1
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
Qing L, Li Q, Dong Z. MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer 2022; 109:1202-1216. [DOI: 10.1016/j.bulcan.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
3
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
4
|
Recombinant MUC1-MBP fusion protein vaccine combined with CpG2006 induces antigen-specific CTL responses through cDC1-mediated cross-priming mainly regulated by type I IFN signaling in mice. Immunol Lett 2022; 245:38-50. [DOI: 10.1016/j.imlet.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
|
5
|
OUP accepted manuscript. Glycobiology 2022; 32:556-579. [DOI: 10.1093/glycob/cwac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
|
6
|
Huang TQ, Bi YN, Cui Z, Guan JP, Huang YC. MUC1 confers radioresistance in head and neck squamous cell carcinoma (HNSCC) cells. Bioengineered 2021; 11:769-778. [PMID: 32662743 PMCID: PMC8291802 DOI: 10.1080/21655979.2020.1791590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mucin 1 (MUC1), a transmembrane glycoprotein, has shown to be as the possible prognostic marker to predict the risk of aggressive head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated the effect of MUC1 in HNSCC cells and the response to X-ray irradiation (IR). Here, we examined the impact of MUC1 overexpression or downexpression on clonogenic survival and apoptosis in response to X-ray irradiation (IR). Radioresistance and radiosensitivity were also observed in HNSCC cells that are MUC1 overexpression and MUC1 downexpression. This enhanced resistance to IR in MUC1-overexpressing cells is primarily due to increased the number of radiation-induced γH2AX/53BP1-positive foci and DNA double-strand break (DSB) repair kinetics. MUC1 overexpression repaired more than 90% of DSBs after 2 Gy radiation by 24 h compared to the empty vector overexpressing cells with less than 50% of DSB repair. However, MUC1 downexpression repaired less than 20% of DSBs compared to the empty vector-overexpresing cells. MUC1 overexpression inhibited proapoptotic protein expression, such as caspase-3, caspase-8, and caspase-9, and induced antiapoptotic protein Bcl-2, followed by resistance to IR-induced apoptosis. Our results showed that targeting MUC1 may be as a promising strategy to counteract radiation resistance of HNSCC cells.
Collapse
Affiliation(s)
- Tian-Qiao Huang
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Ya-Nan Bi
- Operating Room, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Zheng Cui
- Endoscopy, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Jin-Ping Guan
- Emergency Surgery, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Yi-Chuan Huang
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| |
Collapse
|
7
|
Liao C, An J, Tan Z, Xu F, Liu J, Wang Q. Changes in Protein Glycosylation in Head and Neck Squamous Cell Carcinoma. J Cancer 2021; 12:1455-1466. [PMID: 33531990 PMCID: PMC7847636 DOI: 10.7150/jca.51604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is an important posttranslational modification of proteins, and it has a profound influence on diverse life processes. An abnormal polysaccharide structure and mutation of the glycosylation pathway are closely correlated with human cancer progression. Glycoproteins such as EGFR, E-cadherin, CD44, PD-1/PD-L1, B7-H3 and Muc1 play important roles in the progression of head and neck squamous cell carcinoma (HNSCC), and their levels of glycosylation and changes in glycosyl structure are closely linked to HNSCC progression and malignant transformation. The regulation of protein glycosylation in HNSCC provides potential strategies to control cancer stem cell (CSC) subgroup expansion, epithelial-mesenchymal transition (EMT), tumor-related immunity escape and autophagy. Glycoproteins with altered glycosylation can be used as biomarkers for the early diagnosis, monitoring and prognostication of HNSCC. However, the glycobiology of cancer is still a new field that needs to be deeply studied, especially in HNSCC.
Collapse
Affiliation(s)
- Chengcheng Liao
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Fangping Xu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
8
|
Mandara MT, Foiani G, Silvestri S, Chiaradia E. Immunoexpression of epithelial membrane antigen in canine meningioma: Novel results for perspective considerations. Vet Comp Oncol 2020; 19:115-122. [PMID: 32875656 DOI: 10.1111/vco.12648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/27/2022]
Abstract
Epithelial membrane antigen (EMA) is one of the most widely used diagnostic immunohistochemical markers for human meningioma. To date, no published study on EMA expression in formalin-fixed paraffin-embedded (FFPE) tissue samples of canine meningioma is available. Here, we describe the results of an immunohistochemical study on 25 FFPE canine meningiomas using a monoclonal anti-human EMA antibody. All meningiomas showed positive staining for EMA with cytoplasmic pattern, in nine cases associated with membranous staining. Area and intensity of staining were highly variable among cases. No clear relationships between tumour subtype/grade and area/intensity of staining were found. However, epithelial-like patterns showed a higher affinity for EMA compared to the mesenchymal one. The present study provides the basis to explore the potential diagnostic application of this marker in canine meningioma. To investigate EMA expression in other central nervous system tumours of dogs are necessary to assess the specificity of this marker.
Collapse
Affiliation(s)
| | - Greta Foiani
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
9
|
Kashyap B, Kullaa AM. Regulation of mucin 1 expression and its relationship with oral diseases. Arch Oral Biol 2020; 117:104791. [PMID: 32652493 DOI: 10.1016/j.archoralbio.2020.104791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The aim of this study is to describe the polymorphic mucin 1 (MUC1), and to provide an overview of the known complex and multiple functions of MUC1 in normal oral mucosa and oral mucosal lesions in compromised situations as well as exploring the challenges associated with the heterogeneous nature of MUC1. We will review the current knowledge and provide insights into the future management possibilities of using MUC1 as a therapeutic agent. METHODS A literature search of the electronic databases included MEDLINE (1966 -December 2019) and hand searches of cross-references were undertaken using terms related to mucins, MUC1. RESULTS MUC1 is a large transmembrane glycoprotein expressed on the apical surface of most of epithelial cell surfaces. Not only is it involved in lubrication, cell surface hydration, and protection against degrading enzymes, MUC1 also promotes abnormal cellular signalling, angiogenesis, anti-adhesion and tumorigenesis. Aberrant glycosylation, overexpression, loss of apical constraint are characteristics of the transformation of a normal cell to a cancerous cell. This review summarizes studies of MUC1 expression and function with a special emphasis on oral epithelial cells in normal and abnormal conditions. In addition, current knowledge of MUC1 and unexplored areas of MUC1 are presented. CONCLUSION MUC1 is an archetypical transmembrane protein, the presence of MUC1 in ectopic regions may lead to dysregulation of certain enzymes and activation of various pathways, favouring the development of inflammatory responses and tumour formation. This review examines the potential of MUC1 in the development of future therapeutics.
Collapse
Affiliation(s)
- Bina Kashyap
- Institute of Dentistry, University of Eastern Finland, Kuopio Campus, and Educational Dental Clinic, Kuopio University Hospital, Kuopio, Finland.
| | - Arja M Kullaa
- Department of Oral Diagnostic Sciences, Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Finland.
| |
Collapse
|
10
|
Expression of Tumour-Associated MUC1 Is a Poor Prognostic Marker in Breast Cancer in Kumasi, Ghana. JOURNAL OF ONCOLOGY 2020; 2020:9752952. [PMID: 32377198 PMCID: PMC7193303 DOI: 10.1155/2020/9752952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
Background Immunohistochemical assessment of breast cancer and stratification into the basic molecular subtypes afford a much deeper insight into the biology of breast cancer, while presenting with opportunities to exploit personalized, targeted treatment. Traditionally, the oestrogen, progesterone, and epidermal growth factor receptors are assessed. MUC1, a transmembrane mucin, has been demonstrated a potential prognostic and metastatic marker in breast cancer. However, there have been a limited number of studies addressing the predictive and prognostic features of MUC1 in African breast cancer. This study aims at addressing the expression profiles of MUC1 and other biomarkers in Ghanaian breast cancer and determines its predictive and prognostic characteristics, in relation to other clinicopathological features. Methods Haematoxylin and eosin (H&E) slides of breast cancer cases were reviewed and 203 suitable cases were selected for tissue microarray (TMA) construction and immunohistochemistry. Anti-ER, PR, HER2, Ki-67, and MUC1 antibodies were used. Results from the immunostaining were analysed using SPSS version 23. Results About 59% of cases expressed MUC1. Majority of cases in the study showed a lack of expression of all three traditional markers (29% expressed ER, 10.9% PR, and 20.7% HER2). Ki-67 index were 62.1% (low), 16.5% (moderate), and 21.4% (high). MUC1 expressions among the molecular classes were luminal A (60.7%), luminal B (68.8%), HER2 overexpression (87.5%), and triple negative (56.6%). There were significant associations between MUC1 and HER2 overexpression (p=0.01) and triple negative (p < 0.01). Conclusion The high proportion of breast cancer cases expressing MUC1, as well as its association with the two most aggressive molecular classes, indicate a substantial role in the biology of breast cancer in our cohort, and it is an indication of poor prognosis.
Collapse
|
11
|
Kreuzinger C, von der Decken I, Wolf A, Gamperl M, Koller J, Karacs J, Pfaffinger S, Bartl T, Reinthaller A, Grimm C, Singer CF, Braicu EI, Cunnea P, Gourley C, Smeets D, Boeckx B, Lambrechts D, Perco P, Horvat R, Berns EMJJ, Cacsire Castillo-Tong D. Patient-derived cell line models revealed therapeutic targets and molecular mechanisms underlying disease progression of high grade serous ovarian cancer. Cancer Lett 2019; 459:1-12. [PMID: 31150822 DOI: 10.1016/j.canlet.2019.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023]
Abstract
High grade serous ovarian cancer (HGSOC) is the most frequent type of ovarian cancer. Most patients have primary response to platinum-based chemotherapy but frequently relapse, which leads to patient death. A lack of well documented and characterized patient-derived HGSOC cell lines is so far a major barrier to define tumor specific therapeutic targets and to study the molecular mechanisms underlying disease progression. We established 34 patient-derived HGSOC cell lines and characterized them at cellular and molecular level. Particularly, we demonstrated that a cancer-testis antigen PRAME and Estrogen Receptor could serve as therapeutic targets. Notably, data from the cell lines did not demonstrate acquired resistance due to tumor recurrence that matched with clinical observations. Finally, we presented that all HGSOC had no or very low CDKN1A (p21) expression due to loss of wild-type TP53, suggesting that loss of cell cycle control is the determinant for tumorigenesis and progression. In conclusion, patient-derived cell lines reveal that PRAME is a potential tumor specific therapeutic target in HGSOC and counteracting the down-regulation of p21 caused by loss of wild-type TP53 might be the key to impede disease progression.
Collapse
Affiliation(s)
- Caroline Kreuzinger
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Isabel von der Decken
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Andrea Wolf
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Magdalena Gamperl
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Julia Koller
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Jasmine Karacs
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Stephanie Pfaffinger
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Bartl
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexander Reinthaller
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Christoph Grimm
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian F Singer
- Department of Gynecology and Gynecologic Oncology, Gynecologic Cancer Unit, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Elena Ioana Braicu
- Tumor Bank Ovarian Cancer Network, Department of Gynecology, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany; Department of Gynecology, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Paula Cunnea
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, W12 0HS, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XR, United Kingdom
| | - Dominiek Smeets
- KU Leuven, Department of Human Genetics, Laboratory for Translational Genetics, 3000, Leuven, Belgium; VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, 3000, Leuven, Belgium
| | - Bram Boeckx
- KU Leuven, Department of Human Genetics, Laboratory for Translational Genetics, 3000, Leuven, Belgium; VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, 3000, Leuven, Belgium
| | - Diether Lambrechts
- KU Leuven, Department of Human Genetics, Laboratory for Translational Genetics, 3000, Leuven, Belgium; VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, 3000, Leuven, Belgium
| | - Paul Perco
- Emergentec Biodevelopment GmbH, 1180, Vienna, Austria
| | - Reinhard Horvat
- Department of Clinical Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Els M J J Berns
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA, Rotterdam, the Netherlands
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Gorlov IP, Gorlova OY, Amos CI. Untouchable genes in the human genome: Identifying ideal targets for cancer treatment. Cancer Genet 2019; 231-232:67-79. [PMID: 30803560 DOI: 10.1016/j.cancergen.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Usually, genes with a higher-than-expected number of somatic mutations in tumor samples are assumed to be cancer related. We identified genes with a fewer-than-expected number of somatic mutations - "untouchable genes". METHODS To predict the expected number of somatic mutations, we used a linear regression model with the number of mutations in the gene as an outcome, and gene characteristics, including gene size, nucleotide composition, level of evolutionary conservation, expression level and others, as predictors. Analysis of residuals from the regression model was used to compare the observed and predicted number of mutations. RESULTS We have identified 19 genes with a less-than-expected number of loss-off-function (nonsense, frameshift or pathogenic missense) mutations - i.e., untouchable genes. The number of silent or neutral missense mutations in untouchable genes was equal or higher than the expected number. Many mucins, including MUC16, MUC17, MUC6, MUC5AC, MUC5B, and MUC12, are untouchable. We hypothesized that untouchable mucins help tumor cells to avoid immune response by providing a protective coat that prevents direct contact between effector immune cells, e.g., cytotoxic T-cells, and tumor cells. Survival analysis of available TCGA data demonstrated that overall survival of patients with low (below the median) expression of untouchable mucins was better compared to patients with high expression of untouchable mucins. Aside from mucins, we have identified a number of other untouchable genes. CONCLUSIONS Untouchable genes may be ideal targets for cancer treatment since suppression of untouchable genes is expected to inhibit survival of tumor cells.
Collapse
Affiliation(s)
- Ivan P Gorlov
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States.
| | - Olga Y Gorlova
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
13
|
Aco-Tlachi M, Carreño-López R, Martínez-Morales PL, Maycotte P, Aguilar-Lemarroy A, Jave-Suárez LF, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Glycogene expression profiles based on microarray data from cervical carcinoma HeLa cells with partially silenced E6 and E7 HPV oncogenes. Infect Agent Cancer 2018; 13:25. [PMID: 30038662 PMCID: PMC6053821 DOI: 10.1186/s13027-018-0197-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Aberrant glycosylation is a characteristic of tumour cells. The expression of certain glycan structures has been associated with poor prognosis. In cervical carcinoma, changes in the expression levels of some glycogenes have been associated with lymph invasion. Human papillomavirus (HPV) infection is one of the most important factors underlying the development of cervical cancer. The HPV oncoproteins E6 and E7 have been implicated in cervical carcinogenesis and can modify the host gene expression profile. The roles of these oncoproteins in glycosylation changes have not been previously reported. Methods To determine the effect of the E6 and E7 oncoproteins on glycogene expression we partially silenced the E6 and E7 oncogenes in HeLa cells, we performed a microarray expression assay to identify altered glycogenes and quantified the mRNA levels of glycogenes by RT-qPCR. A protein-protein interaction network was constructed to identify potentially altered glycosylation pathways. Results The microarray analysis showed 9 glycogenes that were upregulated and 7 glycogenes that were downregulated in HeLa shE6/E7 cells. Some of these genes participate in glycosylation related to Notch proteins and O-glycans antigens. Conclusions Our results support that E6 and E7 oncoproteins could modify glycogene expression the products of which participate in the synthesis of structures implicated in proliferation, adhesion and apoptosis.
Collapse
Affiliation(s)
- Miguel Aco-Tlachi
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico.,2Posgrado en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Edificio 103-J Cd. Universitaria, Col. San Manuel, C.P. 72570 Puebla, Pue Mexico
| | - Ricardo Carreño-López
- 2Posgrado en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Edificio 103-J Cd. Universitaria, Col. San Manuel, C.P. 72570 Puebla, Pue Mexico
| | - Patricia L Martínez-Morales
- 4CONACYT- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Paola Maycotte
- 4CONACYT- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Adriana Aguilar-Lemarroy
- 3Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col Independencia, C.P. 44340 Guadalajara, Jalisco Mexico
| | - Luis Felipe Jave-Suárez
- 3Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col Independencia, C.P. 44340 Guadalajara, Jalisco Mexico
| | - Gerardo Santos-López
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Julio Reyes-Leyva
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Verónica Vallejo-Ruiz
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| |
Collapse
|
14
|
Jie J, Zhang Y, Zhou H, Zhai X, Zhang N, Yuan H, Ni W, Tai G. CpG ODN1826 as a Promising Mucin1-Maltose-Binding Protein Vaccine Adjuvant Induced DC Maturation and Enhanced Antitumor Immunity. Int J Mol Sci 2018; 19:ijms19030920. [PMID: 29558459 PMCID: PMC5877781 DOI: 10.3390/ijms19030920] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Mucin 1 (MUC1), being an oncogene, is an attractive target in tumor immunotherapy. Maltose binding protein (MBP) is a potent built-in adjuvant to enhance protein immunogenicity. Thus, a recombinant MUC1 and MBP antitumor vaccine (M-M) was constructed in our laboratory. To enhance the antitumor immune activity of M-M, CpG oligodeoxynucleotides 1826 (CpG 1826), a toll-like receptor-9 agonist, was examined in this study as an adjuvant. The combination of M-M and CpG 1826 significantly inhibited MUC1-expressing B16 cell growth and prolonged the survival of tumor-bearing mice. It induced MUC1-specific antibodies and Th1 immune responses, as well as the Cytotoxic T Lymphocytes (CTL) cytotoxicity in vivo. Further studies showed that it promoted the maturation and activation of the dendritic cell (DC) and skewed towards Th1 phenotype in vitro. Thus, our study revealed that CpG 1826 is an efficient adjuvant, laying a foundation for further M-M clinical research.
Collapse
Affiliation(s)
- Jing Jie
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| | - Yixin Zhang
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| | - Hongyue Zhou
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| | - Xiaoyu Zhai
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| | - Nannan Zhang
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Xinjiang Street 125, Changchun 130021, China.
| |
Collapse
|
15
|
Bianchi F, Pretto S, Tagliabue E, Balsari A, Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol Ther 2017; 18:747-756. [PMID: 28881163 PMCID: PMC5678690 DOI: 10.1080/15384047.2017.1373220] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3. This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells. Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.
Collapse
Affiliation(s)
- Francesca Bianchi
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Samantha Pretto
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Elda Tagliabue
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy
| | - Andrea Balsari
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Lucia Sfondrini
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| |
Collapse
|
16
|
Merikhian P, Ghadirian R, Farahmand L, Mansouri S, Majidzadeh-A K. MUC1 induces tamoxifen resistance in estrogen receptor-positive breast cancer. Expert Rev Anticancer Ther 2017; 17:607-613. [DOI: 10.1080/14737140.2017.1340837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Reyhane Ghadirian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Sepideh Mansouri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Trefulka M, Dorčák V, Křenková J, Foret F, Paleček E. Electrochemical analysis of Os(VI)-modified glycoproteins and label-free glycoprotein detection eluted from lectin capillary column. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Recent clinical trials utilizing chimeric antigen receptor T cells therapies against solid tumors. Cancer Lett 2017; 390:188-200. [DOI: 10.1016/j.canlet.2016.12.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022]
|