1
|
Ma L, Xiong L, Huang G. Effects of mirabegron on brown adipose tissue and metabolism in humans: A systematic review and meta-analysis. Eur J Clin Pharmacol 2024; 80:317-333. [PMID: 38159219 DOI: 10.1007/s00228-023-03614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Brown adipose tissue (BAT) has emerged as a potential therapeutic target for metabolic disorders due to its thermogenic and anti-obesity properties. β3-adrenergic receptor (β3-AR) agonists have also gained attention as potential agents for BAT activation and metabolic regulation. Mirabegron, a selective β3-AR-agonist used clinically for overactive bladder syndrome, has been explored for its utility in metabolic disorders. However, the controversy surrounding the ability of mirabegron to activate BAT to accelerate metabolism requires further investigation. The aim of this systematic review is to characterize comprehensively the impact of mirabegron on human BAT and its metabolism. METHODS We searched PubMed Central, Web of Science, Embase, and Cochrane Library databases for relevant papers published from the date of database inception to March 2023 for systematic reviews and meta-analyses. We extracted data on primary outcome indicators such as BAT volume, BAT activity, body temperature, and resting energy expenditure (REE), as well as secondary outcome indicators such as heart rate (HR), diastolic blood pressure (DBP), systolic blood pressure (SBP), non-esterified fatty acids (NEFA), blood glucose, and blood insulin from relevant studies. For studies that did not provide suitable data for meta-analysis, we used narrative data synthesis. For studies that provided suitable data for meta-analysis, we conducted meta-analysis using RevMan 5.4 software. RESULTS We reviewed 10 papers and included 6 in our meta-analysis. Our findings revealed no significant changes in BAT volume (p = 0.72) or blood glucose (p = 0.52) with mirabegron when compared to the placebo or pre-dose population. However, patients showed significant increases in BAT activity (p < 0.01), blood NEFA (p < 0.01), body temperature (p < 0.01), REE (p < 0.01), HR (p < 0.01), DBP (p < 0.01), SBP (p = 0.25), and blood insulin (p < 0.01). CONCLUSION Through our meta-analysis of 6 papers, we found that mirabegron has the potential to increase human BAT activity, REE, NEFA content, body temperature, HR, blood pressure, and blood insulin content. These effects may lead to reductions in blood glucose levels in obese/overweight and diabetic patients. Additionally, the activation of BAT by mirabegron could represent a novel approach for treating obesity, diabetes, and cardiovascular disease. TRIAL REGISTRATION NUMBER AND DATE CRD42023413446, 04/11/2023.
Collapse
Affiliation(s)
- Lili Ma
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lianqiu Xiong
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
2
|
Abstract
The classical dogma states that brown adipose tissue (BAT) plays a major role in the regulation of temperature in neonates. However, although BAT has been studied in infants for more than a century, the knowledge about its physiological features at this stage of life is rather limited. This has been mainly due to the lack of appropriate investigation methods, ethically suitable for neonates. Here, we have applied non-invasive infrared thermography (IRT) to investigate neonatal BAT activity. Our data show that BAT temperature correlates with body temperature and that mild cold stimulus promotes BAT activation in newborns. Notably, a single short-term cold stimulus during the first day of life improves the body temperature adaption to a subsequent cold event. Finally, we identify that bone morphogenic protein 8B (BMP8B) is associated with the BAT thermogenic response in neonates. Overall, our data uncover key features of the setup of BAT thermogenesis in newborns.
Collapse
|
3
|
Piquer-Garcia I, Cereijo R, Corral-Pérez J, Pellitero S, Martínez E, Taxerås SD, Tarascó J, Moreno P, Balibrea J, Puig-Domingo M, Serra D, Herrero L, Jiménez-Pavón D, Lerin C, Villarroya F, Sánchez-Infantes D. Use of Infrared Thermography to Estimate Brown Fat Activation After a Cooling Protocol in Patients with Severe Obesity That Underwent Bariatric Surgery. Obes Surg 2021; 30:2375-2381. [PMID: 32133589 DOI: 10.1007/s11695-020-04502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND In contrast to the energy-storing role of white adipose tissue (WAT), brown adipose tissue (BAT) acts as the main site of non-shivering thermogenesis in mammals and has been reported to play a role in protection against obesity and associated metabolic alterations in rodents. Infrared thermography (IRT) has been proposed as a novel non-invasive, safe, and quick method to estimate BAT thermogenic activation in humans. The aim of this study is to determine whether the IRT could be a potential new tool to estimate BAT thermogenic activation in patients with severe obesity in response to bariatric surgery. METHODS Supraclavicular BAT thermogenic activation was evaluated using IRT in a cohort of 31 patients (50 ± 10 years old, BMI = 44.5 ± 7.8; 15 undergoing laparoscopy sleeve gastrectomy and 16 Roux-en-Y gastric bypass) at baseline and 6 months after a bariatric surgery. Clinical parameters were determined at these same time points. RESULTS Supraclavicular BAT-related activity was detected in our patients by IRT after a cooling stimulus. The BAT thermogenic activation was higher at 6 months after laparoscopy sleeve gastrectomy (0.06 ± 0.1 vs 0.32 ± 0.1), while patients undergoing to a roux-en-Y gastric bypass did not change their thermogenic response using the same cooling stimulus (0.09 ± 0.1 vs 0.08 ± 0.1). CONCLUSIONS Our study postulates the IRT as a potential tool to evaluate BAT thermogenic activation in patients with obesity before and after a bariatric surgery. Further studies are needed to evaluate differences between LSG technique and RYGB on BAT activation.
Collapse
Affiliation(s)
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Corral-Pérez
- MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cadiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, Cadiz, Spain
| | - Silvia Pellitero
- Germans Trias i Pujol Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Fisiopatología de la Diabetes y enfermedades metabólicas (CIBERDEM), ISCIII, Madrid, Spain
| | - Eva Martínez
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Siri D Taxerås
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Jordi Tarascó
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Pau Moreno
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - José Balibrea
- Metabolic and Bariatric Surgery Unit, EAC-BS Center of Excellence, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Fisiopatología de la Diabetes y enfermedades metabólicas (CIBERDEM), ISCIII, Madrid, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB),, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB),, Universitat de Barcelona, 08028, Barcelona, Spain
| | - David Jiménez-Pavón
- MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cadiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, Cadiz, Spain
| | - Carles Lerin
- Endocrinology department, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - David Sánchez-Infantes
- Germans Trias i Pujol Research Institute, Barcelona, Spain. .,Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruti, Camí de les Escoles s/n, Badalona, 08916, Barcelona, Spain.
| |
Collapse
|
4
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
5
|
Adipose tissue depot differences in adipokines and effects on skeletal and cardiac muscle. Curr Opin Pharmacol 2020; 52:1-8. [PMID: 32387807 DOI: 10.1016/j.coph.2020.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
White (WAT) and brown (BAT) adipose tissue communicate with skeletal muscle and heart through the secretion of adipokines (adiponectin, leptin, omentin, osteopontin or cardiotrophin-1) and batokines (BMP8b, FGF-21, endothelin-1 or IL-6), respectively. Furthermore, several bioactive lipids termed lipokines [palmitoleate (C16:1n7) or 12,13-diHOME] and microRNAs capsuled in exosomes (miR-27a, miR122, miR-130b, miR-155, miR-200a or miR-320d) secreted from white and brown adipocytes also influence the skeletal and cardiac muscle function. The review focuses on the depot-related differences in adipose tissue-derived signals (adipokines, batokines, lipokines and exosomal miRNAs) and their impact on skeletal muscle under physiological conditions as well as in obesity. The relevance of regular physical activity and exercise on fat depot-specific adaptations to improve metabolic health will also be addressed.
Collapse
|
6
|
Niendorf T, Frydman L, Neeman M, Seeliger E. Google maps for tissues: Multiscale imaging of biological systems and disease. Acta Physiol (Oxf) 2020; 228:e13392. [PMID: 31549487 DOI: 10.1111/apha.13392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | | | | | - Erdmann Seeliger
- Institute of Physiology Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin Berlin Institute of Health Berlin Germany
| |
Collapse
|
7
|
Jimenez‐Pavon D, Corral‐Perez J, Sánchez‐Infantes D, Villarroya F, Ruiz JR, Martinez‐Tellez B. Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review. Obesity (Silver Spring) 2019; 27:1932-1949. [PMID: 31691547 PMCID: PMC6899990 DOI: 10.1002/oby.22635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) is a thermogenic tissue with potential as a therapeutic target in the treatment of obesity and related metabolic disorders. The most used technique for quantifying human BAT activity is the measurement of 18 F-fluorodeoxyglucose uptake via a positron emission tomography/computed tomography scan following exposure to cold. However, several studies have indicated the measurement of the supraclavicular skin temperature (SST) by infrared thermography (IRT) to be a less invasive alternative. This work reviews the state of the art of this latter method as a means of determining BAT activity in humans. METHODS The data sources for this review were PubMed, Web of Science, and EBSCOhost (SPORTdiscus), and eligible studies were those conducted in humans. RESULTS In most studies in which participants were first cooled, an increase in IRT-measured SST was noted. However, only 5 of 24 such studies also involved a nuclear technique that confirmed increased activity in BAT, and only 2 took into account the thickness of the fat layer when measuring SST by IRT. CONCLUSIONS More work is needed to understand the involvement of tissues other than BAT in determining IRT-measured SST; at present, IRT cannot determine whether any increase in SST is due to increased BAT activity.
Collapse
Affiliation(s)
- David Jimenez‐Pavon
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - Juan Corral‐Perez
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - David Sánchez‐Infantes
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBadalonaBarcelonaSpain
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
| | - Francesc Villarroya
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
- Department of Biochemistry and Molecular BiomedicineInstitute of BiomedicineBarcelonaSpain
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Borja Martinez‐Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenthe Netherlands
| |
Collapse
|
8
|
Nirengi S, Wakabayashi H, Matsushita M, Domichi M, Suzuki S, Sukino S, Suganuma A, Kawaguchi Y, Hashimoto T, Saito M, Sakane N. An optimal condition for the evaluation of human brown adipose tissue by infrared thermography. PLoS One 2019; 14:e0220574. [PMID: 31449537 PMCID: PMC6709909 DOI: 10.1371/journal.pone.0220574] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis and is an attractive therapeutic target for combating obesity and related diseases. Human BAT activity has been evaluated by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18FDG-PET/CT) under acute cold exposure, but the method has some serious limitations, including radiation exposure. Infrared thermography (IRT) may be a simple and less-invasive alternative to evaluate BAT activity. In the present study, to establish an optimal condition for IRT, using a thermal imaging camera, skin temperature was measured in the supraclavicular region close to BAT depots (Tscv) and the control chest region (Tc) in 24 young healthy volunteers. Their BAT activity was assessed as the maximal standardized uptake value (SUVmax) by 18FDG-PET/CT. Under a warm condition at 24–27°C, no significant correlation was found between the IRT parameters (Tscv, Tc,, and the difference between Tscv and Tc,, Δtemp) and SUVmax, but 30–120 min after cold exposure at 19°C, Tscv and Δtemp were significantly correlated with SUVmax (r = 0.40–0.48 and r = 0.68–0.76). Δtemp after cold exposure was not affected by mean body temperature, body fatness, and skin blood flow. A lower correlation (r = 0.43) of Δtemp with SUVmax was also obtained when the participant’s hands were immersed in water at 18°C for 5 min. Receiver operating characteristic analysis revealed that Δtemp after 30–60 min cold exposure can be used as an index for BAT evaluation with 74% sensitivity, 92% specificity, and 79% diagnostic accuracy. Thus, IRT may be useful as a simple and less-invasive method for evaluating BAT, particularly for large-scale screening and longitudinal repeat studies.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hitoshi Wakabayashi
- Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | | | - Masayuki Domichi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Shinichi Suzuki
- Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Shin Sukino
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akiko Suganuma
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yaeko Kawaguchi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | | | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- * E-mail:
| |
Collapse
|
9
|
Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Sci Rep 2019; 9:9104. [PMID: 31235722 PMCID: PMC6591281 DOI: 10.1038/s41598-019-45540-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/05/2019] [Indexed: 12/01/2022] Open
Abstract
Brown adipose tissue (BAT) is able to rapidly generate heat and metabolise macronutrients, such as glucose and lipids, through activation of mitochondrial uncoupling protein 1 (UCP1). Diet can modulate UCP1 function but the capacity of individual nutrients to promote the abundance and activity of UCP1 is not well established. Caffeine consumption has been associated with loss of body weight and increased energy expenditure, but whether it can activate UCP1 is unknown. This study examined the effect of caffeine on BAT thermogenesis in vitro and in vivo. Stem cell-derived adipocytes exposed to caffeine (1 mM) showed increased UCP1 protein abundance and cell metabolism with enhanced oxygen consumption and proton leak. These functional responses were associated with browning-like structural changes in mitochondrial and lipid droplet content. Caffeine also increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial biogenesis, together with a number of BAT selective and beige gene markers. In vivo, drinking coffee (but not water) stimulated the temperature of the supraclavicular region, which co-locates to the main region of BAT in adult humans, and is indicative of thermogenesis. Taken together, these results demonstrate that caffeine can promote BAT function at thermoneutrality and may have the potential to be used therapeutically in adult humans.
Collapse
|