1
|
Wei X, He Y, Wan H, Yin J, Lin B, Ding Z, Yang J, Zhou H. Integrated transcriptomics, proteomics and metabolomics to identify biomarkers of astragaloside IV against cerebral ischemic injury in rats. Food Funct 2023; 14:3588-3599. [PMID: 36946308 DOI: 10.1039/d2fo03030f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The herb Astragali Radix is a food-medicine herb. A major component of Astragali Radix, astragaloside IV (AS-IV), has neuroprotective effects in IS, but its mechanisms are not well understood. Our research used a transient middle cerebral artery occlusion (MCAO) rat model for longitudinal multi-omics analyses of the side of the brain affected by ischemia. Based on transcriptomic and proteomic analysis, we found that 396 differential expression targets were up-regulated and 114 differential expression targets were down-regulated. A total of 117 differential metabolites were identified based on metabonomics. Finally, we found 8 hub genes corresponding to the compound-reaction-enzyme-gene network using the Metscape plug-in for Cytoscape 3.7.1. We found that the related key metabolites were 3,4-dihydroxy-L-phenylalanine, 2-aminomuconate semialdehyde, (R)-3-hydroxybutanoate, etc., and the affected pathways were tyrosine metabolism, tryptophan metabolism, butanoate metabolism, purine metabolism, etc. We further validated these targets using 4D-PRM proteomics and found that seven targets were significantly different, including Aprt, Atic, Gaa, Galk1, Glb1, Me2, and Hexa. We aimed to uncover the mechanism of AS-IV in the treatment of ischemic brain injury through a comprehensive strategy combining transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Junjun Yin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Bingying Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| |
Collapse
|
2
|
Matsumoto T, Takayanagi K, Katome T, Kojima M, Taguchi K, Kobayashi T. Reduced Relaxant Response to Adenine in the Superior Mesenteric Artery of Spontaneously Hypertensive Rats. Biol Pharm Bull 2021; 44:1530-1535. [PMID: 34602562 DOI: 10.1248/bpb.b21-00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the vascular response to nucleobase adenine using freshly isolated superior mesenteric arteries of spontaneously hypertensive rats (SHR) and its control, Wistar Kyoto (WKY) rats. Endothelium-dependent and endothelium-independent relaxations were assessed in isolated segments in an organ bath. The releases of the metabolites of thromboxane A2 and prostaglandin I2 were also detected. Adenine induced vasorelaxation in both the endothelium-intact and endothelium-denuded arteries in a concentration-dependent manner. In the SHR group, the adenine-induced relaxation was slightly but significantly reduced in the endothelium-intact rings when compared with that in the WKY group. However, the relaxation in the endothelium-denuded rings were similar between the two groups. The difference in the adenine-mediated relaxation in the superior mesenteric arteries between the SHR and WKY groups was eliminated by endothelial denudation and a nitric oxide (NO) synthase inhibitor. In the absence and presence of adenine, SHR tended to have higher levels of metabolites of thromboxane A2 and prostaglandin I2 compared with WKY. However, adenine did not induce the release of these substances in the arteries in both the SHR and WKY groups. These results suggest that the reduced adenine-mediated relaxation in the superior mesenteric arteries in SHR is due to a lack of contribution from the endothelium-derived NO and not from the release of prostanoids.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tomoki Katome
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
3
|
Müller CE, Namasivayam V. Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal 2021; 17:633-648. [PMID: 34476721 PMCID: PMC8677864 DOI: 10.1007/s11302-021-09813-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
4
|
Young GH, Lin JT, Cheng YF, Ho CF, Kuok QY, Hsu RC, Liao WR, Chen CC, Chen HM. Modulation of adenine phosphoribosyltransferase-mediated salvage pathway to accelerate diabetic wound healing. FASEB J 2021; 35:e21296. [PMID: 33675115 DOI: 10.1096/fj.202001736rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Ru-Chun Hsu
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan
| | | | | | - Han-Min Chen
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan.,Department of Life Science, Institute of Applied Science and Engineering, Catholic Fu-Jen University, New Taipei City, Taiwan
| |
Collapse
|
5
|
Abstract
Membrane receptors that are activated by the purine nucleoside adenosine (adenosine receptors) or by purine or pyrimidine nucleotides (P2Y and P2X receptors) transduce extracellular signals to the cytosol. They play important roles in physiology and disease. The G protein-coupled adenosine receptors comprise four subtypes: A1, A2A, A2B, and A3. The G-protein-coupled P2Y receptors are subdivided into eight subtypes: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, while the P2X receptors represent ATP-gated homomeric or heteromeric ion channels consisting of three subunits; the most important subunits are P2X1, P2X2, P2X3, P2X4, and P2X7. This chapter provides guidance for selecting suitable tool compounds for studying these large and important purine receptor families.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany.
| | - Younis Baqi
- Department of Chemistry, Sultan Qaboos University, Muscat, Oman
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Dos Santos IF, Sheriff S, Amlal S, Ahmed RPH, Thakar CV, Amlal H. Adenine acts in the kidney as a signaling factor and causes salt- and water-losing nephropathy: early mechanism of adenine-induced renal injury. Am J Physiol Renal Physiol 2019; 316:F743-F757. [PMID: 30623725 DOI: 10.1152/ajprenal.00142.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic adenine feeding is extensively used to develop animal models of chronic renal failure with metabolic features resembling those observed in humans. However, the mechanism by which adenine induces renal failure is poorly understood. In this study, we examined the early effects of adenine on water metabolism and salt balance in rats placed in metabolic cages and fed control or adenine-containing diets for 7 days. Molecular and functional studies demonstrated that adenine-fed rats exhibited a significant reduction in food intake, polyuria, polydipsia, decreased urine osmolality, and increased salt wasting. These effects are independent of changes in food intake and result from a coordinated downregulation of water channel aquaporin-2 (AQP2) and salt transporter (Na+-K+-Cl- cotransporter 2; NKCC2) in the collecting duct and medullary thick ascending limb, respectively. As a result, adenine-fed rats exhibited massive volume depletion, as indicated by a significant body weight loss, increased blood urea nitrogen, and increased hematocrit and hemoglobin levels, all of which were significantly corrected with NaCl replacement. Adenine-induced urinary concentrating defect was not corrected by exogenous arginine vasopressin (AVP), and it correlated with reduced cAMP production in vivo and in vitro. In conclusion, adenine acts on renal tubules as a signaling molecule and causes nephrogenic diabetes insipidus with salt wasting, at least, by directly interfering with AVP V2 receptor signaling with subsequent downregulation of NKCC2 and AQP2 in the kidney. The combination of renal fluid loss and decreased food intake with subsequent massive volume depletion likely plays an important role in the development of early prerenal failure that progresses to chronic kidney disease in long-term adenine feeding.
Collapse
Affiliation(s)
- Ingrid F Dos Santos
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Sulaiman Sheriff
- Department of Surgery, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Sihame Amlal
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Rafeeq P H Ahmed
- Department of Pathology, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Charuhas V Thakar
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Hassane Amlal
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
7
|
Ottensmeyer PF, Witzler M, Schulze M, Tobiasch E. Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells. Int J Mol Sci 2018; 19:E3601. [PMID: 30441872 PMCID: PMC6274752 DOI: 10.3390/ijms19113601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
The need for bone grafts is high, due to age-related diseases, such as tumor resections, but also accidents, risky sports, and military conflicts. The gold standard for bone grafting is the use of autografts from the iliac crest, but the limited amount of accessible material demands new sources of bone replacement. The use of mesenchymal stem cells or their descendant cells, namely osteoblast, the bone-building cells and endothelial cells for angiogenesis, combined with artificial scaffolds, is a new approach. Mesenchymal stem cells (MSCs) can be obtained from the patient themselves, or from donors, as they barely cause an immune response in the recipient. However, MSCs never fully differentiate in vitro which might lead to unwanted effects in vivo. Interestingly, purinergic receptors can positively influence the differentiation of both osteoblasts and endothelial cells, using specific artificial ligands. An overview is given on purinergic receptor signaling in the most-needed cell types involved in bone metabolism-namely osteoblasts, osteoclasts, and endothelial cells. Furthermore, different types of scaffolds and their production methods will be elucidated. Finally, recent patents on scaffold materials, as wells as purinergic receptor-influencing molecules which might impact bone grafting, are discussed.
Collapse
Affiliation(s)
- Patrick Frank Ottensmeyer
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Markus Witzler
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
8
|
Silwal P, Lim K, Heo JY, Park JI, Namgung U, Park SK. Adenine attenuates lipopolysaccharide-induced inflammatory reactions. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:379-389. [PMID: 29962852 PMCID: PMC6019877 DOI: 10.4196/kjpp.2018.22.4.379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/18/2018] [Accepted: 04/06/2018] [Indexed: 11/15/2022]
Abstract
A nucleobase adenine is a fundamental component of nucleic acids and adenine nucleotides. Various biological roles of adenine have been discovered. It is not produced from degradation of adenine nucleotides in mammals but produced mainly during polyamine synthesis by dividing cells. Anti-inflammatory roles of adenine have been supported in IgE-mediated allergic reactions, immunological functions of lymphocytes and dextran sodium sulfate-induced colitis. However adenine effects on Toll-like receptor 4 (TLR4)-mediated inflammation by lipopolysaccharide (LPS), a cell wall component of Gram negative bacteria, is not examined. Here we investigated anti-inflammatory roles of adenine in LPS-stimulated immune cells, including a macrophage cell line RAW264.7 and bone marrow derived mast cells (BMMCs) and peritoneal cells in mice. In RAW264.7 cells stimulated with LPS, adenine inhibited production of pro-inflammatory cytokines TNF-α and IL-6 and inflammatory lipid mediators, prostaglandin E2 and leukotriene B4. Adenine impeded signaling pathways eliciting production of these inflammatory mediators. It suppressed IκB phosphorylation, nuclear translocation of nuclear factor κB (NF-κB), phosphorylation of Akt and mitogen activated protein kinases (MAPKs) JNK and ERK. Although adenine raised cellular AMP which could activate AMP-dependent protein kinase (AMPK), the enzyme activity was not enhanced. In BMMCs, adenine inhibited the LPS-induced production of TNF-α, IL-6 and IL-13 and also hindered phosphorylation of NF-κB and Akt. In peritoneal cavity, adenine suppressed the LPS-induced production of TNF-α and IL-6 by peritoneal cells in mice. These results show that adenine attenuates the LPS-induced inflammatory reactions.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jun-Young Heo
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jong Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon 34520, Korea
| | - Seung-Kiel Park
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.,Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
9
|
Méndez E, Caruso Neves C, López Mañanes A. Two sodium pumps in the hepatopancreas of the intertidal euryhaline crab Neohelice granulata: biochemical characteristics and differential modulation after feeding. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
No study has been done on the existence, biochemical characteristics, and modulation of K+-independent ouabain-insensitive Na+ ATPase activity (the second sodium pump) in the digestive tract of intertidal euryhaline crabs and moreover on the coexistence and modulation under distinct physiological and (or) environmental conditions of different sodium pumps. We determined the occurrence, characteristics, and responses at different times (0, 1, 24, 48, and 120 h) after feeding upon distinct salinities of Na+ ATPase activity and Na+/K+ ATPase in the hepatopancreas of Neohelice granulata (Dana, 1851), which is a model species. The stimulation by Na+ under total inhibition of Na+/K+ ATPase activity revealed the occurrence of Na+ ATPase activity that was totally inhibited by 2 mmol·L–1 furosemide, exhibits Michaelis–Menten kinetics for ATP (apparent Km = 0.52 ± 0.16 mmol·L–1), and highest activity at around pH 7.4. In crabs acclimated to 35 psu (osmoconforming conditions), Na+ ATPase activity was highly increased (about 15-fold) (532 ± 58 nmol Pi·mg protein−1·min−1) in the hepatopancreas 48 h after feeding. In 10 psu (hyper-regulating conditions), Na+ ATPase activity decreased in the hepatopancreas 24 h after feeding (7 ± 9 nmol Pi·mg protein−1·min−1) and recovered initial values after 48 h (24 ± 35 nmol Pi·mg protein−1·min−1). Unlike Na+ ATPase, Na+/K+ ATPase activity did not change after feeding at any salinity, suggesting the specific modulation of the second sodium pump and its role in postprandial adjustments in the hepatopancreas.
Collapse
Affiliation(s)
- E. Méndez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Argentina
| | | | - A.A. López Mañanes
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Argentina
| |
Collapse
|
10
|
Kishore BK, Robson SC, Dwyer KM. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 2018; 14:109-120. [PMID: 29332180 PMCID: PMC5940625 DOI: 10.1007/s11302-017-9596-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP interacts with purinergic type 2 (P2) receptors and elicits many crucial biological functions. Extracellular ATP is sequentially hydrolyzed to ADP and AMP by the actions of defined nucleotidases, such as CD39, and AMP is converted to adenosine, largely by CD73, an ecto-5'-nucleotidase. Extracellular adenosine interacts with P1 receptors and often opposes the effects of P2 receptor activation. The balance between extracellular ATP and adenosine in the blood and extracellular fluid is regulated chiefly by the activities of CD39 and CD73, which constitute the CD39-adenosinergic axis. In recent years, several studies have shown this axis to play critical roles in transport of water/sodium, tubuloglomerular feedback, renin secretion, ischemia reperfusion injury, renal fibrosis, hypertension, diabetic nephropathy, transplantation, inflammation, and macrophage transformation. Important developments include global and targeted gene knockout and/or transgenic mouse models of CD39 or CD73, biological or small molecule inhibitors, and soluble engineered ectonucleotidases to directly impact the CD39-adenosinergic axis. This review presents a comprehensive picture of the multiple roles of CD39-adenosinergic axis in renal physiology, pathophysiology, and therapeutics. Scientific advances and greater understanding of the role of this axis in the kidney, in both health and illness, will direct development of innovative therapies for renal diseases.
Collapse
Affiliation(s)
- Bellamkonda K. Kishore
- Departments of Internal Medicine and Nutrition & Integrative Physiology, and Center on Aging, University of Utah Health, Salt Lake City, UT USA
- Nephrology Research, VA Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT 84148 USA
| | - Simon C. Robson
- Division of Gastroenterology/Hepatology and Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220 Australia
| |
Collapse
|
11
|
Hosoi T, Ino S, Ohnishi F, Todoroki K, Yoshii M, Kakimoto M, Müller CE, Ozawa K. Mechanisms of the action of adenine on anti-allergic effects in mast cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:97-105. [PMID: 29094492 PMCID: PMC5818451 DOI: 10.1002/iid3.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Introduction Mast cells play an important role in allergic responses. Methods We herein demonstrated the mechanisms of inhibitory effect of adenine on IgE/antigen‐induced degranulation and TNF‐α release in mast cells. Results We found that these effects were dependent on the amino group of adenine because purine only weakly inhibited degranulation. Adenine also inhibited Ca2+ ionophore‐ and thapsigargin‐induced degranulation, however, this inhibitory effect was weaker than that of the antigen. Therefore, the inhibitory effects of adenine on degranulation may be mediated before as well as after the Ca2+ raise under the antigen stimulus. Adenine inhibited antigen‐induced Syk and the subsequent induction of AKT and ERK activation under FcϵRI‐mediated signal. Adenine also attenuated antigen‐induced increase in Ca2+. Furthermore, adenine inhibited IgE/antigen‐induced IKKα/β activation, which is involved in degranulation. Finally, adenine protected mice against anaphylactic allergic responses in vivo. Conclusions The present study revealed a key role of adenine in the attenuation of allergic responses through the inhibition of Syk‐mediated signal transduction and IKK‐mediated degranulation.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shinsuke Ino
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Fumie Ohnishi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kenichi Todoroki
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Michiko Yoshii
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Mai Kakimoto
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
12
|
Affiliation(s)
- S. Reuter
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - R. Mrowka
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
13
|
Fukuda T, Majumder K, Zhang H, Matsui T, Mine Y. Adenine has an anti-inflammatory effect through the activation of adenine receptor signaling in mouse macrophage. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
14
|
Adenine attenuates the Ca(2+) contraction-signaling pathway via adenine receptor-mediated signaling in rat vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:999-1007. [PMID: 27318925 DOI: 10.1007/s00210-016-1264-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Our previous study demonstrated that adenine (6-amino-6H-purine) relaxed contracted rat aorta rings in an endothelial-independent manner. Although adenine receptors (AdeRs) are expressed in diverse tissues, aortic AdeR expression has not been ascertained. Thus, the aims of this study were to clarify the expression of AdeR in rat vascular smooth muscle cells (VSMCs) and to investigate the adenine-induced vasorelaxation mechanism(s). VSMCs were isolated from 8-week-old male Wistar-Kyoto rats and used in this study. Phosphorylation of myosin light chain (p-MLC) was measured by western blot. AdeR mRNA was detected by RT-PCR. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured by using Fura-2/AM. Vasorelaxant adenine (10-100 μM) significantly reduced p-MLC by angiotensin II (Ang II, 10 μM) in VSMCs (P < 0.05). We confirmed the expression of aortic AdeR mRNA and the activation of PKA in VSMCs through stimulation of AdeR by adenine by ELISA. Intracellular Ca(2+) concentration ([Ca(2+)]i) measurement demonstrated that adenine inhibits Ang II- and m-3M3FBS (PLC agonist)-induced [Ca(2+)]i elevation. In AdeR-knockdown VSMCs, PKA activation and p-MLC reduction by adenine were completely abolished. These results firstly demonstrated that vasorelaxant adenine can suppress Ca(2+) contraction signaling pathways via aortic AdeR/PKA activation in VSMCs.
Collapse
|
15
|
Kasztan M, Piwkowska A, Kreft E, Rogacka D, Audzeyenka I, Szczepanska-Konkel M, Jankowski M. Extracellular purines' action on glomerular albumin permeability in isolated rat glomeruli: insights into the pathogenesis of albuminuria. Am J Physiol Renal Physiol 2016; 311:F103-11. [PMID: 27076649 DOI: 10.1152/ajprenal.00567.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Purinoceptors (adrengeric receptors and P2 receptors) are expressed on the cellular components of the glomerular filtration barrier, and their activation may affect glomerular permeability to albumin, which may ultimately lead to albuminuria, a well-established risk factor for the progression of chronic kidney disease and development of cardiovascular diseases. We investigated the mechanisms underlying the in vitro and in vivo purinergic actions on glomerular filter permeability to albumin by measuring convectional albumin permeability (Palb) in a single isolated rat glomerulus based on the video microscopy method. Primary cultured rat podocytes were used for the analysis of Palb, cGMP accumulation, PKG-Iα dimerization, and immunofluorescence. In vitro, natural nucleotides (ATP, ADP, UTP, and UDP) and nonmetabolized ATP analogs (2-meSATP and ATP-γ-S) increased Palb in a time- and concentration-dependent manner. The effects were dependent on P2 receptor activation, nitric oxide synthase, and cytoplasmic guanylate cyclase. ATP analogs significantly increased Palb, cGMP accumulation, and subcortical actin reorganization in a PKG-dependent but nondimer-mediated route in cultured podocytes. In vivo, 2-meSATP and ATP-γ-S increased Palb but did not significantly affect urinary albumin excretion. Both agonists enhanced the clathrin-mediated endocytosis of albumin in podocytes. A product of adenine nucleotides hydrolysis, adenosine, increased the permeability of the glomerular barrier via adrenergic receptors in a dependent and independent manner. Our results suggest that the extracellular nucleotides that stimulate an increase of glomerular Palb involve nitric oxide synthase and cytoplasmic guanylate cyclase with actin reorganization in podocytes.
Collapse
Affiliation(s)
- Małgorzata Kasztan
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | - Ewelina Kreft
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | | | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland; and Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| |
Collapse
|
16
|
Peti-Peterdi J, Kishore BK, Pluznick JL. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2015; 78:391-414. [PMID: 26667077 DOI: 10.1146/annurev-physiol-021115-105403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah 84148;
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
17
|
Persson PB, Zakrisson A. Dietary supplements: health from the ocean? Acta Physiol (Oxf) 2015; 215:119-22. [PMID: 26333065 DOI: 10.1111/apha.12594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - A. Zakrisson
- Department of Ecology, Environment and Plant Sciences; Stockholm University; Stockholm Sweden
| |
Collapse
|
18
|
Persson AEG, Carlström M. Renal purinergic signalling in health and disease. Acta Physiol (Oxf) 2015; 213:805-7. [PMID: 25613023 DOI: 10.1111/apha.12459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. E. G. Persson
- Department of Medical Cellbiology; Uppsala University; Uppsala Sweden
| | - M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|