1
|
Wang X, Ji H, Yang Y, Zhang D, Kong X, Li X, Li H, Lu Y, Yang G, Liu J, Wu H, Hong J, Ma X. Moxibustion Regulates the BRG1/Nrf2/HO-1 Pathway by Inhibiting MicroRNA-222-3p to Prevent Oxidative Stress in Intestinal Epithelial Cells in Ulcerative Colitis and Colitis-Associated Colorectal Cancer. J Immunol Res 2024; 2024:8273732. [PMID: 39359694 PMCID: PMC11446618 DOI: 10.1155/2024/8273732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
Oxidative stress is crucial in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Intestinal epithelial cells (IECs) are an important component of the intestinal barrier. In previous studies, we have demonstrated that suppressing microRNA-222-3p (miR-222-3p) can protect against oxidative stress in IECs, which ameliorates colonic injuries in UC mice and prevents the conversion of UC to CAC. In this case, we hope to explore whether moxibustion can alleviate UC and CAC by inhibiting miR-222-3p based on mouse models of UC and CAC. After herb-partitioned moxibustion (HPM) intervention, the disease activity index (DAI) and colon macroscopic damage index (CMDI) were significantly reduced in UC mice, and the number and volume of intestinal tumors were decreased considerably in CAC mice. Meanwhile, we found that HPM suppressed miR-222-3p expression and upregulated the mRNA and protein expression of Brahma-related gene 1 (BRG1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), while inhibiting Kelch-like ECH-associated protein 1 (Keap1) expression in IECs of UC and CAC mice. With changes in reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α), we verified that HPM protects against oxidative stress and inflammation in IECs of UC and CAC mice. The effect of HPM was inhibited in miR-222-3p overexpression mice, further demonstrating that the protective effect of HPM on UC and CAC mice was through inhibiting miR-222-3p. In summary, HPM regulates the BRG1/Nrf2/HO-1 pathway by inhibiting miR-222-3p to attenuate oxidative stress in IECs in UC and CAC.
Collapse
Affiliation(s)
- Xuejun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Eye Institute and Department of Ophthalmology Eye and ENT Hospital Fudan University, Shanghai 200030, China
| | - Haiyang Ji
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiehe Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongna Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yunqiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| |
Collapse
|
2
|
Fu K, Dai S, Li Y, Ma C, Xue X, Zhang S, Wang C, Zhou H, Zhang Y, Li Y. The protective effect of forsythiaside A on 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestatic liver injury in mice: Based on targeted metabolomics and molecular biology technology. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166822. [PMID: 37523877 DOI: 10.1016/j.bbadis.2023.166822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Cholestasis is a disorder of bile secretion and excretion caused by a variety of etiologies. At present, there is a lack of functional foods or drugs that can be used for intervention. Forsythiaside A (FTA) is a natural phytochemical component isolated from the medicinal plant Forsythia suspensa (Thunb.) Vahl, which has a significant hepatoprotective effect. In this study, we investigated whether FTA could alleviate liver injury induced by cholestasis. In vitro, FTA reversed the decrease in viability of human intrahepatic bile duct epithelial cells, the decrease in antioxidant enzymes (SOD1, CAT and GSH-Px), and cell apoptosis induced by lithocholic acid. In vivo, FTA protected mice from 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury, abnormal serum biochemical indexes, abnormal bile duct hyperplasia, and inflammatory infiltration. Furthermore, FTA treatment alleviated liver fibrosis by inhibiting collagen deposition and HSC activation. The metabonomic results showed that DDC-induced bile acid disorders in the liver and serum were reversed after FTA treatment, which may benefit from the activation of the FXR/BSEP axis. In addition, FTA treatment increased the levels of antioxidant enzymes in the serum and liver. Meanwhile, FTA treatment inhibited ROS and MDA levels and cleaved caspase 3 protein expression, thereby reducing DDC-induced hepatic oxidative stress and apoptosis. Further studies showed that the antioxidant effects of FTA were dependent on the activation of the BRG1/NRF2/HO-1 axis. In a word, FTA has a significant hepatoprotective effect on cholestatic liver injury, and can be further developed as a functional food or drug to prevent and treat cholestatic liver injury.
Collapse
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Guo K, Shang Y, Wang Z, Li Y, Chen J, Zhu B, Zhang D, Chen J. BRG1 alleviates microglial activation by promoting the KEAP1-NRF2/HO-1 signaling pathway and minimizing oxidative damage in cerebral ischemia-reperfusion. Int Immunopharmacol 2023; 119:110201. [PMID: 37172425 DOI: 10.1016/j.intimp.2023.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
BRG1 is a key factor in the process of apoptosis and oxidative damage; however, its role in the pathophysiology of ischemic stroke is unclear. Here, we discovered that during middle cerebral artery occlusion (MCAO) reperfusion in mice, microglia were significantly activated in the cerebral cortex of the infarct area, and BRG1 expression was increased in the mouse MCAO/R model, peaking at 4 days. In microglia subjected to OGD/R, BRG1 expression increased and peaked at 12 h after reoxygenation. After ischemic stroke, in vitro changing the expression of BRG1 expression levels greatly altered the activation of microglia and the production of antioxidant and pro-oxidant proteins. Knocking down BRG1 expression levels in vitro increased the inflammatory response, promoted microglial activation, and decreased the expression of the NRF2/HO-1 signaling pathway after ischemic stroke. In contrast, overexpression of BRG1 dramatically reduced the expression of NRF2/HO-1 signaling pathway and microglial activation. Our research reveals that BRG1 reduces postischemic oxidative damage via the KEAP1-NRF2/HO-1 signaling pathway, protecting against brain ischemia/reperfusion injury. Using BRG1 as a pharmaceutical target to inhibit inflammatory responses to reduce oxidative damage may be a unique way to explore techniques for the treatment of ischemic stroke and other cerebrovascular illnesses.
Collapse
Affiliation(s)
- Kongwei Guo
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Zhao Wang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Yu Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Jinliang Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Baofeng Zhu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| | - Jianrong Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
4
|
Wang XJ, Zhang D, Yang YT, Li XY, Li HN, Zhang XP, Long JY, Lu YQ, Liu L, Yang G, Liu J, Hong J, Wu HG, Ma XP. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front Immunol 2023; 14:1089809. [PMID: 36776858 PMCID: PMC9911687 DOI: 10.3389/fimmu.2023.1089809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1β and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1β and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Ting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Na Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Peng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan-Gan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, Raesi R, Asadi N, Hashemi M, Zarrabi A, Khan H, Mirzaei S, Samarghandian S. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022; 300:120561. [PMID: 35460707 DOI: 10.1016/j.lfs.2022.120561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1β and TNF-α. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-κB, miRNAs, lncRNAs and GSK-3β among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran.
| | - Amirreza Mirzaie
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amin Maghsoudloo
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Asadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Bardallo RG, da Silva RT, Carbonell T, Palmeira C, Folch-Puy E, Roselló-Catafau J, Adam R, Panisello-Rosello A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int J Mol Sci 2022; 23:5742. [PMID: 35628554 PMCID: PMC9143961 DOI: 10.3390/ijms23105742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Rui T. da Silva
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| |
Collapse
|