1
|
Zhao H, Wu D, Gyamfi MA, Wang P, Luecht C, Pfefferkorn AM, Ashraf MI, Kamhieh-Milz J, Witowski J, Dragun D, Budde K, Schindler R, Zickler D, Moll G, Catar R. Expanded Hemodialysis ameliorates uremia-induced impairment of vasculoprotective KLF2 and concomitant proinflammatory priming of endothelial cells through an ERK/AP1/cFOS-dependent mechanism. Front Immunol 2023; 14:1209464. [PMID: 37795100 PMCID: PMC10546407 DOI: 10.3389/fimmu.2023.1209464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Aims Expanded hemodialysis (HDx) therapy with improved molecular cut-off dialyzers exerts beneficial effects on lowering uremia-associated chronic systemic microinflammation, a driver of endothelial dysfunction and cardiovascular disease (CVD) in hemodialysis (HD) patients with end-stage renal disease (ESRD). However, studies on the underlying molecular mechanisms are still at an early stage. Here, we identify the (endothelial) transcription factor Krüppel-like factor 2 (KLF2) and its associated molecular signalling pathways as key targets and regulators of uremia-induced endothelial micro-inflammation in the HD/ESRD setting, which is crucial for vascular homeostasis and controlling detrimental vascular inflammation. Methods and results First, we found that human microvascular endothelial cells (HMECs) and other typical endothelial and kidney model cell lines (e.g. HUVECs, HREC, and HEK) exposed to uremic serum from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation II (PERCI-II) crossover clinical trial - comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes - exhibited strongly reduced expression of vasculoprotective KLF2 with HF dialyzers, while dialysis with MCO dialyzers led to the maintenance and restoration of physiological KLF2 levels in HMECs. Mechanistic follow-up revealed that the strong downmodulation of KLF2 in HMECs exposed to uremic serum was mediated by a dominant engagement of detrimental ERK instead of beneficial AKT signalling, with subsequent AP1-/c-FOS binding in the KLF2 promoter region, followed by the detrimental triggering of pleiotropic inflammatory mediators, while the introduction of a KLF2 overexpression plasmid could restore physiological KLF2 levels and downmodulate the detrimental vascular inflammation in a mechanistic rescue approach. Conclusion Uremia downmodulates vasculoprotective KLF2 in endothelium, leading to detrimental vascular inflammation, while MCO dialysis with the novel improved HDx therapy approach can maintain physiological levels of vasculoprotective KLF2.
Collapse
Affiliation(s)
- Hongfan Zhao
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Dashan Wu
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Michael Adu Gyamfi
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Pinchao Wang
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Luecht
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | | | | | - Julian Kamhieh-Milz
- Institute of Transfusion Medicine, at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Duska Dragun
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Schindler
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), at Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, at Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Vega-Vega O, Caballero-Islas AE, Del Toro-Cisneros N, Hernandez-Ordoñez SÓ, Arvizu-Hernández M, Martínez-Rueda A, Camacho-Colin D, Gómez-Correa LL, Correa-Rotter R. Improved β2-Microglobulin and Phosphorous Removal with Expanded Hemodialysis and Online Hemodiafiltration versus High-Flux Hemodialysis: A Cross-Over Randomized Clinical Trial. Blood Purif 2023; 52:712-720. [PMID: 37473747 DOI: 10.1159/000531355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Expanded hemodialysis (HDx) is expected to provide enhanced permeability of medium-sized molecules, selective solute retention, and better internal retrofiltration. The primary objective of this study was to compare the efficiency for removal of β2-microglobulin with 3 different extracorporeal therapies (ETs): high-flux hemodialysis (HF), online hemodiafiltration (OL-HDF), and HDx. The secondary objective was to evaluate the efficiency of removal of other uremic toxins, including urea, phosphate, CRP, IL-6, IL-10, TNF-⍺, indoxyl sulfate, and p-cresol. METHODS This single-center, randomized, and cross-over study was performed. Patients were randomized to determine the initial modality of treatment, each period lasted 4 weeks and between one modality and another, there was a washout period of 1 week. Reduction ratios (RRs) of different-size molecules and albumin were calculated for the different ET. RESULTS Twenty-two patients were included, β2-microglobulin RR was greater during both OL-HDF and HDx as compared to HF (RR 62% vs. 73% vs. 27%, respectively, p = <0.0001), and there was no significant difference between HDx and OL-HDF (p = 0.09). A decrease in serum phosphate levels was observed in the HDx and OL-HDF periods, contrary to an increase in HF (-0.79 mg/dL vs. -1.02 mg/dL vs. + 0.11 mg/dL, respectively, p = <0.0001). There was no difference in RRs of other molecules (BUN, CRP, IL-6, IL-10, TNF-⍺, indoxyl sulfate, and p-Cresol). There was no decrease in serum albumin in any ET. CONCLUSION HDx provides enhanced removal of β2-microglobulin and phosphate as compared to HF, and similar efficacy as with OL-HDF. HDx should be considered an alternative to chronic convective therapies.
Collapse
Affiliation(s)
- Olynka Vega-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adrián E Caballero-Islas
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,
| | - Noemí Del Toro-Cisneros
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Óscar Hernandez-Ordoñez
- Postgraduate Division, Faculty of Superior Studies of Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Mauricio Arvizu-Hernández
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Armando Martínez-Rueda
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Camacho-Colin
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Leidi Laura Gómez-Correa
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Correa-Rotter
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
3
|
García-Prieto A, de la Flor JC, Coll E, Iglesias E, Reque J, Valga F. Expanded hemodialysis: what's up, Doc? Clin Kidney J 2023; 16:1071-1080. [PMID: 37398691 PMCID: PMC10310509 DOI: 10.1093/ckj/sfad033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 10/06/2023] Open
Abstract
In recent years there has been an increasing interest in expanded hemodialysis (HDx), an emerging renal replacement therapy based on the use of medium cut-off membranes (MCO). Thanks to the internal architecture of these types of membranes, with a higher pore size and smaller fiber inner diameter to favor internal filtration rate, they can increase the removal of larger middle molecules in conventional hemodialysis. Secondarily, several reports suggest that this therapy potentially improve the outcomes for end-stage renal disease patients. However, HDx has not been defined yet and the characteristics of MCO membranes are not well stablished. The aim of this narrative review is to define HDx and summarize the dialyzers that have been used so far to perform this therapy, collect the evidence available on its efficacy and clinical outcomes compared with other hemodialysis techniques and settle the bases for its optimal prescription.
Collapse
Affiliation(s)
- Ana García-Prieto
- Nephrology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Elisabet Coll
- Nephrology Department, Fundación Puigvert, Barcelona, Spain
| | - Elena Iglesias
- Nephrology Department, Complejo Hospitalario Universitario de Orense, Ourense, Spain
| | - Javier Reque
- Nephrology Department, Hospital General Universitario de Castellón, Castellón, Spain
| | - Francisco Valga
- Nephrology Department, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Effects of Expanded Hemodialysis with Medium Cut-Off Membranes on Maintenance Hemodialysis Patients: A Review. MEMBRANES 2022; 12:membranes12030253. [PMID: 35323729 PMCID: PMC8953230 DOI: 10.3390/membranes12030253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023]
Abstract
Kidney failure is associated with high morbidity and mortality. Hemodialysis, the most prevalent modality of renal replacement therapy, uses the principle of semipermeable membranes to remove solutes and water in the plasma of patients with kidney failure. With the evolution of hemodialysis technology over the last half century, the clearance of small water-soluble molecules in such patients is adequate. However, middle molecules uremic toxins are still retained in the plasma and cause cardiovascular events, anemia, and malnutrition, which significantly contribute to poor quality of life and high mortality in maintenance hemodialysis patients. A new class of membrane, defined as a medium cut-off (MCO) membrane, has emerged in recent years. Expanded hemodialysis with MCO membranes is now recognized as the artificial kidney model closest to natural kidney physiology. This review summarizes the unique morphological characteristics and internal filtration–backfiltration mechanism of MCO membranes, and describes their effects on removing uremic toxins, alleviating inflammation and cardiovascular risk, and improving quality of life in maintenance hemodialysis patients.
Collapse
|
5
|
Catar R, Moll G, Kamhieh-Milz J, Luecht C, Chen L, Zhao H, Ernst L, Willy K, Girndt M, Fiedler R, Witowski J, Morawietz H, Ringdén O, Dragun D, Eckardt KU, Schindler R, Zickler D. Expanded Hemodialysis Therapy Ameliorates Uremia-Induced Systemic Microinflammation and Endothelial Dysfunction by Modulating VEGF, TNF-α and AP-1 Signaling. Front Immunol 2021; 12:774052. [PMID: 34858433 PMCID: PMC8632537 DOI: 10.3389/fimmu.2021.774052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Abstract Systemic chronic microinflammation and altered cytokine signaling, with adjunct cardiovascular disease (CVD), endothelial maladaptation and dysfunction is common in dialysis patients suffering from end-stage renal disease and associated with increased morbidity and mortality. New hemodialysis filters might offer improvements. We here studied the impact of novel improved molecular cut-off hemodialysis filters on systemic microinflammation, uremia and endothelial dysfunction. Human endothelial cells (ECs) were incubated with uremic serum obtained from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation (PERCI-II) crossover clinical trial, comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes, and then assessed for their vascular endothelial growth factor (VEGF) production and angiogenesis. Compared to HF membranes, dialysis with MCO membranes lead to a reduction in proinflammatory mediators and reduced endothelial VEGF production and angiogenesis. Cytokine multiplex screening identified tumor necrosis factor (TNF) superfamily members as promising targets. The influence of TNF-α and its soluble receptors (sTNF-R1 and sTNF-R2) on endothelial VEGF promoter activation, protein release, and the involved signaling pathways was analyzed, revealing that this detrimental signaling was indeed induced by TNF-α and mediated by AP-1/c-FOS signaling. In conclusion, uremic toxins, in particular TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel MCO membranes. Translational Perspective and Graphical Abstract Systemic microinflammation, altered cytokine signaling, cardiovascular disease, and endothelial maladaptation/dysfunction are common clinical complications in dialysis patients suffering from end-stage renal disease. We studied the impact of novel improved medium-cut-off hemodialysis filters on uremia and endothelial dysfunction. We can show that uremic toxins, especially TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel improved medium-cut-off membranes.
Collapse
Affiliation(s)
- Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Julian Kamhieh-Milz
- Institute of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Luecht
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lei Chen
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lucas Ernst
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Kevin Willy
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Cardiology, University Hospital Münster, Münster, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle, Halle, Germany
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olle Ringdén
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Duska Dragun
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Schindler
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
6
|
Ciceri P, Cozzolino M. Expanded Haemodialysis as a Current Strategy to Remove Uremic Toxins. Toxins (Basel) 2021; 13:toxins13060380. [PMID: 34073439 PMCID: PMC8226798 DOI: 10.3390/toxins13060380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by the retention of solutes named uremic toxins, which strongly associate with high morbidity and mortality. Mounting evidence suggests that targeting uremic toxins and/or their pathways may decrease the risk of cardiovascular disease in CKD patients. Dialysis therapies have been developed to improve removal of uremic toxins. Advances in our understanding of uremic retention solutes as well as improvements in dialysis membranes and techniques (HDx, Expanded Hemodialysis) will offer the opportunity to ameliorate clinical symptoms and outcomes, facilitate personalized and targeted dialysis treatment, and improve quality of life, morbidity and mortality.
Collapse
Affiliation(s)
- Paola Ciceri
- Renal Research Laboratory, Department of Nephrology, Dialysis and Renal Transplant, Fondazione Ca’ Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-02-81844215
| |
Collapse
|
7
|
Basile C, Davenport A, Mitra S, Pal A, Stamatialis D, Chrysochou C, Kirmizis D. Frontiers in hemodialysis: Innovations and technological advances. Artif Organs 2020; 45:175-182. [PMID: 32780472 DOI: 10.1111/aor.13798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As increasing demand for hemodialysis (HD) treatment incurs significant financial burden to healthcare systems and ecological burden as well, novel therapeutic approaches as well as innovations and technological advances are being sought that could lead to the development of purification devices such as dialyzers with improved characteristics and wearable technology. Novel knowledge such as the development of more accurate kinetic models, the development of novel HD membranes with the use of nanotechnology, novel manufacturing processes, and the latest technology in the science of materials have enabled novel solutions already marketed or on the verge of becoming commercially available. This collaborative article reviews the latest advances in HD as they were presented by the authors in a recent symposium titled "Frontiers in Haemodialysis," held on 12th December 2019 at the Royal Society of Medicine in London.
Collapse
Affiliation(s)
- Carlo Basile
- Clinical Research Branch, Division of Nephrology, Miulli General Hospital, Acquaviva delle Fonti, Italy.,Associazione Nefrologica Gabriella Sebastio, Martina Franca, Italy
| | - Andrew Davenport
- UCL Department of Nephrology, Royal Free Hospital, University College London, London, UK
| | - Sandip Mitra
- Department of Nephrology, Manchester University Hospitals Foundation Trust, Manchester, UK.,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Avishek Pal
- National Graphene Institute, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Dimitrios Stamatialis
- Bioartificial Organs Group, Department of Biomaterials Science and Technology, TechMed Centre, Faculty of Science and Technology, University of Twente, The Netherlands
| | | | | |
Collapse
|
8
|
New Insights into the Roles of Monocytes/Macrophages in Cardiovascular Calcification Associated with Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11090529. [PMID: 31547340 PMCID: PMC6784181 DOI: 10.3390/toxins11090529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is an important cause of death in patients with chronic kidney disease (CKD), and cardiovascular calcification (CVC) is one of the strongest predictors of CVD in this population. Cardiovascular calcification results from complex cellular interactions involving the endothelium, vascular/valvular cells (i.e., vascular smooth muscle cells, valvular interstitial cells and resident fibroblasts), and monocyte-derived macrophages. Indeed, the production of pro-inflammatory cytokines and oxidative stress by monocyte-derived macrophages is responsible for the osteogenic transformation and mineralization of vascular/valvular cells. However, monocytes/macrophages show the ability to modify their phenotype, and consequently their functions, when facing environmental modifications. This plasticity complicates efforts to understand the pathogenesis of CVC-particularly in a CKD setting, where both uraemic toxins and CKD treatment may affect monocyte/macrophage functions and thereby influence CVC. Here, we review (i) the mechanisms by which each monocyte/macrophage subset either promotes or prevents CVC, and (ii) how both uraemic toxins and CKD therapies might affect these monocyte/macrophage functions.
Collapse
|
9
|
Silaghi CN, Ilyés T, Filip VP, Farcaș M, van Ballegooijen AJ, Crăciun AM. Vitamin K Dependent Proteins in Kidney Disease. Int J Mol Sci 2019; 20:ijms20071571. [PMID: 30934817 PMCID: PMC6479974 DOI: 10.3390/ijms20071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an increased risk of developing vascular calcifications, as well as bone dynamics impairment, leading to a poor quality of life and increased mortality. Certain vitamin K dependent proteins (VKDPs) act mainly as calcification inhibitors, but their involvement in the onset and progression of CKD are not completely elucidated. This review is an update of the current state of knowledge about the relationship between CKD and four extrahepatic VKDPs: matrix Gla protein, osteocalcin, growth-arrest specific protein 6 and Gla-rich protein. Based on published literature in the last ten years, the purpose of this review is to address fundamental aspects about the link between CKD and circulating VKDPs levels as well as to raise new topics about how the interplay between molecular weight and charge could influence the modifications of circulating VKDPs at the glomerular level, or whether distinct renal etiologies have effect on VKDPs. This review is the output of a systematic literature search and may open future research avenues in this niche domain.
Collapse
Affiliation(s)
- Ciprian N Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Vladimir P Filip
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Marius Farcaș
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Adriana J van Ballegooijen
- Department of Nephrology & Epidemiology and Biostatistics, Amsterdam University Medical Center, VUmc, 1117 HV Amsterdam, The Netherlands.
| | - Alexandra M Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Wolley M, Jardine M, Hutchison CA. Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules. Clin J Am Soc Nephrol 2018; 13:805-814. [PMID: 29507008 PMCID: PMC5969479 DOI: 10.2215/cjn.10110917] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dialysis technologies have continued to advance over recent decades; however, these advancements have not always been met with improved patient outcomes. In part, the high morbidity and mortality associated with dialysis have been attributed to a group of uremic toxins, which are described as "difficult to remove." With a new generation of hemodialysis membranes now making meaningful clearance of these molecules possible, it is an apt time to review the clinical relevance of these middle molecules. Our review describes the developments in membrane technology that enable the removal of large middle molecules (molecular mass >15 kD) that is limited with high-flux dialysis membranes. Of the known 58 middle molecules, a literature search identified 27 that have molecular mass >15 kD. This group contains cytokines, adipokines, hormones, and other proteins. These molecules are implicated in chronic inflammation, atherosclerosis, structural heart disease, and secondary immunodeficiency in the literature. Single-center safety and efficacy studies have identified that use of these membranes in maintenance dialysis populations is associated with limited loss of albumin and increased clearance of large middle molecules. Larger, robustly conducted, multicenter studies are now evaluating these findings. After completion of these safety and efficacy studies, the perceived clinical benefits of providing clearance of large middle molecules must be assessed in rigorously conducted, randomized clinical studies.
Collapse
Affiliation(s)
- Martin Wolley
- Department of Renal Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Meg Jardine
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Renal Medicine, Concord Repatriation General Hospital and University of Sydney, Sydney, New South Wales, Australia; and
| | - Colin A. Hutchison
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Medicine, Hawke’s Bay District Health Board, Hastings, New Zealand
| |
Collapse
|
11
|
Abstract
In this Editor's Review, articles published in 2017 are organized by category and summarized. We provide a brief reflection of the research and progress in artificial organs intended to advance and better human life while providing insight for continued application of these technologies and methods. Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. Peer-reviewed Special Issues this year included contributions from the 12th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Undar, Artificial Oxygen Carriers edited by Drs. Akira Kawaguchi and Jan Simoni, the 24th Congress of the International Society for Mechanical Circulatory Support edited by Dr. Toru Masuzawa, Challenges in the Field of Biomedical Devices: A Multidisciplinary Perspective edited by Dr. Vincenzo Piemonte and colleagues and Functional Electrical Stimulation edited by Dr. Winfried Mayr and colleagues. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|