1
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
2
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Millyard A, Layden JD, Pyne DB, Edwards AM, Bloxham SR. Impairments to Thermoregulation in the Elderly During Heat Exposure Events. Gerontol Geriatr Med 2020; 6:2333721420932432. [PMID: 32596421 PMCID: PMC7297481 DOI: 10.1177/2333721420932432] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Heat waves represent a public health risk to elderly people, and typically result in an increased rate of hospital admissions and deaths. Studies of thermoregulation in this cohort have generally focused on single elements such as sweating capacity. Sweating capacity and skin blood flow reduce with age, reducing ability to dissipate heat. Perception of effort during heat exposure is emerging as an area that needs further investigation as the elderly appear to lack the ability to adequately perceive increased physiological strain during heat exposure. The role of the gut and endotoxemia in heat stress has received attention in young adults, while the elderly population has been neglected. This shortcoming offers another potential avenue for identifying effective integrated health interventions to reduce heat illnesses. Increasing numbers of elderly individuals in populations worldwide are likely to increase the incidence of heat wave-induced deaths if adequate interventions are not developed, evaluated, and implemented. In this narrative-style review we identify and discuss health-related interventions for reducing the impact of heat illnesses in the elderly.
Collapse
Affiliation(s)
| | | | - David B Pyne
- University of Canberra, Australian Capital Territory, Australia
| | | | | |
Collapse
|
4
|
Périard JD, Houtkamp D, Bright F, Daanen HAM, Abbiss CR, Thompson KG, Clark B. Hyperoxia enhances self‐paced exercise performance to a greater extent in cool than hot conditions. Exp Physiol 2019; 104:1398-1407. [DOI: 10.1113/ep087864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 11/08/2022]
Affiliation(s)
- J. D. Périard
- University of Canberra Research Institute for Sport and Exercise Bruce ACT Australia
| | - D. Houtkamp
- University of Canberra Research Institute for Sport and Exercise Bruce ACT Australia
- Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - F. Bright
- University of Canberra Research Institute for Sport and Exercise Bruce ACT Australia
| | - H. A. M. Daanen
- Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - C. R. Abbiss
- Centre for Exercise and Sports Science ResearchSchool of Medical and Health Sciences, Edith Cowan University Joondalup WA Australia
| | - K. G. Thompson
- University of Canberra Research Institute for Sport and Exercise Bruce ACT Australia
- New South Wales Institute of Sport Sydney NSW Australia
| | - B. Clark
- University of Canberra Research Institute for Sport and Exercise Bruce ACT Australia
| |
Collapse
|
5
|
Rahman M, Karwowski W, Fafrowicz M, Hancock PA. Neuroergonomics Applications of Electroencephalography in Physical Activities: A Systematic Review. Front Hum Neurosci 2019; 13:182. [PMID: 31214002 PMCID: PMC6558147 DOI: 10.3389/fnhum.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Recent years have seen increased interest in neuroergonomics, which investigates the brain activities of people engaged in diverse physical and cognitive activities at work and in everyday life. The present work extends upon prior assessments of the state of this art. However, here we narrow our focus specifically to studies that use electroencephalography (EEG) to measure brain activity, correlates, and effects during physical activity. The review uses systematically selected, openly published works derived from a guided search through peer-reviewed journals and conference proceedings. Identified studies were then categorized by the type of physical activity and evaluated considering methodological and chronological aspects via statistical and content-based analyses. From the identified works (n = 110), a specific number (n = 38) focused on less mobile muscular activities, while an additional group (n = 22) featured both physical and cognitive tasks. The remainder (n = 50) investigated various physical exercises and sporting activities and thus were here identified as a miscellaneous grouping. Most of the physical activities were isometric exertions, moving parts of upper and lower limbs, or walking and cycling. These primary categories were sub-categorized based on movement patterns, the use of the event-related potentials (ERP) technique, the use of recording methods along with EEG and considering mental effects. Further information on subjects' gender, EEG recording devices, data processing, and artifact correction methods and citations was extracted. Due to the heterogeneous nature of the findings from various studies, statistical analyses were not performed. These were thus included in a descriptive fashion. Finally, contemporary research gaps were pointed out, and future research prospects to address those gaps were discussed.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Neurobiology Department, The Maloploska Center of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Peter A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
6
|
Wingfield G, Marino F, Skein M. The influence of knowledge of performance endpoint on pacing strategies, perception of effort, and neural activity during 30-km cycling time trials. Physiol Rep 2018; 6:e13892. [PMID: 30426727 PMCID: PMC6234147 DOI: 10.14814/phy2.13892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/02/2022] Open
Abstract
It is understood that withholding information during exercise can alter performance during self-paced exercise, though less is known about neural activity during such exercise. The aim of this study was to compare the effects of withholding versus providing distance feedback on perception, muscular activation, and cerebral activity during cycling time trials (TT). Nine well-trained male cyclists randomly completed 2 x 30-km TT, with provision of performance information and distance feedback (known; KTT), and without performance information and remaining distance (unknown; UTT). Prefrontal cortex (PFC) hemoglobin concentration, electroencephalogy (EEG) responses of the parietal lobe (PL) and motor cortex (MC), and surface electromyogram (EMG) of the right thigh were monitored throughout the TTs, in addition to heart rate (HR), rating of perceived exertion (RPE), and power output (PO). Time to completion was shorter for the KTT compared to UTT (51.04 ± 3.26 vs. 49.25 ± 3.57 min, P = 0.01). There were no differences evident for RPE between conditions (P > 0.50). However, during the final 2 km, the KTT presented higher PO (P ≤ 0.05), HR (P = 0.03) and MC, and PL EEG activity (d = 0.51-0.71) in addition to increased tissue hemoglobin index (nTHI) and oxygen extraction (HHb) (d = 0.55-0.65) compared to the UTT. In conclusion, when withholding information pertaining to remaining distance, performance was reduced due to the application of a conservative pacing strategy. In addition, the increase in HHb across the PFC was strongly correlated with PO (r = 0.790; P < 0.001) suggesting knowledge about remaining distance may increase activation across the PFC. Further, it appears that changes within the PFC may play a role in the regulation of cycling performance.
Collapse
Affiliation(s)
- Georgia Wingfield
- School of Exercise Science, Sport and HealthCharles Sturt UniversityBathurstNew South WalesAustralia
| | - Frank Marino
- School of Exercise Science, Sport and HealthCharles Sturt UniversityBathurstNew South WalesAustralia
| | - Melissa Skein
- School of Exercise Science, Sport and HealthCharles Sturt UniversityBathurstNew South WalesAustralia
| |
Collapse
|
7
|
Deception of cycling distance on pacing strategies, perceptual responses, and neural activity. Pflugers Arch 2018; 471:285-299. [PMID: 30343333 DOI: 10.1007/s00424-018-2218-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/04/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
Pacing during exercise performance is well-established; however, little is known about the neural responses associated with changes in power output and the effect of exercise end-point knowledge. Therefore, the aim of this study was to examine the effect of deception of cycling distance on pacing, cerebral oxy- (O2Hb) and deoxy-haemoglobin concentrations, and alpha (α) wave activity. Ten well-trained male cyclists (23.7 ± 6.6 years) completed three cycling time trials (TT) on a stationary air-braked cycle ergometer and were informed the study was to examine the reliability of 3 × 30-km TT. Participants unknowingly completed three distances (24, 30, and 36 km) in a randomised order. Performance (power output; PO), physiological (heart rate; HR), perceptual (rating of perceived exertion; RPE), and neurological (O2Hb, HHb, and α activity) measures were recorded throughout each TT. Data were converted to a percentage relative to the total distance covered. At 100% completion, HR and PO were lower during the 36 km compared to the 30 km trial (P ≤ 0.01). Compared to the 24 km trial, α waves were reduced at 100% (effect size; ES = 1.01), while O2Hb was greater at 70% of completion in the 36 km trial (ES = 1.39). RPE was also higher for 36 km compared to 30-km trial at 80% and the 24-km trial at 10% and 40-100% of completion (P ≤ 0.02). We conclude that the increase in O2Hb and RPE during the 36-km trial, while a reduction in HR and PO is present, may indicate that the pre-frontal cortex may influence the regulation of exercise performance when deceived of the duration end-point by increasing perception of effort to reduce premature onset of physiological strain.
Collapse
|
8
|
Wallace PJ, McKinlay BJ, Cheung SS. Comment on: "Endurance Performance is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations". Sports Med 2018; 48:2671-2673. [PMID: 29700785 DOI: 10.1007/s40279-018-0929-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Phillip J Wallace
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Brandon J McKinlay
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Stephen S Cheung
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|