1
|
Lim PC, Yap BK, Tay YJ, Hanapi NA, Yusof SR, Lee CY. Discovery of aurones bearing two amine functionalities as SHIP2 inhibitors with insulin-sensitizing effect in rat myotubes. RSC Med Chem 2024; 15:2179-2195. [PMID: 38911152 PMCID: PMC11187551 DOI: 10.1039/d3md00360d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/25/2023] [Indexed: 06/25/2024] Open
Abstract
Pharmacological inhibition of the SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) by small-molecule compounds presents an attractive approach to modulate insulin sensitivity. Few drug-like SHIP2 inhibitors have been discovered to date. A series of aurones incorporating key motifs from known SHIP2 inhibitors were synthesized and evaluated for SHIP2-inhibiting activity against a recombinant SHIP2 protein in vitro. Three aurones that inhibited SHIP2 at 15-50 μM were identified. These aurone inhibitors required two amine functionalities, one at ring A and a second at ring B for good inhibitory activity as exemplified by 12a. Mechanistically, molecular dynamics simulations revealed 12a to preferably bind to an allosteric site, restricting the motion of the flexible L4 loop required for SHIP2 phosphatase activity. Additionally, a basic piperidine moiety of 12a interacted with an aspartate residue proximal to the site. At 20-40 μM, 12a significantly enhanced glucose uptake in rat myotubes via increased Akt phosphorylation. 12a showed good permeability across the Caco-2 cell monolayer supporting the aurone chemotype as a new lead to develop drug-like, oral insulin sensitizers.
Collapse
Affiliation(s)
- Phei Ching Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| | - Yi Juin Tay
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| | - Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia Minden 11800 Penang Malaysia
| | - Siti Rafidah Yusof
- Centre for Drug Research, Universiti Sains Malaysia Minden 11800 Penang Malaysia
| | - Chong-Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| |
Collapse
|
2
|
Wang M, Sun J, Yan X, Yang W, Wang W, Li Y, Wang L, Song L. CgSHIP2 negatively regulates the mRNA expressions of CgIL-17s in response to Vibrio splendidus stimulation in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109612. [PMID: 38705548 DOI: 10.1016/j.fsi.2024.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.
Collapse
Affiliation(s)
- Mengjia Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
A blast from the past: To tame time with metformin. Mech Ageing Dev 2022; 208:111743. [PMID: 36279989 DOI: 10.1016/j.mad.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The strong evidence of metformin use in subjects affected by type 2 diabetes (T2DM) on health outcomes, together with data from pre-clinical studies, has led the gerontological research to study the therapeutic potential of such a drug as a slow-aging strategy. However, despite clinical use for over fifty years as an anti-diabetic drug, the mechanisms of action beyond glycemic control remain unclear. In this review, we have deeply examined the literature, doing a narrative review from the metformin story, through mechanisms of action to slow down aging potential, from lower organisms to humans. Based on the available evidence, we conclude that metformin, as shown in lower organisms and mice, may be effective in humans' longevity. A complete analysis and follow-up of ongoing clinical trials may provide more definitive answers as to whether metformin should be promoted beyond its use to treat T2DM as a drug that enhances both healthspan and lifespan.
Collapse
|
5
|
Ye Q, Lan B, Liu H, Persson PB, Lai EY, Mao J. A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiol (Oxf) 2022; 235:e13850. [PMID: 35716094 DOI: 10.1111/apha.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023]
Abstract
Selective glomerular filtration relies on the membrane separating the glomerular arterioles from the Bowman space. As a major component of the glomerular filtration barrier, podocytes form foot processes by the actin cytoskeleton, which dynamically adjusts in response to environmental changes to maintain filtration barrier integrity. The slit diaphragms bridge the filtration slits between neighboring foot processes and act as signaling hubs interacting with the actin cytoskeleton. Focal adhesions relay signals to regulate actin dynamics while allowing podocyte adherence to the basement membrane. Mutations in actin regulatory and signaling proteins may disrupt the actin cytoskeleton, resulting in foot process retraction, effacement, and proteinuria. Large-scale gene expression profiling platforms, transgenic animal models, and other in vivo gene delivery methods now enhance our understanding of the interactions among podocyte focal adhesions, slit diaphragms, and actin dynamics. In addition, our team found that at least 66% of idiopathic nephrotic syndrome (INS) children have podocyte autoantibodies, which was defined as a new disease subgroup-, autoimmune podocytopathies. This review outlines the pathophysiological mechanisms of podocyte cytoskeleton protein interactions in proteinuria and glomerular podocytopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bing Lan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany
| | - En Yin Lai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
6
|
Indorf P, Patzak A, Lichtenberger F. Drug metabolism in animal models and humans: Translational aspects and chances for individual therapy. Acta Physiol (Oxf) 2021; 233:e13734. [PMID: 34637592 DOI: 10.1111/apha.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick Indorf
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| | - Andreas Patzak
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| | - Falk‐Bach Lichtenberger
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
7
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
8
|
Lehtonen S. Metformin Protects against Podocyte Injury in Diabetic Kidney Disease. Pharmaceuticals (Basel) 2020; 13:ph13120452. [PMID: 33321755 PMCID: PMC7764076 DOI: 10.3390/ph13120452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin is the most commonly prescribed drug for treating type 2 diabetes mellitus (T2D). Its mechanisms of action have been under extensive investigation, revealing that it has multiple cellular targets, either direct or indirect ones, via which it regulates numerous cellular pathways. Diabetic kidney disease (DKD), the serious complication of T2D, develops in up to 50% of the individuals with T2D. Various mechanisms contribute to the development of DKD, including hyperglycaemia, dyslipidemia, oxidative stress, chronic low-grade inflammation, altered autophagic activity and insulin resistance, among others. Metformin has been shown to affect these pathways, and thus, it could slow down or prevent the progression of DKD. Despite several animal studies demonstrating the renoprotective effects of metformin, there is no concrete evidence in clinical settings. This review summarizes the renoprotective effects of metformin in experimental settings. Special emphasis is on the effects of metformin on podocytes, the glomerular epithelial cells that are central in maintaining the glomerular ultrafiltration function.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism and Department of Pathology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
9
|
Yuan X, Ding L, Diao J, Wen S, Xu C, Zhou L, Du A. PolyMet-HA nanocomplexs regulates glucose uptake by inhibiting SHIP2 activity. J Biomater Appl 2020; 35:849-856. [PMID: 32741295 DOI: 10.1177/0885328220947343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metformin, the first-line drug to treat type 2 diabetes, inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. The major adverse effects caused by metformin were lactic acidosis and gastrointestinal discomfort. Therefore, there is need to develop a strategy with excellent permeability and appropriate retention effects.In this study, we synthesized a simple and biocompatible PolyMetformin (denoted as PolyMet) through conjugation of PEI1.8K with dicyandiamide, and then formed PolyMet-hyaluronic acid (HA) nanocomplexs by electrostatic self-assembly of the polycationic PolyMet and polyanionic hyaluronic acid (HA). Similar to metformin, the PolyMet-HA nanocomplexs could reduce the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. In SHIP2-overexpressing myotubes, PolyMet-HA nanocomplexes ameliorated glucose uptake by downregulating glucose transporter 4 endocytosis. PolyMet-HA nanocomplexes also could restore Akt signaling and protect the podocyte from apoptosis induced by SHIP2 overexpression. In essence, the PolyMet-HA nanocomplexes act similarly to metformin and increase glucose uptake, and maybe have a potential role in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Xinlu Yuan
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ling Ding
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Jianjun Diao
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Song Wen
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Chenglin Xu
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ligang Zhou
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Anqing Du
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
10
|
Petrie JR, Rossing PR, Campbell IW. Metformin and cardiorenal outcomes in diabetes: A reappraisal. Diabetes Obes Metab 2020; 22:904-915. [PMID: 32009286 PMCID: PMC7317924 DOI: 10.1111/dom.13984] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
The guidance issued to the pharmaceutical industry by the US Food and Drug Administration in 2008 has led to the publication of a series of randomized, controlled cardiovascular outcomes trials with newer therapeutic classes of glucose-lowering medications. Several of these trials, which evaluated the newer therapeutic classes of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, have reported a reduced incidence of major adverse cardiovascular and/or renal outcomes, usually relative to placebo and standard of care. Metformin was the first glucose-lowering agent reported to improve cardiovascular outcomes in the UK Prospective Diabetes Study (UKPDS) and thus became the foundation of standard care. However, as this clinical trial reported more than 20 years ago, differences from current standards of trial design and evaluation complicate comparison of the cardiovascular profiles of older and newer agents. Our article revisits the evidence for cardiovascular protection with metformin and reviews its effects on the kidney.
Collapse
Affiliation(s)
- John R. Petrie
- Institute of Cardiovascular & Medical SciencesUniversity of GlasgowGlasgowUK
| | - Peter R. Rossing
- Steno Diabetes CenterCopenhagenDenmark
- University of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
11
|
Lehtonen S. SHIPping out diabetes-Metformin, an old friend among new SHIP2 inhibitors. Acta Physiol (Oxf) 2020; 228:e13349. [PMID: 31342643 PMCID: PMC6916339 DOI: 10.1111/apha.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
SHIP2 (Src homology 2 domain‐containing inositol 5′‐phosphatase 2) belongs to the family of 5′‐phosphatases. It regulates the phosphoinositide 3‐kinase (PI3K)‐mediated insulin signalling cascade by dephosphorylating the 5′‐position of PtdIns(3,4,5)P3 to generate PtdIns(3,4)P2, suppressing the activity of the pathway. SHIP2 mouse models and genetic studies in human propose that increased expression or activity of SHIP2 contributes to the pathogenesis of the metabolic syndrome, hypertension and type 2 diabetes. This has raised great interest to identify SHIP2 inhibitors that could be used to design new treatments for metabolic diseases. This review summarizes the central mechanisms associated with the development of diabetic kidney disease, including the role of insulin resistance, and then moves on to describe the function of SHIP2 as a regulator of metabolism in mouse models. Finally, the identification of SHIP2 inhibitors and their effects on metabolic processes in vitro and in vivo are outlined. One of the newly identified SHIP2 inhibitors is metformin, the first‐line medication prescribed to patients with type 2 diabetes, further boosting the attraction of SHIP2 as a treatment target to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|