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, P.R. China
| | - Jing Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, P.R. China.,Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, P.R. China
| | - Guiling Li
- School of Medicine, Tsinghua University, Beijing, P.R. China
| | - Song Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, P.R. China.,Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, P.R. China
| | - Donghai Li
- Advanced Medical Research Institute, Shandong University, Jinan, P.R. China
| |
Collapse
|
10
|
Strauch C, Escher A, Wulff S, Kertzscher U, Zimpfer D, Thamsen PU, Granegger M. Validation of Numerically Predicted Shear Stress-dependent Dissipative Losses Within a Rotary Blood Pump. ASAIO J 2021; 67:1148-1158. [PMID: 34582408 DOI: 10.1097/mat.0000000000001488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Computational fluid dynamics find widespread application in the development of rotary blood pumps (RBPs). Yet, corresponding simulations rely on shear stress computations that are afflicted with limited resolution while lacking validation. This study aimed at the experimental validation of integral hydraulic properties to analyze global shear stress resolution across the operational range of a novel RBP. Pressure head and impeller torque were numerically predicted based on Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and validated on a testbench with integrated sensor modalities (flow, pressure, and torque). Validation was performed by linear regression and Bland-Altman analysis across nine operating conditions. In power loss analysis (PLA), in silico hydraulic power losses were derived based on the validated hydraulic quantities and balanced with in silico shear-dependent dissipative power losses. Discrepancies among both terms provided a measure of in silico shear stress resolution. In silico and in vitro data correlated with low discordance in pressure (r = 0.992, RMSE = 1.02 mmHg), torque (r = 0.999, RMSE = 0.034 mNm), and hydraulic power losses (r = 0.990, RMSE = 0.015W). PLA revealed numerically predicted dissipative losses to be up to 34.4% smaller than validated computations of hydraulic losses. This study confirmed the suitability of URANS settings to predict integral hydraulic properties. However, numerical credibility was hampered by lacking resolution of shear-dependent dissipative losses.
Collapse
Affiliation(s)
- Carsten Strauch
- From the Department of Fluid System Dynamics, Technische Universität Berlin, Berlin, Germany
| | - Andreas Escher
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Wulff
- From the Department of Fluid System Dynamics, Technische Universität Berlin, Berlin, Germany
| | - Ulrich Kertzscher
- Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Paul Uwe Thamsen
- From the Department of Fluid System Dynamics, Technische Universität Berlin, Berlin, Germany
| | - Marcus Granegger
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Ludwig-Boltzmann-Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
11
|
Huo JD, Wu P, Zhang L, Wu WT. Large eddy simulation as a fast and accurate engineering approach for the simulation of rotary blood pumps. Int J Artif Organs 2021; 44:887-899. [PMID: 34474617 DOI: 10.1177/03913988211041636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An accurate representation of the flow field in blood pumps is important for the design and optimization of blood pumps. The primary turbulence modeling methods applied to blood pumps have been the Reynolds-averaged Navier-Stokes (RANS) or URANS (unsteady RANS) method. Large eddy simulation (LES) method has been introduced to simulate blood pumps. Nonetheless, LES has not been widely used to assist in the design and optimization of blood pumps to date due to its formidable computational cost. The purpose of this study is to explore the potential of the LES technique as a fast and accurate engineering approach for the simulation of rotary blood pumps. The performance of "Light LES" (using the same time and spatial resolutions as the URANS) and LES in two rotary blood pumps was evaluated by comparing the results with the URANS and extensive experimental results. This study showed that the results of both "Light LES" and LES are superior to URANS, in terms of both performance curves and key flow features. URANS could not predict the flow separation and recirculation in diffusers for both pumps. In contrast, LES is superior to URANS in capturing these flows, performing well for both design and off-design conditions. The differences between the "Light LES" and LES results were relatively small. This study shows that with less computational cost than URANS, "Light LES" can be considered as a cost-effective engineering approach to assist in the design and optimization of rotary blood pumps.
Collapse
Affiliation(s)
- Jia-Dong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Liudi Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
12
|
Zhang J, Chen Z, Griffith BP, Wu ZJ. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps. Int J Artif Organs 2020; 43:653-662. [PMID: 32043405 PMCID: PMC11549969 DOI: 10.1177/0391398820903734] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.
Collapse
Affiliation(s)
- Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zengsheng Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Bartley P. Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhongjun J. Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
13
|
Konnigk L, Torner B, Hallier S, Witte M, Wurm FH. Grid-Induced Numerical Errors for Shear Stresses and Essential Flow Variables in a Ventricular Assist Device: Crucial for Blood Damage Prediction? ACTA ACUST UNITED AC 2019. [DOI: 10.1115/1.4042989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adverse events due to flow-induced blood damage remain a serious problem for blood pumps as cardiac support systems. The numerical prediction of blood damage via computational fluid dynamics (CFD) is a helpful tool for the design and optimization of reliable pumps. Blood damage prediction models primarily are based on the acting shear stresses, which are calculated by solving the Navier–Stokes equations on computational grids. The purpose of this paper is to analyze the influence of the spatial discretization and the associated discretization error on the shear stress calculation in a blood pump in comparison to other important flow quantities like the pressure head of the pump. Therefore, CFD analysis using seven unsteady Reynolds-averaged Navier–Stokes (URANS) simulations was performed. Two simple stress calculation indicators were applied to estimate the influence of the discretization on the results using an approach to calculate numerical uncertainties, which indicates discretization errors. For the finest grid with 19 × 106 elements, numerical uncertainties up to 20% for shear stresses were determined, while the pressure heads show smaller uncertainties with a maximum of 4.8%. No grid-independent solution for velocity gradient-dependent variables could be obtained on a grid size that is comparable to mesh sizes in state-of-the-art blood pump studies. It can be concluded that the grid size has a major influence on the shear stress calculation, and therefore, the potential blood damage prediction, and that the quantification of this error should always be taken into account.
Collapse
Affiliation(s)
- Lucas Konnigk
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert-Einstein-Straße 2, Rostock 18055, Germany e-mail:
| | - Benjamin Torner
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert-Einstein-Straße 2, Rostock 18055, Germany e-mail:
| | - Sebastian Hallier
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert-Einstein-Straße 2, Rostock 18055, Germany e-mail:
| | - Matthias Witte
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert-Einstein-Straße 2, Rostock 18055, Germany e-mail:
| | - Frank-Hendrik Wurm
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert-Einstein-Straße 2, Rostock 18055, Germany e-mail:
| |
Collapse
|
14
|
Wu P, Boehning F, Groß-Hardt S, Hsu PL. On the Accuracy of Hemolysis Models in Couette-Type Blood Shearing Devices. Artif Organs 2019; 42:E290-E303. [PMID: 30375677 DOI: 10.1111/aor.13292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 01/15/2023]
Abstract
Hemolysis is one of the most challenging issues faced by blood contacting devices. Empirical hemolysis models often relate hemolysis to shear stress and exposure time. These models were generally derived from the experimental results of Couette-type blood shearing devices, with assumption of uniform exposure time and shear stress. This assumption is not strictly valid since neither exposure time nor shear stress is uniform. Hence, this study evaluated the influence of the nonuniform exposure time and rotor eccentricity or run-out on the accuracy of power-law hemolysis models, using both theoretical and CFD analysis. This work first provided a systematic analysis of the flow regime in a typical Couette shearing device, and showed the axial flow component can be regarded as fully developed laminar plane Poiseuille flow. It was found that the influence of nonuniform exposure time is within 4% for several widely used power-law models, which were validated by steady CFD simulations. A theoretical relationship was then built between the rotor run-out and hemolysis. We noticed that the influence of rotor run-out on hemolysis is within 5% for a moderate rotor run-out ratio of 0.2. Next, transient CFD simulations were performed to investigate the influence of rotor run-out on hemolysis with run-out ratios of 0.1 and 0.2. The results showed negligible effects for a moderate run-out ratio of 0.1. However, a run-out ratio of 0.2 led to a significant increase of hemolysis, resulting from back flows induced by the run-out of the rotor. These findings will be of great importance for the improvement of the hemolysis estimation and blood compatibility design.
Collapse
Affiliation(s)
- Peng Wu
- Artificial Organ Technology Lab, Bio-manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | | | - Sascha Groß-Hardt
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Po-Lin Hsu
- Artificial Organ Technology Lab, Bio-manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Ozturk C, Aka IB, Lazoglu I. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Int J Artif Organs 2018; 41:730-737. [DOI: 10.1177/0391398818785558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aims: Impeller design has a significant impact on the overall performance of a blood pump. In this study, the effect of the blade curvature was investigated by performing in silico and in vitro studies on a recently developed centrifugal blood pump. Methods: A computational fluid dynamics study was performed for the flow rates of 3–5 L/min at 2000 r/min. The computational fluid dynamics model was also applied on the US Food and Drug Administration (FDA) benchmark blood pump to validate our computational method. The relative hemolysis index was calculated with the Eulerian hemolysis estimation method for five impellers with the wrap angles ranging from 0° to 240°. Hydraulic experiments were conducted for the validation of computational fluid dynamics results. In addition, the curved-blade impeller (120°) and the straight-blade impeller (0°) were evaluated with in vitro hemolysis tests using human blood. Results: The wrap angle of 120° provided the best hydraulic and hemolytic performance. Pump achieved the physiologic operating pressures and flows with 85–115 mmHg at 2.5–5.9 L/min. Compared to the straight-blade impeller, the 120° model reduces the relative hemolysis index and the plasma-free hemoglobin near 72.8% and 56.7%, respectively. Comparison of in silico and in vitro results indicated the similar trend to the blade curvature. Conclusion: Introducing a blade curvature enhanced the hydrodynamic and hemolytic performance compared to the straight-blade configuration for the investigated centrifugal blood pump. The findings of this study provide new insights into centrifugal blood pump design by examining the influence of the blade curvature.
Collapse
Affiliation(s)
- Caglar Ozturk
- Manufacturing & Automation Research Center, College of Engineering, Koc University, Istanbul, Turkey
| | - I Basar Aka
- Manufacturing & Automation Research Center, College of Engineering, Koc University, Istanbul, Turkey
| | - Ismail Lazoglu
- Manufacturing & Automation Research Center, College of Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
16
|
Schüle CY, Affeld K, Kossatz M, Paschereit CO, Kertzscher U. Turbulence measurements in an axial rotary blood pump with laser Doppler velocimetry. Int J Artif Organs 2017; 40:0. [PMID: 28430305 DOI: 10.5301/ijao.5000571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND The implantation of rotary blood pumps as ventricular assist devices (VADs) has become a viable therapy for quite a number of patients with end-stage heart failure. However, these rotary blood pumps cause adverse events that are related to blood trauma. It is currently believed that turbulence in the pump flow plays a significant role. But turbulence has not been measured to date because there is no optical access to the flow space in rotary blood pumps because of their opaque casings. METHODS This difficulty is overcome with a scaled-up model of the HeartMate II (HM II) rotary blood pump with a transparent acrylic housing. A 2-component laser Doppler velocimetry (LDV) system was used for the measurement of time resolved velocity profiles and velocity spectra upstream and downstream of the rotor blades. Observing similarity laws, the speed and pump head were adjusted to correspond closely to the design point of the original pump - 10,600 rpm speed and 80 mmHg pressure head. A model fluid consisting of a water-glycerol mixture was used. RESULTS The measured velocity spectra were scalable by the Kolmogorov length and the Kolmogorov length was estimated to be between 14 and 24 µm at original scale, thus being about 1.5 to 3 times the size of a red blood cell. CONCLUSIONS It can be concluded that turbulence is indeed present in the investigated blood pump and that it can be described by Kolmogorov's theory of turbulence. The size of the smallest vortices compares well to the turbulence length scales as found in prosthetic heart valves, for example.
Collapse
Affiliation(s)
- Chan Y Schüle
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin - Germany
| | - Klaus Affeld
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin - Germany
| | - Max Kossatz
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin - Germany
| | - Christian O Paschereit
- Chair of Fluid Dynamics, Hermann-Föttinger-Institut, Technische Universität Berlin, Berlin - Germany
| | - Ulrich Kertzscher
- Biofluid Mechanics Laboratory, Charité - Universitätsmedizin Berlin, Berlin - Germany
| |
Collapse
|
17
|
Abstract
In this Editor's Review, articles published in 2016 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Mechanical Circulatory Support, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We were pleased to publish our second Virtual Issue in April 2016 on "Tissue Engineering in Bone" by Professor Tsuyoshi Takato. Our first was published in 2011 titled "Intra-Aortic Balloon Pumping" by Dr. Ashraf Khir. Other peer-reviewed Special Issues this year included contributions from the 11th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Ündar and selections from the 23rd Congress of the International Society for Rotary Blood Pumps edited by Dr. Bojan Biocina. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|