1
|
Zheng W, Pang K, Min Y, Wu D. Prospect and Challenges of Volatile Organic Compound Breath Testing in Non-Cancer Gastrointestinal Disorders. Biomedicines 2024; 12:1815. [PMID: 39200279 PMCID: PMC11351786 DOI: 10.3390/biomedicines12081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Breath analysis, despite being an overlooked biomatrix, has a rich history in disease diagnosis. However, volatile organic compounds (VOCs) have yet to establish themselves as clinically validated biomarkers for specific diseases. As focusing solely on late-stage or malignant disease biomarkers may have limited relevance in clinical practice, the objective of this review is to explore the potential of VOC breath tests for the diagnosis of non-cancer diseases: (1) Precancerous conditions like gastro-esophageal reflux disease (GERD) and Barrett's esophagus (BE), where breath tests can complement endoscopic screening; (2) endoluminal diseases associated with autoinflammation and dysbiosis, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and coeliac disease, which currently rely on biopsy and symptom-based diagnosis; (3) chronic liver diseases like cirrhosis, hepatic encephalopathy, and non-alcoholic fatty liver disease, which lack non-invasive diagnostic tools for disease progression monitoring and prognostic assessment. A literature search was conducted through EMBASE, MEDLINE, and Cochrane databases, leading to an overview of 24 studies. The characteristics of these studies, including analytical platforms, disorder type and stage, group size, and performance evaluation parameters for diagnostic tests are discussed. Furthermore, how VOCs can be utilized as non-invasive diagnostic tools to complement existing gold standards is explored. By refining study designs, sampling procedures, and comparing VOCs in urine and blood, we can gain a deeper understanding of the metabolic pathways underlying VOCs. This will establish breath analysis as an effective non-invasive method for differential diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Ke Pang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Yiyang Min
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Hernandez-Leyva AJ, Berna AZ, Liu Y, Rosen AL, Lint MA, Whiteside SA, Jaeger N, McDonough RT, Joardar N, Santiago-Borges J, Tomera CP, Luo W, John ARO, Kau AL. The breath volatilome is shaped by the gut microbiota. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24311413. [PMID: 39132488 PMCID: PMC11312666 DOI: 10.1101/2024.08.02.24311413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The gut microbiota is widely implicated in host health and disease, inspiring translational efforts to implement our growing body of knowledge in clinical settings. However, the need to characterize gut microbiota by its genomic content limits the feasibility of rapid, point-of-care diagnostics. The microbiota produces a diverse array of xenobiotic metabolites that disseminate into tissues, including volatile organic compounds (VOCs) that may be excreted in breath. We hypothesize that breath contains gut microbe-derived VOCs that inform the composition and metabolic state of the microbiota. To explore this idea, we compared the breath volatilome and fecal gut microbiomes of 27 healthy children and found that breath VOC composition is correlated with gut microbiomes. To experimentally interrogate this finding, we devised a method for capturing exhaled breath from gnotobiotic mice. Breath volatiles are then profiled by gas-chromatography mass-spectrometry (GC-MS). Using this novel methodology, we found that the murine breath profile is markedly shaped by the composition of the gut microbiota. We also find that VOCs produced by gut microbes in pure culture can be identified in vivo in the breath of mice monocolonized with the same bacteria. Altogether, our studies identify microbe-derived VOCs excreted in breath and support a mechanism by which gut bacterial metabolism directly contributes to the mammalian breath VOC profiles.
Collapse
Affiliation(s)
- Ariel J. Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amalia Z. Berna
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Liu
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samantha A. Whiteside
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Natalia Jaeger
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Current address: Department of Immunology, Augusta University, Augusta, GA 30912, USA
| | - Ryan T. McDonough
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nikhilesh Joardar
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesús Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wentai Luo
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Audrey R. Odom John
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
3
|
van Vorstenbosch R, van Munster K, Stavropoulos G, Pachen D, van Schooten FJ, Ponsioen C, Smolinska A. The potential of volatile organic compounds to diagnose primary sclerosing cholangitis. JHEP Rep 2024; 6:101103. [PMID: 39131082 PMCID: PMC11315128 DOI: 10.1016/j.jhepr.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024] Open
Abstract
Background & Aims Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. PSC is a complex disease of largely unknown aetiology that is strongly associated with inflammatory bowel disease (IBD). Diagnosis, especially at an early stage, is difficult and to date there is no diagnostic biomarker. The present study aimed to assess the diagnostic potential of volatile organic compounds (VOCs) in exhaled breath to detect (early) PSC in an IBD population. Methods Breath samples were obtained from 16 patients with PSC alone, 47 with PSC and IBD, and 53 with IBD alone during outpatient clinic visits. Breath sampling was performed using the ReCIVA breath sampler and subsequently analysed by gas chromatography mass spectrometry. Random forest modelling was performed to find discriminatory VOCs and create a predictive model that was tested using an independent test set. Results The final model to discriminate patients with PSC, with or without IBD, from patients with IBD alone included twenty VOCs and achieved a sensitivity, specificity, and area under the receiver-operating curve on the test set of 77%, 83%, and 0.84 respectively. Three VOCs (isoprene, 2-octanone and undecane) together correlated significantly with the Amsterdam-Oxford score for PSC disease prognosis. A sensitivity analysis showed stable results across early-stage PSC, including in those with normal alkaline phosphatase levels, as well as further progressed PSC. Conclusion The present study demonstrates that exhaled breath can distinguish PSC cases from IBD and has potential as a non-invasive clinical breath test for (early) PSC. Impact and implications Primary sclerosing cholangitis is a complex chronic liver disease, which ultimately results in cirrhosis, liver failure, and death. Detection, especially in early disease stages, can be challenging, and therefore therapy typically starts when there is already some irreversible damage. The current study shows that metabolites in exhaled breath, so called volatile organic compounds, hold promise to non-invasively detect primary sclerosing cholangitis, including at early disease stages.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Kim van Munster
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Center, Amsterdam, The Netherlands
| | - Georgios Stavropoulos
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle Pachen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Center, Amsterdam, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Zhang X, Zhang X, Yang Y. Update of gut gas metabolism in ulcerative colitis. Expert Rev Gastroenterol Hepatol 2024; 18:339-349. [PMID: 39031456 DOI: 10.1080/17474124.2024.2383635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disease of the intestine. The intestinal microbiota is essential in the occurrence and development of UC. Gut gases are produced via bacterial fermentation or chemical interactions, which can reveal altered intestinal microbiota, abnormal cellular metabolism, and inflammation responses. Recent studies have demonstrated that UC patients have an altered gut gas metabolism. AREAS COVERED In this review, we integrate gut gas metabolism advances in UC and discuss intestinal gases' clinical values as new biomarkers or therapeutic targets for UC, providing the foundation for further research. Literature regarding gut gas metabolism and its significance in UC from inception to October 2023 was searched on the MEDLINE database and references from relevant articles were investigated. EXPERT OPINION Depending on their type, concentration, and volume, gut gases can induce or alleviate clinical symptoms and regulate intestinal motility, inflammatory responses, immune function, and oxidative stress, significantly impacting UC. Gut gases may function as new biomarkers and provide potential diagnostic or therapeutic targets for UC.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Medical School, Nankai University, Tianjin, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiuli Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Dong R, Chang D, Shen C, Shen Y, Shen Z, Tian T, Wang J. Association of volatile organic compound exposure with metabolic syndrome and its components: a nationwide cross-sectional study. BMC Public Health 2024; 24:671. [PMID: 38431552 PMCID: PMC10909266 DOI: 10.1186/s12889-024-18198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a health issue consisting of multiple metabolic abnormalities. The impact of exposure to volatile organic compounds (VOCs) on MetS and its components remains uncertain. This study aimed to assess the associations of individual urinary metabolites of VOC (mVOCs) and mVOC mixtures with MetS and its components among the general adult population in the United States. METHODS A total of 5345 participants with eligible data were filtered from the 2011-2020 cycles of the National Health and Nutrition Examination Survey. Multivariate logistic regression models were applied to assess the associations of individual mVOCs with MetS and its components. The least absolute shrinkage and selection operator (LASSO) regression models were constructed to identify more relevant mVOCs. The weight quantile sum regression model was applied to further explore the links between mVOC co-exposure and MetS and its components. RESULTS The results indicated positive associations between multiple mVOCs and MetS, including CEMA, DHBMA, and HMPMA. CEMA was found to be positively correlated with all components of MetS. HMPMA was associated with elevated triglyceride (TG), reduced high-density lipoprotein, and fasting blood glucose (FBG) impairment; 3HPMA was associated with an elevated risk of high TG and FBG impairment; and DHBMA had positive associations with elevated TG and high blood pressure. The co-exposure of LASSO-selected mVOCs was associated with an increased risk of elevated TG, high blood pressure, and FBG impairment. CONCLUSION Positive associations of certain individual urinary mVOCs and mVOC mixtures with MetS and its components were observed by utilizing multiple statistical models and large-scale national data. These findings may serve as the theoretical basis for future experimental and mechanistic studies and have important implications for public health.
Collapse
Affiliation(s)
- Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Dongchun Chang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Chao Shen
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Ya Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Zhengkai Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Ting Tian
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Nutrition and Food Safety, Nanjing, China.
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Hintzen KF, Eussen MM, Neutel C, Bouvy ND, van Schooten FJ, Hooijmans CR, Lubbers T. A systematic review on the detection of volatile organic compounds in exhaled breath in experimental animals in the context of gastrointestinal and hepatic diseases. PLoS One 2023; 18:e0291636. [PMID: 37733754 PMCID: PMC10513283 DOI: 10.1371/journal.pone.0291636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Analysis of volatile organic compounds (VOCs) in exhaled breath has the potential to serve as an accurate diagnostic tool for gastro-intestinal diseases. Animal studies could be instrumental as a preclinical base and subsequent clinical translation to humans, as they are easier to standardize and better equipped to relate specific VOCs to metabolic and pathological processes. This review provides an overview of the study design, characteristics and methodological quality of previously published animal studies on analysis of exhaled breath in gastrointestinal and hepatic diseases. Guidelines are provided for standardization in study design and breath collection methods to improve comparability, avoid duplication of research and reduce discomfort of animals in future studies. METHODS PubMed and Embase database were searched for animal studies using exhaled breath analysis to detect gastro-intestinal diseases. Risk of bias was assessed using the SYRCLE's risk of bias tool for animal studies. Information on study design, standardization methods, animal models, breath collection methods and identified VOCs were extracted from the included studies. RESULTS 10 studies were included (acute liver failure n = 1, non-alcoholic steatohepatitis n = 1, hepatic ischemia n = 2, mesenteric ischemia n = 2, sepsis and peritonitis n = 3, colitis n = 1). Rats were used in most of the studies. Exhaled breath was mostly collected using invasive procedures as tracheal cannulation or tracheostomy. Poor reporting on standardization, breath collection methods, analytical techniques, as well as heterogeneity of the studies, complicate comparison of the different studies. CONCLUSION Poor reporting of essential methodological details impaired comprehensive summarizing the various studies on exhaled breath in gastrointestinal and hepatic diseases. Potential pitfalls in study design, and suggestions for improvement of study design are discussed which, when applied, lead to consistent and generalizable results and a reduction in the use of laboratory animals. Refining the methodological quality of animal studies has the potential to improve subsequent clinical trial design.
Collapse
Affiliation(s)
- Kim F.H. Hintzen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Myrthe M.M. Eussen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Céline Neutel
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Carlijn R. Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Bhandari MP, Polaka I, Vangravs R, Mezmale L, Veliks V, Kirshners A, Mochalski P, Dias-Neto E, Leja M. Volatile Markers for Cancer in Exhaled Breath-Could They Be the Signature of the Gut Microbiota? Molecules 2023; 28:molecules28083488. [PMID: 37110724 PMCID: PMC10141340 DOI: 10.3390/molecules28083488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients (n = 16) and healthy controls (n = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, p-value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, p-value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.
Collapse
Affiliation(s)
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Arnis Kirshners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Center GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
8
|
de-Madaria E. Bile volatile organic compounds, smelling trouble. Endoscopy 2021; 53:737-738. [PMID: 34167162 DOI: 10.1055/a-1312-6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Enrique de-Madaria
- Gastroenterology Department, Alicante University General Hospital, ISABIAL, Alicante, Spain.,Department of Clinical Medicine, Faculty of Medicine, Miguel Hernández University, Elche, Spain
| |
Collapse
|
9
|
Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers (Basel) 2021; 13:cancers13102361. [PMID: 34068419 PMCID: PMC8153598 DOI: 10.3390/cancers13102361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Early diagnosis is crucial for reducing colorectal cancer-related mortality in both the general population and inflammatory bowel disease. Volatile organic compound (VOC) analysis is a promising alternative to the gold standard procedure, endoscopy, for early detection and surveillance of colorectal diseases. This review aimed to provide a general overview of the most recent evidence in this area on VOC testing in breath, stool, and urine samples. Abstract Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the Western world. Early detection decreases incidence and mortality. Screening programs based on fecal occult blood testing help identify patients requiring endoscopic examination, but accuracy is far from optimal. Among the alternative strategies, volatile organic compounds (VOCs) represent novel potentially useful biomarkers of colorectal cancer. They also represent a promising tool for the screening of both intestinal inflammation and related CRC. The review is focused on the diagnostic potential of VOCs in sporadic CRC and in inflammatory bowel diseases (IBD), which increase the risk of CRC, analyzing future clinical applications. Despite limitations related to inadequate strength of evidence, differing analytical platforms identify different VOCs, and this unconventional approach for diagnosing colorectal cancer is promising. Some VOC profiles, besides identifying inflammation, seem disease-specific in inflammatory bowel diseases. Thus, breath, urine, and fecal VOCs provide a new and promising clinical approach to differential diagnosis, evaluation of the inflammatory status, and possibly the assessment of treatment efficacy in IBD. Conversely, specific VOC patterns correlating inflammatory bowel disease and cancer risk are still lacking, and studies focused on this issue are strongly encouraged. No prospective studies have assessed the risk of CRC development by using VOCs in samples collected before the onset of disease, both in the general population and in patients with IBD.
Collapse
|
10
|
Gallagher K, Catesson A, Griffin JL, Holmes E, Williams HRT. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2021; 15:813-826. [PMID: 33175138 DOI: 10.1093/ecco-jcc/jjaa227] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The inflammatory bowel diseases [IBD], Crohn's disease and ulcerative colitis, are chronic, idiopathic gastrointestinal diseases. Although their precise aetiology is unknown, it is thought to involve a complex interaction between genetic predisposition and an abnormal host immune response to environmental exposures, probably microbial. Microbial dysbiosis has frequently been documented in IBD. Metabolomics [the study of small molecular intermediates and end products of metabolism in biological samples] provides a unique opportunity to characterize disease-associated metabolic changes and may be of particular use in quantifying gut microbial metabolism. Numerous metabolomic studies have been undertaken in IBD populations, identifying consistent alterations in a range of molecules across several biological matrices. This systematic review aims to summarize these findings. METHODS A comprehensive, systematic search was carried out using Medline and Embase. All studies were reviewed by two authors independently using predefined exclusion criteria. Sixty-four relevant papers were assessed for quality and included in the review. RESULTS Consistent metabolic perturbations were identified, including increases in levels of branched chain amino acids and lipid classes across stool, serum, plasma and tissue biopsy samples, and reduced levels of microbially modified metabolites in both urine [such as hippurate] and stool [such as secondary bile acids] samples. CONCLUSIONS This review provides a summary of metabolomic research in IBD to date, highlighting underlying themes of perturbed gut microbial metabolism and mammalian-microbial co-metabolism associated with disease status.
Collapse
Affiliation(s)
- Kate Gallagher
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Alexandra Catesson
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Julian L Griffin
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Elaine Holmes
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Institute of Health Futures, Murdoch University, Perth, WA, Australia
| | - Horace R T Williams
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Department of Gastroenterology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
11
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wilms E, An R, Smolinska A, Stevens Y, Weseler AR, Elizalde M, Drittij MJ, Ioannou A, van Schooten FJ, Smidt H, Masclee AAM, Zoetendal EG, Jonkers DMAE. Galacto-oligosaccharides supplementation in prefrail older and healthy adults increased faecal bifidobacteria, but did not impact immune function and oxidative stress. Clin Nutr 2021; 40:3019-3031. [PMID: 33509667 DOI: 10.1016/j.clnu.2020.12.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Ageing is associated with an increased risk of frailty, intestinal microbiota perturbations, immunosenescence and oxidative stress. Prebiotics such as galacto-oligosaccharides (GOS) may ameliorate these ageing-related alterations. We aimed to compare the faecal microbiota composition, metabolite production, immune and oxidative stress markers in prefrail elderly and younger adults, and investigate the effects of GOS supplementation in both groups. METHODS In a randomised controlled cross-over study, 20 prefrail elderly and 24 healthy adults received 21.6 g/day Biotis™ GOS (containing 15.0 g/day GOS) or placebo. Faecal 16S rRNA gene-based microbiota and short-chain fatty acids were analysed at 0, 1 and 4 weeks of intervention.Volatile organic compounds were analysed in breath, and stimulated cytokine production, CRP, malondialdehyde, trolox equivalent antioxidant capacity (TEAC) and uric acid (UA) in blood at 0 and 4 weeks. RESULTS Principle coordinate analysis showed differences in microbial composition between elderly and adults (P≤0.05), with elderly having lower bifidobacteria (P≤0.033) at baseline. In both groups, GOS affected microbiota composition (P≤0.05), accompanied by increases in bifidobacteria (P<0.001) and decreased microbial diversity (P≤0.023). Faecal and breath metabolites, immune and oxidative stress markers neither differed between groups (P ≥ 0.125) nor were affected by GOS (P ≥ 0.236). TEAC values corrected for UA were higher in elderly versus adults (P<0.001), but not different between interventions (P ≥ 0.455). CONCLUSIONS Elderly showed lower faecal bifidobacterial (relative) abundance than adults, which increased after GOS intake in both groups. Faecal and breath metabolites, parameters of immune function and oxidative stress were not different at baseline, and not impacted by GOS supplementation. CLINICALTRIALS. GOV WITH STUDY ID NUMBER NCT03077529.
Collapse
Affiliation(s)
- Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| | - Ran An
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Yala Stevens
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Montserrat Elizalde
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Frederik J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad A M Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daisy M A E Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
13
|
da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:27-37. [PMID: 34820523 PMCID: PMC8600992 DOI: 10.1016/j.clinms.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords "Urinary VOCs", "VOCs biomarkers" and "Volatile cancer biomarkers" in combination with the term "Mass spectrometry". Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.
Collapse
Key Words
- Biomarkers
- CAS, chemical abstracts service
- CYP450, cytochrome P450
- Cancer
- FAIMS, high-field asymmetric waveform ion mobility spectrometry
- GC, gas chromatography
- HS, headspace
- IMS, ion mobility spectrometry
- LC, liquid chromatography
- MS, mass spectrometry or mass spectrometric
- Mass Spectrometry
- Metabolomics
- NT, needle trap
- PSA, prostate-specific antigen
- PTR, proton transfer reaction
- PTV, programed temperature vaporizer
- ROS, reactive oxygen species
- SBSE, stir bar sorptive extraction
- SIFT, selected ion flow tube
- SPME, solid phase microextraction
- Urine
- VOCs
- VOCs, volatile organic compounds
- eNose, electronic nose
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP 14040-903, Brazil
| | - Bruno Spinosa De Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo. Av., Bandeirantes, 3900, Ribeirão Preto, SP 14040-900, Brazil
| |
Collapse
|
14
|
Bosch S, Wintjens DSJ, Wicaksono A, Kuijvenhoven J, van der Hulst R, Stokkers P, Daulton E, Pierik MJ, Covington JA, de Meij TGJ, de Boer NKH. The faecal scent of inflammatory bowel disease: Detection and monitoring based on volatile organic compound analysis. Dig Liver Dis 2020; 52:745-752. [PMID: 32402741 DOI: 10.1016/j.dld.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is diagnosed and monitored using endoscopic assessment, which is invasive and costly. In this study, potential of faecal volatile organic compounds (VOC) analysis for IBD detection and identification of disease activity was evaluated. METHODS IBD patients visiting outpatient clinics of participating tertiary hospitals were included. Active disease was defined as FCP ≥250 mg/g, remission as FCP <100 mg/g with Harvey Bradshaw Index <4 for Crohn's disease (CD) or Simple Clinical Colitis Activity Index <3 for ulcerative colitis (UC). Healthy controls (HC) were patients without mucosal abnormalities during colonoscopy. Faecal samples were measured using gas chromatography-ion mobility spectrometry. RESULTS A total of 280 IBD patients collected 107 CDa, 84 CDr, 80 UCa and 63 UCr samples. Additionally, 227 HC provided one faecal sample. UC and CD were discriminated from HC with high accuracy (AUC (95%CI): UCa vs HC 0.96(0.94-0.99); UCr vs HC 0.95(0.93-0.98); CDa vs HC 0.96(0.94-0.99); CDr vs HC 0.95(0.93-0.98)). There were small differences between UC and CD (0.55(0.50-0.6)) and no differences between active disease and remission (UCa vs UCr 0.63(0.44-0.82); CDa vs CDr 0.52(0.39-0.65)). CONCLUSION Our study outcomes imply that faecal VOC analysis holds potential for identifying biomarkers for IBD detection but not for monitoring disease activity.
Collapse
Affiliation(s)
- Sofie Bosch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M research institute, Amsterdam, The Netherlands.
| | - Dion S J Wintjens
- MUMC+, Maastricht University, Department of Gastroenterology and Hepatology, Maastricht, The Netherlands
| | - Alfian Wicaksono
- University of Warwick, School of Engineering, Coventry, United Kingdom
| | - Johan Kuijvenhoven
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Hoofddorp and Haarlem, The Netherlands
| | - René van der Hulst
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Hoofddorp and Haarlem, The Netherlands
| | - Pieter Stokkers
- OLVG West, Department of Gastroenterology and hepatology, Amsterdam, The Netherlands
| | - Emma Daulton
- University of Warwick, School of Engineering, Coventry, United Kingdom
| | - Marieke J Pierik
- MUMC+, Maastricht University, Department of Gastroenterology and Hepatology, Maastricht, The Netherlands
| | - James A Covington
- University of Warwick, School of Engineering, Coventry, United Kingdom
| | - Tim G J de Meij
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pediatric Gastroenterology, AG&M research institute, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M research institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Van Malderen K, De Winter BY, De Man JG, De Schepper HU, Lamote K. Volatomics in inflammatory bowel disease and irritable bowel syndrome. EBioMedicine 2020; 54:102725. [PMID: 32330874 PMCID: PMC7177032 DOI: 10.1016/j.ebiom.2020.102725] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Volatile organic compounds (VOCs) are produced by the human metabolism, inflammation and gut microbiota and form the basis of innovative volatomics research. VOCs detected through breath and faecal analysis hence serve as attractive, non-invasive biomarkers for diagnosing and monitoring irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). This review describes the clinical applicability of volatomics in discriminating between IBS, IBD and healthy volunteers with acceptable accuracy in breath (70%-100%) and faecal (58%-85%) samples. Promising compounds are propan-1-ol for diagnosing and monitoring of IBD patients, and 1-methyl-4-propan-2-ylcyclohexa-1,4-diene as biomarker for IBS diagnosis. However, these VOCs often seem to be related to inflammation and probably will need to be used in conjunction with other clinical evidence. Furthermore, three interventional studies underlined the potential of VOCs in predicting treatment outcome and patient follow-up. This shows great promise for future use of VOCs as non-invasive breath and faecal biomarkers in personalised medicine. However, properly designed studies that correlate VOCs to IBD/IBS pathogenesis, while taking microbial influences into account, are still key before clinical implementation can be expected.
Collapse
Affiliation(s)
- Kathleen Van Malderen
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Heiko U De Schepper
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Stavropoulos G, Jonkers DMAE, Mujagic Z, Koek GH, Masclee AAM, Pierik MJ, Dallinga JW, Van Schooten FJ, Smolinska A. Implementation of quality controls is essential to prevent batch effects in breathomics data and allow for cross-study comparisons. J Breath Res 2020; 14:026012. [PMID: 32120348 DOI: 10.1088/1752-7163/ab7b8d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exhaled breath analysis has become a promising monitoring tool for various ailments by identifying volatile organic compounds (VOCs) as indicative biomarkers excreted in the human body. Throughout the process of sampling, measuring, and data processing, non-biological variations are introduced in the data leading to batch effects. Algorithmic approaches have been developed to cope with within-study batch effects. Batch differences, however, may occur among different studies too, and up-to-date, ways to correct for cross-study batch effects are lacking; ultimately, cross-study comparisons to verify the uniqueness of found VOC profiles for a specific disease may be challenging. This study applies within-study batch-effect-correction approaches to correct for cross-study batch effects; suggestions are made that may help prevent the introduction of cross-study variations. Three batch-effect-correction algorithms were investigated: zero-centering, combat, and the analysis of covariance framework. The breath samples were collected from inflammatory bowel disease ([Formula: see text]), chronic liver disease ([Formula: see text]), and irritable bowel syndrome ([Formula: see text]) patients at different periods, and they were analysed via gas chromatography-mass spectrometry. Multivariate statistics were used to visualise and verify the results. The visualisation of the data before any batch-effect-correction technique was applied showed a clear distinction due to probable batch effects among the datasets of the three cohorts. The visualisation of the three datasets after implementing all three correction techniques showed that the batch effects were still present in the data. Predictions made using partial least squares discriminant analysis and random forest confirmed this observation. The within-study batch-effect-correction approaches fail to correct for cross-study batch effects present in the data. The present study proposes a framework for systematically standardising future breathomics data by using internal standards or quality control samples at regular analysis intervals. Further knowledge regarding the nature of the unsolicited variations among cross-study batches must be obtained to move the field further.
Collapse
Affiliation(s)
- Georgios Stavropoulos
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bannaga AS, Farrugia A, Arasaradnam RP. Diagnosing Inflammatory bowel disease using noninvasive applications of volatile organic compounds: a systematic review. Expert Rev Gastroenterol Hepatol 2019; 13:1113-1122. [PMID: 31657950 DOI: 10.1080/17474124.2019.1685873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a common disease with significant morbidity. Noninvasive diagnostic techniques are lacking in IBD. Currently, fecal calprotectin is a sensitive marker of gut inflammation however is not specific to Crohn's disease (CD) or ulcerative colitis (UC) alone. Volatile organic compounds (VOCs) were shown to have potential in IBD diagnosis.Areas covered: This systematic review aimed to examine the next-generation diagnosis of IBD in adults and children using VOCs. An in-depth literature-based search of current clinical studies of VOCs in the diagnosis of IBD was undertaken. Accuracy of IBD detection varied according to the technologies applied. Breath VOCs studies were pooled giving an overall sensitivity of 85% (95%CI: 79-89%) and specificity of 79% (95%CI 73-84%) whilst pooled fecal VOCs studies revealed a sensitivity of 87% (95%CI 77-93%) and specificity of 91% (95%CI 82-96%). Studies were limited by the variance of techniques applied in VOCs detection and the absence of well-designed longitudinal studies.Expert opinion: VOCs can be consistently and effectively detected in urine, breath, and stool in IBD patients. The sensitivity of breath VOCs in detecting IBD was comparable to feces. However, optimal VOCs detection methodology and biological sampling still need to be standardized..
Collapse
Affiliation(s)
- Ayman S Bannaga
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Alexia Farrugia
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Ramesh P Arasaradnam
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK.,Faculty of Health Science, University of Coventry, Coventry, UK.,Division of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. Nutrients 2019; 11:nu11092193. [PMID: 31547291 PMCID: PMC6770243 DOI: 10.3390/nu11092193] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is accompanied with increased frailty and comorbidities, which is potentially associated with microbiome perturbations. Dietary fibers could contribute to healthy aging by beneficially impacting gut microbiota and metabolite profiles. We aimed to compare young adults with elderly and investigate the effect of pectin supplementation on fecal microbiota composition, short chain fatty acids (SCFAs), and exhaled volatile organic compounds (VOCs) while using a randomized, double-blind, placebo-controlled parallel design. Fifty-two young adults and 48 elderly consumed 15 g/day sugar beet pectin or maltodextrin for four weeks. Fecal and exhaled breath samples were collected before and after the intervention period. Fecal samples were used for microbiota profiling by 16S rRNA gene amplicon sequencing, and for analysis of SCFAs by gas chromatography (GC). Breath was used for VOC analysis by GC-tof-MS. Young adults and elderly showed similar fecal SCFA and exhaled VOC profiles. Additionally, fecal microbiota profiles were similar, with five genera significantly different in relative abundance. Pectin supplementation did not significantly alter fecal microbiota, SCFA or exhaled VOC profiles in elderly or young adults. In conclusion, aside from some minor differences in microbial composition, healthy elderly and young adults showed comparable fecal microbiota composition and activity, which were not altered by pectin supplementation.
Collapse
|
19
|
Rondanelli M, Perdoni F, Infantino V, Faliva MA, Peroni G, Iannello G, Nichetti M, Alalwan TA, Perna S, Cocuzza C. Volatile Organic Compounds as Biomarkers of Gastrointestinal Diseases and Nutritional Status. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:7247802. [PMID: 31583160 PMCID: PMC6754926 DOI: 10.1155/2019/7247802] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/24/2019] [Indexed: 05/30/2023]
Abstract
PURPOSE The purpose of this review was to identify the best solution for rapid and noninvasive diagnosis and long-term monitoring of patients affected by inflammatory gastrointestinal diseases, colon and gastric cancer, obesity in correlation to diet, and breast milk to evaluate exposure to VOCs in women and infants. METHODS This review included 20 previously published eligible studies. VOC analysis has allowed us to highlight differences in lifestyles, intestinal microbiota, and metabolism. New innovative methods have been described that allow the detection and quantification of a broad spectrum of metabolites present in exhaled breath even at very low levels, some of which have been shown to be indicators of pathological conditions. RESULTS Five studies were analyzed that involved VOC analysis in relation to type of diet. All of them showed that the type of diet can have an impact on metabolites excreted and therefore can be a useful tool in the nutritional studies related to metabolism and health and disease status. Two studies concerned VOC analysis in inflammatory bowel diseases, and the results showed that VOCs can distinguish active disease from remission; VOC profile is clearly different in patients. In particular, C15H30 1-pentadecene, 3-methyl-1-butanal, octane, acetic acid, alpha-pinene, and m-cymene are elevated in active ulcerative colitis. Four studies examined VOCs in gastric and colorectal tumors showing a change in metabolic biomarkers of cancer patients compared to the control group. Finally, the study of VOCs in breast milk has improved the understanding of the potential health risks of exposure of children to chemical pollutants. CONCLUSIONS VOC analysis allowed to highlight differences in behavior, lifestyle, and metabolism of individuals. Analytical methods are continuously developed to allow for better detection and quantification of metabolites, thus enabling the detection of a broader spectrum of pathophysiology and disease biomarkers.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia 27100, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy
| | - Federica Perdoni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Vittoria Infantino
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari 70121, Italy
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona “Istituto Santa Margherita”, Pavia 27100, Italy
| | - Mara Nichetti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia 27100, Italy
| | - Tariq A. Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P.O. Box 32038, Zallaq, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P.O. Box 32038, Zallaq, Bahrain
| | - Clementina Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano 20126, Italy
| |
Collapse
|
20
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Chronic diarrhoea remains a diagnostic challenge, with numerous causes and few effective symptomatic treatments. This review focuses on new methods for diagnosis of common disorders and alerts readers to rarer causes through a systematic approach to the underlying mechanisms. RECENT FINDINGS New strategies are emerging to stratify the need for endoscopic investigation. Faecal immunochemical testing, combined with standard blood tests, shows promise in excluding colorectal cancers, adenoma and inflammatory bowel disease, challenging the current use of faecal calprotectin. Serum analysis for markers of bile acid synthesis has been refined, potentially streamlining diagnostic pathways of bile acid malabsorption for those who are unable to access nuclear medicine scans, but the positive predictive value of faecal elastase in low prevalence populations has been questioned. Novel markers such as volatile organic compounds and stool DNA analyses continue to develop. SUMMARY A systematic approach to investigation of chronic diarrhoea will ensure all relevant causes are considered and minimize the chance of a missed diagnosis. Combination of clinical features with noninvasive testing supports a judicious approach to endoscopic investigations but further innovation will be needed to resolve the diagnostic challenge that diarrhoea poses.
Collapse
|
22
|
Tiele A, Wicaksono A, Kansara J, Arasaradnam RP, Covington JA. Breath Analysis Using eNose and Ion Mobility Technology to Diagnose Inflammatory Bowel Disease-A Pilot Study. BIOSENSORS-BASEL 2019; 9:bios9020055. [PMID: 31013848 PMCID: PMC6627846 DOI: 10.3390/bios9020055] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Early diagnosis of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), remains a clinical challenge with current tests being invasive and costly. The analysis of volatile organic compounds (VOCs) in exhaled breath and biomarkers in stool (faecal calprotectin (FCP)) show increasing potential as non-invasive diagnostic tools. The aim of this pilot study is to evaluate the efficacy of breath analysis and determine if FCP can be used as an additional non-invasive parameter to supplement breath results, for the diagnosis of IBD. Thirty-nine subjects were recruited (14 CD, 16 UC, 9 controls). Breath samples were analysed using an in-house built electronic nose (Wolf eNose) and commercial gas chromatograph-ion mobility spectrometer (G.A.S. BreathSpec GC-IMS). Both technologies could consistently separate IBD and controls [AUC ± 95%, sensitivity, specificity], eNose: [0.81, 0.67, 0.89]; GC-IMS: [0.93, 0.87, 0.89]. Furthermore, we could separate CD from UC, eNose: [0.88, 0.71, 0.88]; GC-IMS: [0.71, 0.86, 0.62]. Including FCP did not improve distinction between CD vs UC; eNose: [0.74, 1.00, 0.56], but rather, improved separation of CD vs controls and UC vs controls; eNose: [0.77, 0.55, 1.00] and [0.72, 0.89, 0.67] without FCP, [0.81, 0.73, 0.78] and [0.90, 1.00, 0.78] with FCP, respectively. These results confirm the utility of breath analysis to distinguish between IBD-related diagnostic groups. FCP does not add significant diagnostic value to breath analysis within this study.
Collapse
Affiliation(s)
- Akira Tiele
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
| | - Alfian Wicaksono
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
| | - Jiten Kansara
- Department of Gastroenterology, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK.
| | - Ramesh P Arasaradnam
- Department of Gastroenterology, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK.
- Applied Biological Sciences, Coventry University, Coventry CV1 5FB, UK.
- Health and Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
23
|
Bond A, Greenwood R, Lewis S, Corfe B, Sarkar S, O'Toole P, Rooney P, Burkitt M, Hold G, Probert C. Volatile organic compounds emitted from faeces as a biomarker for colorectal cancer. Aliment Pharmacol Ther 2019; 49:1005-1012. [PMID: 30828825 PMCID: PMC6593415 DOI: 10.1111/apt.15140] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer remains a leading cause of mortality and morbidity. The UK Bowel Cancer Screening Programme (BCSP) has demonstrated that detection of colorectal cancer at an earlier stage and identification of advanced pre-malignant adenomas reduces mortality and morbidity. AIM To assess the utility of volatile organic compounds as a biomarker for colorectal neoplasia. METHODS Faeces were collected from symptomatic patients and people participating in the UK BCSP, prior to colonoscopy. Headspace extraction followed by gas chromatography mass spectrometry was performed on faeces to identify volatile organic compounds. Logistic regression modelling and 10-fold cross-validation were used to test potential biomarkers. RESULTS One hundred and thirty-seven participants were included (mean age 64 years [range 22-85], 54% were male): 60 had no neoplasia, 56 had adenomatous polyp(s) and 21 had adenocarcinoma. Propan-2-ol was significantly more abundant in the cancer samples (P < 0.0001, q = 0.004) with an area under ROC (AUROC) curve of 0.76. When combined with 3-methylbutanoic acid the AUROC curve was 0.82, sensitivity 87.9% (95% CI 0.87-0.99) and specificity 84.6% (95% CI 0.65-1.0). Logistic regression analysis using the presence/absence of specific volatile organic compounds, identified a three volatile organic compound panel (propan-2-ol, hexan-2-one and ethyl 3-methyl- butanoate) to have an AUROC of 0.73, with a person six times more likely to have cancer if all three volatile organic compounds were present (P < 0.0001). CONCLUSIONS Volatile organic compound analysis may have a superior diagnostic ability for the identification of colorectal adenocarcinoma, when compared to other faecal biomarkers, including those currently employed in UK. Clinical trial details: National Research Ethics Service Committee South West - Central Bristol (REC reference 14/SW/1162) with R&D approval from University of Liverpool and Broadgreen University Hospital Trust (UoL 001098).
Collapse
Affiliation(s)
- Ashley Bond
- Royal Liverpool and Broadgreen University Hospital TrustLiverpoolUK
| | - Rosemary Greenwood
- Research Design ServiceSchool of Social and Community MedicineUniversity of BristolBristolUK
| | | | - Bernard Corfe
- Molecular Gastroenterology Research GroupDepartment of OncologyUniversity of SheffieldSheffieldUK,Insigneo Institute for in silico MedicineUniversity of SheffieldSheffieldUK
| | - Sanchoy Sarkar
- Royal Liverpool and Broadgreen University Hospital TrustLiverpoolUK
| | - Paul O'Toole
- Royal Liverpool and Broadgreen University Hospital TrustLiverpoolUK
| | - Paul Rooney
- Royal Liverpool and Broadgreen University Hospital TrustLiverpoolUK
| | - Michael Burkitt
- Royal Liverpool and Broadgreen University Hospital TrustLiverpoolUK,Gastroenterology Research UnitDepartment of Molecular and Cellular PhysiologyInstitute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - Georgina Hold
- Microbiome Research CentreSt George & Sutherland Clinical SchoolUNSWSydneyNSWAustralia
| | - Chris Probert
- Royal Liverpool and Broadgreen University Hospital TrustLiverpoolUK,Gastroenterology Research UnitDepartment of Molecular and Cellular PhysiologyInstitute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
24
|
Smolinska A, Engel J, Szymanska E, Buydens L, Blanchet L. General Framing of Low-, Mid-, and High-Level Data Fusion With Examples in the Life Sciences. DATA HANDLING IN SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-444-63984-4.00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Ahmed I, Niaz Z, Ewbank F, Akarca D, Felwick R, Furnari M. Sniffing out causes of gastrointestinal disorders: a review of volatile metabolomic biomarkers. Biomark Med 2018; 12:1139-1148. [PMID: 30191735 DOI: 10.2217/bmm-2018-0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Distinct changes can be observed in the odor of human excretions during health and disease. Identifying underlying volatile metabolites responsible for these odorous changes can be correlated with the pathological process within the body. Advances in the technology have enabled us to interpret the volatile signature of these changes in the odor. This has opened a promising area to lay the foundations of a rapid, noninvasive and point of care diagnostic tool. This review explores the diagnostic potential of volatile organic metabolites as novel biomarkers and extends the discussion on the clinical applications of these biomarkers in gastrointestinal disorders.
Collapse
Affiliation(s)
- Iftikhar Ahmed
- Department of Gastroenterology, Aldara Hospital & Medical Centre, Riyadh, Kingdom of Saudi Arabia
| | - Zafar Niaz
- Department of Medicine, Mayo Hospital Lahore, Pakistan
| | | | - Danyal Akarca
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Richard Felwick
- Department of Gastroenterology, University Hospital Southampton, Southampton, UK
| | | |
Collapse
|
27
|
Bosch S, El Manouni El Hassani S, Covington JA, Wicaksono AN, Bomers MK, Benninga MA, Mulder CJJ, de Boer NKH, de Meij TGJ. Optimized Sampling Conditions for Fecal Volatile Organic Compound Analysis by Means of Field Asymmetric Ion Mobility Spectrometry. Anal Chem 2018; 90:7972-7981. [PMID: 29860824 PMCID: PMC6143285 DOI: 10.1021/acs.analchem.8b00688] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Fecal volatile organic
compounds (VOCs) are increasingly considered
to be potential noninvasive, diagnostic biomarkers for various gastrointestinal
diseases. Knowledge of the influence of sampling conditions on VOC
outcomes is limited. We aimed to evaluate the effects of sampling
conditions on fecal VOC profiles and to assess under which conditions
an optimal diagnostic accuracy in the discrimination between pediatric
inflammatory bowel disease (IBD) and controls could be obtained. Fecal
samples from de novo treatment-naïve pediatric IBD patients
and healthy controls (HC) were used to assess the effects of sampling
conditions compared to the standard operating procedure (reference
standard), defined as 500 mg of sample mass diluted with 10 mL tap
water, using field asymmetric ion mobility spectrometry (FAIMS). A
total of 17 IBD (15 CD (Crohn's disease) and 2 UC (ulcerative
colitis))
and 25 HC were included. IBD and HC could be discriminated with high
accuracy (accuracy = 0.93, AUC = 0.99, p < 0.0001).
A smaller fecal sample mass resulted in a decreased diagnostic accuracy
(300 mg accuracy = 0.77, AUC = 0.69, p = 0.02; 100
mg accuracy = 0.70, AUC = 0.74, p = 0.003). A loss
of diagnostic accuracy was seen toward increased numbers of thaw–freeze
cycles (one cycle, accuracy = 0.61, AUC = 0.80, p = 0.0004; two cycles, accuracy = 0.64, AUC = 0.56, p = 0.753; and three cycles, accuracy = 0.57, AUC = 0.50, p = 0.5101) and when samples were kept at room temperature
for 180 min prior to analysis (accuracy = 0.60, AUC = 0.51, p = 0.46). Diagnostic accuracy of VOC profiles was not significantly
influenced by storage duration differences of 20 months. The application
of a 500 mg sample mass analyzed after one thaw–freeze cycle
showed the best discriminative accuracy for the differentiation of
IBD and HC. VOC profiles and diagnostic accuracy were significantly
affected by sampling conditions, underlining the need for the implementation
of standardized protocols in fecal VOC analysis.
Collapse
Affiliation(s)
| | | | - James A Covington
- School of Engineering , University of Warwick , Coventry , United Kingdom
| | - Alfian N Wicaksono
- School of Engineering , University of Warwick , Coventry , United Kingdom
| | | | - Marc A Benninga
- Department Pediatric Gastroenterology , Emma Children's Hospital/Academic Medical Center , Amsterdam , The Netherlands
| | | | | | | |
Collapse
|
28
|
Fecal Amino Acid Analysis Can Discriminate De Novo Treatment-Naïve Pediatric Inflammatory Bowel Disease From Controls. J Pediatr Gastroenterol Nutr 2018; 66:773-778. [PMID: 29112087 DOI: 10.1097/mpg.0000000000001812] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Endoscopy remains mandatory in the diagnostic work-up of inflammatory bowel disease (IBD), but is a costly and invasive procedure. Identification of novel, noninvasive, diagnostic biomarkers remains a priority. The aim of the present study was to explore the potential of fecal amino acid composition as diagnostic biomarker for pediatric IBD. METHODS In this case-control study, treatment-naïve, de novo pediatric patients with IBD from two tertiary centers were included. Endoscopic severity of ulcerative colitis (UC) and Crohn's disease (CD) was based on physician global assessment scores, substantiated by levels of fecal calprotectin and C-reactive protein at study inclusion. Patients were instructed to collect a fecal sample prior to bowel cleansing. Healthy controls (HCs) were recruited from primary schools in the same region. Dedicated amino acid analysis was performed on all samples. RESULTS Significant differences between 30 IBD patients (15 UC, 15 CD) and 15 age and sex-matched HCs were found in six amino acids (histidine, tryptophan, phenylalanine, leucine, tyrosine, and valine; all area under the curve >0.75 and P < 0.005), displaying higher levels in IBD. When distributing the patients according to type of IBD, a similar spectrum of amino acids differed between UC and HC (histidine, tryptophan, phenylalanine, leucine, valine, and serine), whereas three amino acids were different between CD and HC (histidine, tryptophan, and phenylalanine). CONCLUSIONS Significantly increased levels of six different fecal amino acids were found in patients with IBD compared to controls. Whether these differences reflect decreased absorption or increased loss by inflamed intestines needs to be elucidated.
Collapse
|
29
|
Fijten RRR, Smolinska A, Shi Q, Pachen DM, Dallinga JW, Boots AW, van Schooten FJ. Exposure to genotoxic compounds alters in vitro cellular VOC excretion. J Breath Res 2018; 12:027101. [PMID: 28972195 DOI: 10.1088/1752-7163/aa9080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genotoxic carcinogens significantly damage cells and tissues by targeting macromolecules such as proteins and DNA, but their mechanisms of action and effects on human health are diverse. Consequently, determining the amount of exposure to a carcinogen and its cellular effects is essential, yet difficult. The aim of this manuscript was to investigate the potential of detecting alterations in volatile organic compounds (VOCs) profiles in the in vitro headspace of pulmonary cells after exposure to the genotoxic carcinogens cisplatin and benzo[a]pyrene using two different sampling set-ups. A prototype set-up was used for the cisplatin exposure, whereas a modified set-up was utilized for the benzo[a]pyrene exposure. Both carcinogens were added to the cell medium for 24 h. The headspace in the culture flask was sampled to measure the VOC content using gas chromatography-time-of-flight-mass spectrometry. Eight cisplatin-specific VOCs and six benzo[a]pyrene-specific VOCs were discriminatory between treated and non-treated cells. Since the in vivo biological effects of both genotoxic compounds are well-defined, the origin of the identified VOCs could potentially be traced back to common cellular processes including cell cycle pathways, DNA damage and repair. These results indicate that exposing lung cells to genotoxins alters headspace VOC profiles, suggesting that it might be possible to monitor VOC changes in vivo to study drug efficacy or exposure to different pollutants. In conclusion, this study emphasizes the innovative potential of in vitro VOCs experiments to determine their in vivo applicability and discover their endogenous origin.
Collapse
Affiliation(s)
- R R R Fijten
- Department of Pharmacology & Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Williams HRT, Orchard TR. Editorial: volatile organic compounds in breath for monitoring IBD-longitudinal studies are essential. Aliment Pharmacol Ther 2017; 46:371-372. [PMID: 28677293 DOI: 10.1111/apt.14135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - T R Orchard
- Gastroenterology, Imperial College London, London, UK
| |
Collapse
|
31
|
Smolinska A, van Schooten FJ. Editorial: volatile organic compounds in breath for monitoring IBD-longitudinal studies are essential. Authors' reply. Aliment Pharmacol Ther 2017; 46:372. [PMID: 28677279 DOI: 10.1111/apt.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- A Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|