1
|
Scarlatescu E, Iba T, Maier CL, Moore H, Othman M, Connors JM, Levy JH. Deranged Balance of Hemostasis and Fibrinolysis in Disseminated Intravascular Coagulation: Assessment and Relevance in Different Clinical Settings. Anesthesiology 2024:141586. [PMID: 38861325 DOI: 10.1097/aln.0000000000005023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The disruption of hemostasis/fibrinolysis balance leads to disseminated intravascular coagulation, manifested clinically by bleeding or thrombosis, and multiorgan failure. This study reviews hemostatic assessment and therapeutic strategies that restore this balance in critically ill patients.
Collapse
Affiliation(s)
- Ecaterina Scarlatescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; and Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Hunter Moore
- Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; School of Baccalaureate Nursing, St. Lawrence College, Kingston, Ontario, Canada; and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Jean Marie Connors
- Hematology Division Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
2
|
Macdonald S, Bosio E, Keijzers G, Burrows S, Hibbs M, O'Donoghue H, Taylor D, Mukherjee A, Kinnear F, Smart L, Ascencio-Lane JC, Litton E, Fraser J, Shapiro NI, Arendts G, Fatovich D. Effect of intravenous fluid volume on biomarkers of endothelial glycocalyx shedding and inflammation during initial resuscitation of sepsis. Intensive Care Med Exp 2023; 11:21. [PMID: 37062769 PMCID: PMC10106534 DOI: 10.1186/s40635-023-00508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE To investigate the effect of IV fluid resuscitation on endothelial glycocalyx (EG) shedding and activation of the vascular endothelium and inflammation. MATERIALS AND METHODS A planned biomarker sub-study of the REFRESH trial in which emergency department (ED) patients) with suspected sepsis and hypotension were randomised to a restricted fluid/early vasopressor regimen or IV fluid resuscitation with later vasopressors if required (usual care). Blood samples were collected at randomisation (T0) and at 3 h (T3), 6 h (T6)- and 24 h (T24) for measurement of a range of biomarkers if EG shedding, endothelial cell activation and inflammation. RESULTS Blood samples were obtained in 95 of 99 enrolled patients (46 usual care, 49 restricted fluid). Differences in the change in biomarker over time between the groups were observed for Hyaluronan (2.2-fold from T3 to T24, p = 0.03), SYN-4 (1.5-fold from T3 to T24, P = 0.01) and IL-6 (2.5-fold from T0 to T3, p = 0.03). No difference over time was observed between groups for the other biomarkers. CONCLUSIONS A consistent signal across a range of biomarkers of EG shedding or of endothelial activation or inflammation was not demonstrated. This could be explained by pre-existing EG shedding or overlap between the fluid volumes administered in the two groups in this clinical trial. Trial registration Australia New Zealand Clinical Trials Registry ACTRN126160000006448 Registered 12 January 2016.
Collapse
Affiliation(s)
- Stephen Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.
- Medical School, University of Western Australia, Perth, WA, Australia.
- Emergency Department, Royal Perth Hospital, Perth, WA, Australia.
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Gerben Keijzers
- Emergency Department, Gold Coast University Hospital, Gold Coast, QLD, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Sally Burrows
- Medical School, University of Western Australia, Perth, WA, Australia
- Research Foundation, Royal Perth Hospital, Perth, WA, Australia
| | - Moira Hibbs
- Research Centre, Royal Perth Hospital, Perth, WA, Australia
| | | | - David Taylor
- Emergency Department, Austin Health, Melbourne, Australia
| | - Ashes Mukherjee
- Emergency Department, Armadale Health Service, Perth, WA, Australia
| | - Frances Kinnear
- Department of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lisa Smart
- School of Science, Health Engineering and Education, Murdoch University, Perth, WA, Australia
| | | | - Edward Litton
- Intensive Care, Fiona Stanley Hospital, Perth, WA, Australia
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Glenn Arendts
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Emergency Department, Fiona Stanley Hospital, Perth, WA, Australia
| | - Daniel Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
3
|
Iba T, Levy JH, Thachil J, Susen S, Levi M, Scarlatescu E. Communication from the Scientific Standardization Committees of the International Society on Thrombosis and Haemostasis on vascular endothelium-related biomarkers in disseminated intravascular coagulation. J Thromb Haemost 2023; 21:691-699. [PMID: 36696178 DOI: 10.1016/j.jtha.2022.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 01/26/2023]
Abstract
Disseminated intravascular coagulation (DIC) is not a disease criterion but a pathomechanistic process that accompanies various underlying diseases. According to the International Society on Thrombosis and Haemostasis definition, endothelial injury is an essential component in addition to systemic coagulation activation. Despite this definition, current diagnostic criteria for DIC do not include biomarkers for vascular endothelial injury. Endothelial cells are critical for hemostatic regulation because they produce various antithrombotic substances and express anticoagulant factors at the same time as facilitating coagulation, inflammatory reactions, platelet aggregation, and fibrinolysis with acute injury. Endothelial cells also exhibit various receptors, adhesion molecules, and the critical role of glycocalyx that regulates cellular interactions in thromboinflammation. For clinicians, biomarkers suitable for assessing endothelial injury are not readily available. Although we still do not have ideal biomarkers, antithrombin activity and von Willebrand factor can be candidates for the endothelium-related markers because those reflect the severity and are available in most clinical settings. Further, the dysfunction of endothelial cell in DIC arising from various underlying diseases is likely highly variable. For example, the involvement of endothelial dysfunction is significant in sepsis-induced coagulopathy, while moderate in trauma-induced coagulopathy, and variable in hematologic malignancy-associated coagulopathy. Because of the complexity of disease status associated with DIC, further research searching clinically available endothelium-related biomarkers is expected to establish individualized diagnostic criteria and potential therapeutic approaches.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Sophie Susen
- Department of Hematology and Transfusion, Lille University Hospital, Lille, France
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, the Netherlands and Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-metabolic Programme-NIHR UCLH/UCL BRC London, UK
| | - Ecaterina Scarlatescu
- University of Medicine and Pharmacy "Carol Davila," Bucharest and Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
4
|
Chhetri I, Hunt JEA, Mendis JR, Forni LG, Kirk-Bayley J, White I, Cooper J, Somasundaram K, Shah N, Patterson SD, Puthucheary ZA, Montgomery HE, Creagh-Brown BC. Safety and Feasibility Assessment of Repetitive Vascular Occlusion Stimulus (RVOS) Application to Multi-Organ Failure Critically Ill Patients: A Pilot Randomised Controlled Trial. J Clin Med 2022; 11:3938. [PMID: 35887701 PMCID: PMC9316533 DOI: 10.3390/jcm11143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle wasting is implicated in the pathogenesis of intensive care unit acquired weakness (ICU-AW), affecting 40% of patients and causing long-term physical disability. A repetitive vascular occlusion stimulus (RVOS) limits muscle atrophy in healthy and orthopaedic subjects, thus, we explored its application to ICU patients. Adult multi-organ failure patients received standard care +/- twice daily RVOS {4 cycles of 5 min tourniquet inflation to 50 mmHg supra-systolic blood pressure, and 5 min complete deflation} for 10 days. Serious adverse events (SAEs), tolerability, feasibility, acceptability, and exploratory outcomes of the rectus femoris cross-sectional area (RFCSA), echogenicity, clinical outcomes, and blood biomarkers were assessed. Only 12 of the intended 32 participants were recruited. RVOS sessions (76.1%) were delivered to five participants and two could not tolerate it. No SAEs occurred; 75% of participants and 82% of clinical staff strongly agreed or agreed that RVOS is an acceptable treatment. RFCSA fell significantly and echogenicity increased in controls (n = 5) and intervention subjects (n = 4). The intervention group was associated with less frequent acute kidney injury (AKI), a greater decrease in the total sequential organ failure assessment score (SOFA) score, and increased insulin-like growth factor-1 (IGF-1), and reduced syndecan-1, interleukin-4 (IL-4) and Tumor necrosis factor receptor type II (TNF-RII) levels. RVOS application appears safe and acceptable, but protocol modifications are required to improve tolerability and recruitment. There were signals of possible clinical benefit relating to RVOS application.
Collapse
Affiliation(s)
- Ismita Chhetri
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London SW7 2BX, UK
| | - Julie E. A. Hunt
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Jeewaka R. Mendis
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Lui G. Forni
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Justin Kirk-Bayley
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
| | - Ian White
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Jonathan Cooper
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Karthik Somasundaram
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Nikunj Shah
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Stephen D. Patterson
- Faculty of Sport, Allied Health & Performance Sciences, St Mary’s University, London TW1 4SX, UK;
| | - Zudin A. Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, UK;
- Institute for Sport, Exercise and Health, University College London, London W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Hugh E. Montgomery
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
| | - Benedict C. Creagh-Brown
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| |
Collapse
|
5
|
No association between intravenous fluid volume and endothelial glycocalyx shedding in patients undergoing resuscitation for sepsis in the emergency department. Sci Rep 2022; 12:8733. [PMID: 35610344 PMCID: PMC9130214 DOI: 10.1038/s41598-022-12752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Endothelial glycocalyx (EG) shedding is associated with septic shock and described following intravenous (IV) fluid administration. To investigate the possible impact of IV fluids on the pathobiology of septic shock we investigated associations between biomarkers of EG shedding and endothelial cell activation, and relationships with IV fluid volume. Serum samples were obtained on admission (T0) and at 24 h (T24) in patients undergoing haemodynamic resuscitation for suspected septic shock in the emergency department. Biomarkers of EG shedding—Syndecan-1 (Syn-1), Syndecan-4 (Syn-4), Hyaluronan, endothelial activation—Endothelin-1 (ET-1), Angiopoeitin-2 (Ang-2), Vascular Endothelial Growth Factor Receptor-1(VEGF-1) and leucocyte activation/inflammation—Resistin, Neutrophil Gelatinase Associated Lipocalin (NGAL) and a marker of cardiac stretch—Pro-Atrial Natriuretic Peptide (Pro-ANP) were compared to the total IV fluid volume administered using Tobit regression. Data on 86 patients (52 male) with a mean age of 60 (SD 18) years were included. The mean fluid volume administered to T24 was 4038 ml (SD 2507 ml). No significant association between fluid volume and Pro-ANP or any of the biomarkers were observed. Syn-1 and Syn-4 were significantly correlated with each other (Spearman Rho 0.43, p < 0.001) but not with Hyaluronan. Syn-1 and Syn-4 both correlated with VEGFR-1 (Rho 0.56 and 0.57 respectively, p < 0.001) whereas Hyaluronan correlated with ET-1 (Rho 0.43, p < 0.001) and Ang-2 (Rho 0.43, p < 0.001). There was no correlation between Pro-ANP and any of the EG biomarkers. Distinct patterns of association between biomarkers of EG shedding and endothelial cell activation were observed among patients undergoing resuscitation for sepsis. No relationship between IV fluid volume and Pro-ANP or any of the other biomarkers was observed.
Collapse
|
6
|
Ishiko S, Goligorsky MS. Ways and Means of Cellular Reconditioning for Kidney Regeneration. Am J Nephrol 2022; 53:96-107. [PMID: 35259745 PMCID: PMC9019837 DOI: 10.1159/000522050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mitochondrial, lysosomal, and peroxisomal dysfunction; defective autophagy; mitophagy; and pexophagy, as well as the loss of glycocalyx integrity are known contributors to initiation and progression of diverse kidney diseases. Those cellular organelles are tightly interactive in health, and during development of a disease, damage in one may propagate to others. By extension, it follows that restoring an individual defect may culminate in a broader restorative spectrum and improvement of cell and organ functions. SUMMARY A novel strategy of reconditioning cellular organellar dysfunction, which we define as refurbishment of pathogenically pivotal intra- or extracellular elements, damaged in the course of disease and impeding restoration, is briefly outlined in this overview. Individual therapeutic reconditioning approaches targeting selected organelles are cataloged. We anticipate that the proposed reconditioning strategy in the future may enrich the arsenal of regenerative medicine and nephrology. KEY MESSAGE The arsenal of regenerative medicine and nephrology consisting of organ transplantation, use of stem cells, cell-free approaches, cell reprogramming strategies, and organ engineering has been enriched by the reconditioning strategy. The latter is based on the recognition of two facts that (a) impairment of diverse cellular organelles contributes to pathogenesis of kidney disease and (b) individual organelles are functionally interactively coupled, which explains the "domino effect" leading to their dysfunction. Reconditioning takes advantage of these facts and, while initially directed to restore the function of individual cellular organelles, culminates in the propagation of a therapeutic intervention to account for improved cell and organ function. Examples of such interventions are briefly summarized along the presentation of defective cellular organelles contributing to pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Shinya Ishiko
- Department of Medicine, New York Medical College, Valhalla, New York, USA,
| | - Michael S Goligorsky
- Department of Medicine, Physiology and Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
7
|
Fukuda S, Niimi Y, Hirasawa Y, Manyeza ER, Garner CE, Southan G, Salzman AL, Prough DS, Enkhbaatar P. Modulation of oxidative and nitrosative stress attenuates microvascular hyperpermeability in ovine model of Pseudomonas aeruginosa sepsis. Sci Rep 2021; 11:23966. [PMID: 34907252 PMCID: PMC8671546 DOI: 10.1038/s41598-021-03320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
In sepsis, microvascular hyperpermeability caused by oxidative/nitrosative stress (O&NS) plays an important role in tissue edema leading to multi-organ dysfunctions and increased mortality. We hypothesized that a novel compound R-107, a modulator of O&NS, effectively ameliorates the severity of microvascular hyperpermeability and preserves multi-organ function in ovine sepsis model. Sepsis was induced in twenty-two adult female Merino sheep by intravenous infusion of Pseudomonas aeruginosa (PA) (1 × 1010 CFUs). The animals were allocated into: 1) Control (n = 13): intramuscular injection (IM) of saline; and 2) Treatment (n = 9): IM of 50 mg/kg R-107. The treatment was given after the PA injection, and monitored for 24-h. R-107 treatment significantly reduced fluid requirement (15-24 h, P < 0.05), net fluid balance (9-24 h, P < 0.05), and water content in lung/heart/kidney (P = 0.02/0.04/0.01) compared to control. R-107 treatment significantly decreased lung injury score/modified sheep SOFA score at 24-h (P = 0.01/0.04), significantly lowered arterial lactate (21-24 h, P < 0.05), shed syndecan-1 (3-6 h, P < 0.05), interleukin-6 (6-12 h, P < 0.05) levels in plasma, and significantly attenuated lung tissue 3-nitrotyrosine and vascular endothelial growth factor-A expressions (P = 0.03/0.002) compared to control. There was no adverse effect in R-107 treatment. In conclusion, modulation of O&NS by R-107 reduced hyperpermeability markers and improved multi-organ function.
Collapse
Affiliation(s)
- Satoshi Fukuda
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.411731.10000 0004 0531 3030Department of General Medicine, International University of Health and Welfare, Shioya Hospital, Tochigi, 329-2145 Japan
| | - Yosuke Niimi
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.410818.40000 0001 0720 6587Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, Tokyo, 162-8666 Japan
| | - Yasutaka Hirasawa
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.136304.30000 0004 0370 1101Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Ennert R. Manyeza
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | | | | | | | - Donald S. Prough
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Malheiro LF, Gaio R, Vaz da Silva M, Martins S, Sarmento A, Santos L. Peripheral arterial tonometry as a method of measuring reactive hyperaemia correlates with organ dysfunction and prognosis in the critically ill patient: a prospective observational study. J Clin Monit Comput 2021; 35:1169-1181. [PMID: 32889643 PMCID: PMC7474512 DOI: 10.1007/s10877-020-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Predictions of mortality may help in the selection of patients who benefit from intensive care. Endothelial dysfunction is partially responsible for many of the organic dysfunctions in critical illness. Reactive hyperaemia is a vascular response of the endothelium that can be measured by peripheral arterial tonometry (RH-PAT). We aimed to assess if reactive hyperaemia is affected by critical illness and if it correlates with outcomes. Prospective study with a cohort of consecutive patients admitted to an Intensive Care Unit. RH-PAT was accessed on admission and on the 7th day after admission. Early and late survivors were compared to non-survivors. The effect of RH-PAT variation on late mortality was studied by a logistic regression model. The association between RH-PAT and severity scores and biomarkers of organic dysfunction was investigated by multivariate analysis. 86 patients were enrolled. Mean ln(RHI) on admission was 0.580 and was significantly lower in patients with higher severity scores (p < 0.01) and early non-survivors (0.388; p = 0.027). The model for prediction of early-mortality estimated that each 0.1 decrease in ln(RHI) increased the odds for mortality by 13%. In 39 patients, a 2nd RH-PAT measurement was performed on the 7th day. The variation of ln(RHI) was significantly different between non-survivors and survivors (- 24.2% vs. 63.9%, p = 0.026). Ln(RHI) was significantly lower in patients with renal and cardiovascular dysfunction (p < 0.01). RH-PAT is correlated with disease severity and seems to be an independent marker of early mortality, cardiovascular and renal dysfunctions. RH-PAT variation predicts late mortality. There appears to be an RH-PAT impairment in the acute phase of severe diseases that may be reversible and associated with better outcomes.
Collapse
Affiliation(s)
- Luis Filipe Malheiro
- Intensive Care Unit, Infectious Diseases Department, Centro Hospitalar de São João, Porto, Portugal.
- Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), Nephrology and Infectious Diseases Research Group, University of Porto, Porto, Portugal.
- Department of Medicine Faculty of Medicine, University of Porto, Porto, Portugal.
- Serviço de Doenças Infeciosas, Centro Hospitalar de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Rita Gaio
- Department of Mathematics, Faculty of Science Sciences and CMUP, Centre of Mathematics of the University of Porto; University of Porto, Porto, Portugal
| | - Manuel Vaz da Silva
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sandra Martins
- Clinical Pathology Department, Centro Hospitalar de São João and EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
| | - António Sarmento
- Intensive Care Unit, Infectious Diseases Department, Centro Hospitalar de São João, Porto, Portugal
- Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), Nephrology and Infectious Diseases Research Group, University of Porto, Porto, Portugal
- Department of Medicine Faculty of Medicine, University of Porto, Porto, Portugal
| | - Lurdes Santos
- Intensive Care Unit, Infectious Diseases Department, Centro Hospitalar de São João, Porto, Portugal
- Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), Nephrology and Infectious Diseases Research Group, University of Porto, Porto, Portugal
- Department of Medicine Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Han J, Shi Y, Willis G, Imani J, Kwon MY, Li G, Ayaub E, Ghanta S, Ng J, Hwang N, Tsoyi K, El-Chemaly S, Kourembanas S, Mitsialis SA, Rosas IO, Liu X, Perrella MA. Mesenchymal stromal cell-derived syndecan-2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS J 2021; 289:417-435. [PMID: 34355516 PMCID: PMC8766882 DOI: 10.1111/febs.16154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Gareth Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gu Li
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ehab Ayaub
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol Scand 2021; 65:590-606. [PMID: 33595101 DOI: 10.1111/aas.13797] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The number of studies measuring breakdown products of the glycocalyx in plasma has increased rapidly during the past decade. The purpose of the present systematic review was to assess the current knowledge concerning the association between plasma concentrations of glycocalyx components and structural assessment of the endothelium. METHODS We performed a literature review of Pubmed to determine which glycocalyx components change in a wide variety of human diseases and conditions. We also searched for evidence of a relationship between plasma concentrations and the thickness of the endothelial glycocalyx layer as obtained by imaging methods. RESULTS Out of 3,454 publications, we identified 228 that met our inclusion criteria. The vast majority demonstrate an increase in plasma glycocalyx products. Sepsis and trauma are most frequently studied, and comprise approximately 40 publications. They usually report 3-4-foldt increased levels of glycocalyx degradation products, most commonly of syndecan-1. Surgery shows a variable picture. Cardiac surgery and transplantations are most likely to involve elevations of glycocalyx degradation products. Structural assessment using imaging methods show thinning of the endothelial glycocalyx layer in cardiovascular conditions and during major surgery, but thinning does not always correlate with the plasma concentrations of glycocalyx products. The few structural assessments performed do not currently support that capillary permeability is increased when the plasma levels of glycocalyx fragments in plasma are increased. CONCLUSIONS Shedding of glycocalyx components is a ubiquitous process that occurs during both acute and chronic inflammation with no sensitivity or specificity for a specific disease or condition.
Collapse
Affiliation(s)
- Robert G. Hahn
- Research UnitSödertälje Hospital Södertälje Sweden
- Karolinska Institute at Danderyds Hospital (KIDS) Stockholm Sweden
| | - Vasu Patel
- Department of Internal Medicine Northwestern Medicine McHenry Hospital McHenry IL USA
| | - Randal O. Dull
- Department of Anesthesiology, Pathology, Physiology, Surgery University of ArizonaCollege of Medicine Tucson AZ USA
| |
Collapse
|
11
|
Oshima K, King SI, McMurtry SA, Schmidt EP. Endothelial Heparan Sulfate Proteoglycans in Sepsis: The Role of the Glycocalyx. Semin Thromb Hemost 2021; 47:274-282. [PMID: 33794552 DOI: 10.1055/s-0041-1725064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is increasing recognition of the importance of the endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer, in vascular homeostasis. Heparan sulfate proteoglycans (HSPGs) are a major structural constituent of the endothelial glycocalyx and serve to regulate vascular permeability, microcirculatory tone, leukocyte and platelet adhesion, and hemostasis. During sepsis, endothelial HSPGs are shed through the induction of "sheddases" such as heparanase and matrix metalloproteinases, leading to loss of glycocalyx integrity and consequent vascular dysfunction. Less well recognized is that glycocalyx degradation releases HSPG fragments into the circulation, which can shape the systemic consequences of sepsis. In this review, we will discuss (1) the normal, homeostatic functions of HSPGs within the endothelial glycocalyx, (2) the pathological changes in HSPGs during sepsis and their consequences on the local vascular bed, and (3) the systemic consequences of HSPG degradation. In doing so, we will identify potential therapeutic targets to improve vascular function during sepsis as well as highlight key areas of uncertainty that require further mechanistic investigation.
Collapse
Affiliation(s)
- Kaori Oshima
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Samantha I King
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah A McMurtry
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric P Schmidt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
12
|
Plasma syndecan-1 is associated with fluid requirements and clinical outcomes in emergency department patients with sepsis. Am J Emerg Med 2021; 42:83-89. [PMID: 33493833 DOI: 10.1016/j.ajem.2021.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Degradation of the endothelial glycocalyx is recognized as a major part of the pathophysiology of sepsis. Previous clinical studies, mostly conducted in intensive care settings, showed associations between glycocalyx shedding and clinical outcomes. We aimed to explore the association of plasma syndecan-1, a marker of glycocalyx degradation, with the subsequent fluid requirements and clinical outcomes of emergency department patients with sepsis. METHODS This was a post hoc analysis of a randomized trial of fluid resuscitation in the emergency department. The study was conducted in the emergency department of an urban 1500-bed tertiary care center. The data of 95 adults who were diagnosed with sepsis-induced hypoperfusion and had undergone baseline syndecan-1 measurement were included. The syndecan-1 levels at baseline (T0) and hour 6 (T6) were studied to characterize their association with clinical outcomes, including subsequent fluid administration, organ failure outcomes and mortality. RESULTS The median syndecan-1 levels at T0 and T6 were 207 (IQR 135-438) and 207 (IQR 128-490) ng/ml, respectively. Syndecan-1 levels at T0 were correlated with baseline sequential organ failure assessment (SOFA) score (ρ = 0.35, p < 0.001). Syndecan-1 levels at both T0 and T6 were correlated with subsequent fluid administration over 24 and 72 h and associated with the diagnosis of septic shock, the maximum dose of vasopressors and the need for renal replacement therapy (p < 0.05). Higher syndecan-1 levels at T6 were associated with higher 90-day mortality (p = 0.03). CONCLUSIONS In the emergency department, syndecan-1 levels were associated with fluid requirements, sepsis severity, organ dysfunction, and mortality.
Collapse
|
13
|
Yanase F, Naorungroj T, Bellomo R. Glycocalyx damage biomarkers in healthy controls, abdominal surgery, and sepsis: a scoping review. Biomarkers 2020; 25:425-435. [DOI: 10.1080/1354750x.2020.1787518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fumitaka Yanase
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University School of Public Health and Preventive Medicine, Melbourne, Australia
| | - Thummaporn Naorungroj
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Department of Intensive Care, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University School of Public Health and Preventive Medicine, Melbourne, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Kashiouris MG, L’Heureux M, Cable CA, Fisher BJ, Leichtle SW, Fowler AA. The Emerging Role of Vitamin C as a Treatment for Sepsis. Nutrients 2020; 12:nu12020292. [PMID: 31978969 PMCID: PMC7070236 DOI: 10.3390/nu12020292] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction due to a dysregulated host response to infection, is a leading cause of morbidity and mortality worldwide. Decades of research have failed to identify any specific therapeutic targets outside of antibiotics, infectious source elimination, and supportive care. More recently, vitamin C has emerged as a potential therapeutic agent to treat sepsis. Vitamin C has been shown to be deficient in septic patients and the administration of high dose intravenous as opposed to oral vitamin C leads to markedly improved and elevated serum levels. Its physiologic role in sepsis includes attenuating oxidative stress and inflammation, improving vasopressor synthesis, enhancing immune cell function, improving endovascular function, and epigenetic immunologic modifications. Multiple clinical trials have demonstrated the safety of vitamin C and two recent studies have shown promising data on mortality improvement. Currently, larger randomized controlled studies are underway to validate these findings. With further study, vitamin C may become standard of care for the treatment of sepsis, but given its safety profile, current treatment can be justified with compassionate use.
Collapse
Affiliation(s)
- Markos G. Kashiouris
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, 1200 E Broad St., P.O. Box 980050, Richmond, VA 23298, USA; (M.L.); (C.A.C.); (B.J.F.); (A.A.F.)
- Correspondence: ; Tel.: +1-(804)-828-9893
| | - Michael L’Heureux
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, 1200 E Broad St., P.O. Box 980050, Richmond, VA 23298, USA; (M.L.); (C.A.C.); (B.J.F.); (A.A.F.)
| | - Casey A. Cable
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, 1200 E Broad St., P.O. Box 980050, Richmond, VA 23298, USA; (M.L.); (C.A.C.); (B.J.F.); (A.A.F.)
| | - Bernard J. Fisher
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, 1200 E Broad St., P.O. Box 980050, Richmond, VA 23298, USA; (M.L.); (C.A.C.); (B.J.F.); (A.A.F.)
| | - Stefan W. Leichtle
- Department of Surgery, Division of Acute Care Surgical Services, Virginia Commonwealth University School of Medicine, 1200 E Broad St., P.O. Box 980454, Richmond, VA 23298, USA;
| | - Alpha A. Fowler
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, 1200 E Broad St., P.O. Box 980050, Richmond, VA 23298, USA; (M.L.); (C.A.C.); (B.J.F.); (A.A.F.)
| |
Collapse
|
15
|
Jannaway M, Yang X, Meegan JE, Coleman DC, Yuan SY. Thrombin-cleaved syndecan-3/-4 ectodomain fragments mediate endothelial barrier dysfunction. PLoS One 2019; 14:e0214737. [PMID: 31091226 PMCID: PMC6519803 DOI: 10.1371/journal.pone.0214737] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Objective The endothelial glycocalyx constitutes part of the endothelial barrier but its degradation leaves endothelial cells exposed to transmigrating cells and circulating mediators that can damage the barrier or promote intercellular gaps. Syndecan proteins are key components of the endothelial glycocalyx and are shed during disease states where expression and activity of proteases such as thrombin are elevated. We tested the ability of thrombin to cleave the ectodomains of syndecans and whether the products could act directly on endothelial cells to alter barrier function. Approach and results Using transmission electron microscopy, we illustrated the presence of glycocalyx in human lung microvasculature. We confirmed expression of all syndecan subtypes on the endothelial surface of agarose-inflated human lungs. ELISA and western blot analysis suggested that thrombin can cleave syndecan-3/-4 ectodomains to produce fragments. In vivo, syndecan-3 ectodomain fragments increased extravasation of albumin-bound Evans blue in mouse lung, indicative of plasma protein leakage into the surrounding tissue. Syndecan-3/-4 ectodomain fragments decreased transendothelial electrical resistance, a measure of cell-cell adhesive barrier integrity, in a manner sensitive to a Rho kinase inhibitor. These effects were independent of glycosylation and thrombin receptor PAR1. Moreover, these cleavage products caused rapid VE-cadherin-based adherens junction disorganization and increased F-actin stress fibers, supporting their direct effect on endothelial paracellular permeability. Conclusions We suggest that thrombin can cleave syndecan-3/4 ectodomain into fragments which interact with endothelial cells causing paracellular hyperpermeability. This may have important implications in the pathogenesis of vascular dysfunction during sepsis or thrombotic disease states where thrombin is activated.
Collapse
Affiliation(s)
- Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Danielle C. Coleman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
The vascular endothelial surface is coated by the glycocalyx, a ubiquitous gel-like layer composed of a membrane-binding domain that contains proteoglycans, glycosaminoglycan side-chains, and plasma proteins such as albumin and antithrombin. The endothelial glycocalyx plays a critical role in maintaining vascular homeostasis. However, this component is highly vulnerable to damage and is also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual and computational investigation of this vascular component. The glycocalyx modulates leukocyte-endothelial interactions, thrombus formation and other processes that lead to microcirculatory dysfunction and critical organ injury in sepsis. It also acts as a regulator of vascular permeability and contains mechanosensors as well as receptors for growth factors and anticoagulants. During the initial onset of sepsis, the glycocalyx is damaged and circulating levels of glycocalyx components, including syndecans, heparan sulfate and hyaluronic acid, can be measured and are reportedly useful as biomarkers for sepsis. Also, a new methodology using side-stream dark-field imaging is now clinically available for assessing the glycocalyx. Multiple factors including hypervolemia and hyperglycemia are toxic to the glycocalyx, and several agents have been proposed as therapeutic modalities, although no single treatment has been proven to be clinically effective. In this article, we review the derangement of the glycocalyx in sepsis. Despite the accumulated knowledge regarding the important roles of the glycocalyx, the relationship between derangement of the endothelial glycocalyx and severity of sepsis or disseminated intravascular coagulation has not been adequately elucidated and further work is needed.
Collapse
Affiliation(s)
- T Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - J H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
17
|
Fisher J, Linder A, Bentzer P. Elevated plasma glypicans are associated with organ failure in patients with infection. Intensive Care Med Exp 2019; 7:2. [PMID: 30618011 PMCID: PMC6323058 DOI: 10.1186/s40635-018-0216-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Increased vascular permeability is a key feature in the pathophysiology of sepsis and the development of organ failure. Shedding of the endothelial glycocalyx is increasingly being recognized as an important pathophysiological mechanism but at present it is unclear if glypicans contribute to this response. We hypothesized that plasma levels of glypicans (GPC) are elevated in patients with sepsis. Methods Plasma GPC 1–6 levels were measured by ELISA in 10 patients with sepsis and 10 healthy controls as an initial screening. Plasma GPC 1, 3, and 4 were further measured in a cohort of 184 patients with a clinically confirmed infection. Patients were divided into groups of those who had sepsis and those who had an infection without organ failure. To determine whether plasma glypicans could predict the development of organ failure, patients were further subdivided to those who had organ failure at enrolment and those who developed it after enrollment. The association of plasma GPC 1, 3, and 4 with organ failure and with various markers of inflammation, disease severity, and glycocalyx shedding was investigated. Results In the pilot study, only GPC 1, 3, and 4 were detectable in the plasma of sepsis patients. In the larger cohort, GPC 1, 3, and 4 levels were significantly higher (p < 0.001) in patients with sepsis than in those with infection without organ failure. GPC 1, 3, and 4 were significantly positively correlated with plasma levels of the disease severity markers C-reactive protein, lactate, procalcitonin, and heparin binding protein, and with the marker of glycocalyx degradation syndecan 1. They were significantly negatively correlated with plasma levels of the glycocalyx-protective factors apolipoprotein M and sphingosine-1-phosphate. Conclusions We show that GPC 1, 3, and 4 are elevated in plasma of patients with sepsis and correlate with markers of disease severity, systemic inflammation, and glycocalyx damage. Electronic supplementary material The online version of this article (10.1186/s40635-018-0216-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jane Fisher
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden.
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Peter Bentzer
- Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden.,Faculty of Medicine, Department of Clinical Sciences Lund, Division of Anesthesia and Intensive care, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Wei S, Kao LS, Wang HE, Chang R, Podbielski J, Holcomb JB, Wade CE. Protocol for a pilot randomized controlled trial comparing plasma with balanced crystalloid resuscitation in surgical and trauma patients with septic shock. Trauma Surg Acute Care Open 2018; 3:e000220. [PMID: 30271882 PMCID: PMC6157534 DOI: 10.1136/tsaco-2018-000220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022] Open
Abstract
Background Septic shock is a public health problem with high mortality. There remains a knowledge gap regarding the optimal resuscitation fluid to improve clinical outcomes, and the underlying mechanism by which fluids exert their effect. Shock-induced endotheliopathy (SHINE) is thought to be a shared pathophysiologic mechanism associated with worsened outcomes in critically ill trauma and sepsis patients. SHINE is characterized by breakdown of the glycocalyx—a network of membrane-bound proteoglycans and glycoproteins that covers the endothelium. This has been associated with capillary leakage and microvascular thrombosis, organ dysfunction, and mortality. Biomarkers of SHINE have been shown to correlate with clinical outcomes in patients with septic shock. Interventions to mitigate SHINE may improve outcomes in patients with septic shock. In surgical/trauma patients with septic shock, initial plasma resuscitation as compared with balanced crystalloid (BC) resuscitation will mitigate biomarkers of SHINE and improve clinical outcomes. Methods A pilot, single-center randomized controlled trial (RCT) will compare initial plasma to BC resuscitation in surgical and trauma patients with septic shock. Patients will be enrolled based on a Sepsis Screening Score of ≥4 with a suspected source of infection. Patient randomization only occurs if they meet the criteria: (1) hypotension with mean arterial pressure <65 mm Hg, and (2) evidence of hypoperfusion including lactic acid >4 mmol/L, altered mental status or decreased urine output of <0.5 mL/kg in the past hour. Results The primary outcome is a reduction in serum biomarkers at 6 hours. Secondary outcomes will include clinical outcomes such as intensive care unit-free days, organ dysfunction, and in-hospital mortality. Discussion This trial will provide insights into the effects of initial plasma resuscitation on SHINE. Furthermore, it will provide unbiased estimates regarding the feasibility, safety, and clinical efficacy of plasma resuscitation in septic shock on which to base subsequent adequately powered multicenter RCTs. Trail registration number ClinicalTrials.gov (NCT03366220).
Collapse
Affiliation(s)
- Shuyan Wei
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Center for Surgical Trials and Evidence-based Practice, Departments of Surgery and Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lillian S Kao
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Center for Surgical Trials and Evidence-based Practice, Departments of Surgery and Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Henry E Wang
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Emergency Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Ronald Chang
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Jeanette Podbielski
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - John B Holcomb
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Charles E Wade
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|