1
|
Tang X, Xiong K, Zeng Y, Fang R. The Mechanism of Zinc Oxide in Alleviating Diarrhea in Piglets after Weaning: A Review from the Perspective of Intestinal Barrier Function. Int J Mol Sci 2024; 25:10040. [PMID: 39337525 PMCID: PMC11432186 DOI: 10.3390/ijms251810040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is one of the most challenging phases for piglets, and it is also the time when piglets are the most susceptible to diarrhea, which may result in significant economic losses for pig production. One of the dietary strategies for reducing post-weaning diarrhea (PWD) in piglets is to provide them with a pharmacological dose of zinc oxide (ZnO). However, excessive or long-term usage of high-dose ZnO has significant impacts on pig health and the ecological environment. Therefore, caution should be exercised when considering the use of high-dose ZnO for the prevention or treatment of PWD in piglets. In this paper, the significant role of zinc in animal health, the potential mode of action of ZnO in alleviating diarrhea, and the impact of innovative, highly efficient ZnO alternatives on the regulation of piglet diarrhea were reviewed to offer insights into the application of novel ZnO in pig production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China;
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Peng X, Yang Y, Zhong R, Yang Y, Yan F, Liang N, Yuan S. Zinc and Inflammatory Bowel Disease: From Clinical Study to Animal Experiment. Biol Trace Elem Res 2024:10.1007/s12011-024-04193-6. [PMID: 38805169 DOI: 10.1007/s12011-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract (GI) with a high incidence rate globally, and IBD patients are often accompanied by zinc deficiency. This review aims to summarize the potential therapeutic value of zinc supplementation in IBD clinical patients and animal models. Zinc supplementation can relieve the severity of IBD especially in patients with zinc deficiency. The clinical severity of IBD were mainly evaluated through some scoring methods involving clinical performance, endoscopic observation, blood biochemistry, and pathologic biopsy. Through conducting animal experiments, it has been found that zinc plays an important role in alleviating clinical symptoms and improving pathological lesions. In both clinical observation and animal experiment of IBD, the therapeutic mechanisms of zinc interventions have been found to be related to immunomodulation, intestinal epithelial repair, and gut microbiota's balance. Furthermore, the antioxidant activity of zinc was clarified in animal experiment. Appropriate zinc supplementation is beneficial for IBD therapy, and the present evidence highlights that alleviating zinc-deficient status can effectively improve the severity of clinical symptoms in IBD patients and animal models.
Collapse
Affiliation(s)
- Xi Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yingxiang Yang
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China
| | - Rao Zhong
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yuexuan Yang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shibin Yuan
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
3
|
Ortiz Sanjuán JM, Argüello H, Cabrera-Rubio R, Crispie F, Cotter PD, Garrido JJ, Ekhlas D, Burgess CM, Manzanilla EG. Effects of removing in-feed antibiotics and zinc oxide on the taxonomy and functionality of the microbiota in post weaning pigs. Anim Microbiome 2024; 6:18. [PMID: 38627869 PMCID: PMC11022352 DOI: 10.1186/s42523-024-00306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Post weaning diarrhoea (PWD) causes piglet morbidity and mortality at weaning and is a major driver for antimicrobial use worldwide. New regulations in the EU limit the use of in-feed antibiotics (Ab) and therapeutic zinc oxide (ZnO) to prevent PWD. New approaches to control PWD are needed, and understanding the role of the microbiota in this context is key. In this study, shotgun metagenome sequencing was used to describe the taxonomic and functional evolution of the faecal microbiota of the piglet during the first two weeks post weaning within three experimental groups, Ab, ZnO and no medication, on commercial farms using antimicrobials regularly in the post weaning period. RESULTS Diversity was affected by day post weaning (dpw), treatment used and diarrhoea but not by the farm. Microbiota composition evolved towards the dominance of groups of species such as Prevotella spp. at day 14dpw. ZnO inhibited E. coli overgrowth, promoted higher abundance of the family Bacteroidaceae and decreased Megasphaera spp. Animals treated with Ab exhibited inconsistent taxonomic changes across time points, with an overall increase of Limosilactobacillus reuteri and Megasphaera elsdenii. Samples from non-medicated pigs showed virulence-related functions at 7dpw, and specific ETEC-related virulence factors were detected in all samples presenting diarrhoea. Differential microbiota functions of pigs treated with ZnO were related to sulphur and DNA metabolism, as well as mechanisms of antimicrobial and heavy metal resistance, whereas Ab treated animals exhibited functions related to antimicrobial resistance and virulence. CONCLUSION Ab and particularly ZnO maintained a stable microbiota composition and functionality during the two weeks post weaning, by limiting E. coli overgrowth, and ultimately preventing microbiota dysbiosis. Future approaches to support piglet health should be able to reproduce this stable gut microbiota transition during the post weaning period, in order to maintain optimal gut physiological and productive conditions.
Collapse
Affiliation(s)
- Juan M Ortiz Sanjuán
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| | - Héctor Argüello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Daniel Ekhlas
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Catherine M Burgess
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Edgar G Manzanilla
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Ming D, Wang J, Yin C, Chen Y, Li Y, Sun W, Pi Y, Monteiro A, Li X, Jiang X. Porous Zinc Oxide and Plant Polyphenols as a Replacement for High-Dose Zinc Oxide on Growth Performance, Diarrhea Incidence, Intestinal Morphology and Microbial Diversity of Weaned Piglets. Animals (Basel) 2024; 14:523. [PMID: 38338166 PMCID: PMC10854673 DOI: 10.3390/ani14030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this experiment is to evaluate the effects of adding porous zinc oxide, plant polyphenols, and their combination to diets without antibiotics and high-dose zinc oxide on the growth performance, diarrhea incidence, intestinal morphology, and microbial diversity of weaned piglets. A total of 150 Duroc × Landrace × Large White weaned piglets were allocated to one of five diets in a randomized complete block design with six replicates and five piglets per replicate. The experimental period was 42 d, divided into two feeding stages: pre-starter (0-14 d) and starter (14-42 d). In the pre-starter stage, the negative control group (NC) was fed a basal diet, the positive control group (PC) was fed a basal diet with 2000 mg/kg of zinc oxide, the porous zinc oxide group (PZ) was fed a basal diet with 500 mg/kg of porous zinc oxide, the plant polyphenol group (PP) was fed a basal diet with 1500 mg/kg of plant polyphenols, and the combination group (PZ + PP) was fed a basal diet with 500 mg/kg of porous zinc oxide and 1500 mg/kg of plant polyphenols. In the starter stage, the NC, PC, and PZ groups were fed a basal diet, while the PP and PZ + PP groups were fed a basal diet with 1000 mg/kg of plant polyphenols. The results showed that, (1) compared with the PZ group, adding plant polyphenols to the diet showed a trend of increasing the ADFI of weaned piglets from 14 to 28 d (p = 0.099). From days 28 to 42 and days 0 to 42, porous zinc oxide and the combination of porous zinc oxide and plant polyphenols added to the control diet improved the FCR to the level observed in pigs fed the PC diet. (2) Dietary PZ + PP tended to increase the jejunal villus height (VH) of weaned piglets (p = 0.055), and significantly increased the villus-height-to-crypt-depth ratio compared to the NC group (p < 0.05). (3) Compared with the NC group, PZ supplementation decreased the relative abundance of Firmicutes and increased the relative abundance of Bacteroidetes, and the relative abundance of Lactobacillus in the PZ and PZ + PP groups were both increased. In conclusion, porous zinc oxide and plant polyphenols may have synergistic effects in modulating intestinal health in weaned piglets and be a potential alternative to high-dose zinc oxide.
Collapse
Affiliation(s)
- Dongxu Ming
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
- Key Laboratory of Feed Synthetic Biotechnology of Ministry of Agriculture and Rural Affairs, Ganzhou 341000, China
| | - Jizhe Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572000, China
| | - Chenggang Yin
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
| | - Yiqun Chen
- Animine, 74960 Annecy, France; (Y.C.); (A.M.)
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
| | | | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.M.); (J.W.); (C.Y.); (Y.L.); (W.S.); (Y.P.)
| |
Collapse
|
5
|
Hansen SV, Canibe N, Nielsen TS, Woyengo TA. Zinc status and indicators of intestinal health in enterotoxigenic Escherichia coli F18 challenged newly weaned pigs fed diets with different levels of zinc. J Anim Sci 2024; 102:skae018. [PMID: 38245836 PMCID: PMC10939430 DOI: 10.1093/jas/skae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
This study investigated the impact of an enterotoxigenic Escherichia coli (ETEC) F18 challenge on newly weaned pigs when fed one of three Zn levels (150, 1,400, or 2,500 ppm) on performance, Zn status, ETEC shedding, and diarrhea. The ETEC challenge was hypothesized to have a more pronounced negative impact on pigs fed a diet containing 150 ppm Zn compared to 1,400 or 2,500 ppm Zn for 14 d after weaning. The study included 72 ETEC F18 susceptible pigs weaned at ~28 d of age (d 0 of the study). The pigs were distributed according to initial weight and litter to one of the three dietary Zn levels. Half of the pigs were challenged with ETEC on d 1 and 2. The challenge reduced (P ≤ 0.03) feed intake and average daily gain (ADG) during d 3 to 5. Challenged pigs fed 150 ppm Zn had lower (P = 0.01) ADG during d 5 to 7 compared to those fed 1,400 or 2,500 ppm Zn, whereas control pigs' ADG were not affected by dietary Zn content. Challenged pigs fed 150 ppm Zn also showed lower (P < 0.01) fecal dry matter (DM) on d 5 compared to control pigs fed 150 ppm Zn and challenged pigs fed 1,400 or 2,500 ppm Zn. Challenge increased (P < 0.01) ETEC shedding in all groups, but challenged pigs fed 150 ppm Zn showed higher (P ≤ 0.05) fecal shedding of ETEC and toxins than when fed 1,400 or 2,500 ppm. On d 3, C-reactive protein concentration in plasma was lower (P < 0.03) for pigs fed 1,400 and 2,500 compared to 150 ppm Zn. Plasma haptoglobin and pig major acute phase protein were unaffected by dietary Zn content. On d 0, the serum Zn concentration was 586 ± 36.6 µg/L, which pigs fed 150 ppm Zn maintained throughout the study. The serum Zn concentration increased (P ≤ 0.07) in pigs fed 1,400 or 2,500 ppm Zn. The challenge decreased (P < 0.01) the serum Zn concentration in pigs fed 2,500 ppm Zn. On d 5 and 7, serum Zn concentration was similar for challenged pigs fed 1,400 and 2,500 ppm Zn, while control pigs fed 2,500 ppm Zn had higher (P < 0.01) serum Zn concentration than 1,400 ppm Zn. On d 7, serum Zn concentration tended (P = 0.08) to be lower for pigs with diarrhea (fecal DM ≤ 18%). In summary, these results indicate that newly weaned pigs fed 150 ppm Zn are more susceptible to ETEC F18 colonization and its adverse consequences such as diarrhea and reduced growth, even though challenge did not increase acute phase proteins.
Collapse
Affiliation(s)
- Sally Veronika Hansen
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Tina Skau Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Tofuko Awori Woyengo
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| |
Collapse
|
6
|
Zeng Y, Li R, Dong Y, Yi D, Wu T, Wang L, Zhao D, Zhang Y, Hou Y. Dietary Supplementation with Puerarin Improves Intestinal Function in Piglets Challenged with Escherichia coli K88. Animals (Basel) 2023; 13:1908. [PMID: 37370417 DOI: 10.3390/ani13121908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this study was to investigate the effect of puerarin supplementation on the growth performance and intestinal function of piglets challenged with enterotoxigenic Escherichia coli (ETEC) K88. Twenty-four ternary crossbred piglets were randomly assigned to three treatment groups: control group, ETEC group (challenged with ETEC K88 on day 8), and ETEC + Puerarin group (supplemented with 5 mg/kg puerarin and challenged with ETEC K88 on day 8). All piglets were orally administered D-xylose (0.1 g/kg body weight) on day 10, and blood samples were collected after 1 h. Subsequently, piglets were killed and intestinal samples were collected for further analysis. The results showed that puerarin supplementation significantly decreased the adverse effects of ETEC K88-challenged piglets; significantly improved growth performance; increased the number of Bifidobacterium in the colon and Lactobacillus in the jejunum, cecum and colon; decreased the number of Escherichia coli in the jejunum and cecum; reduced the hydrogen peroxide content in the jejunum and myeloperoxidase activity in the jejunum and ileum; and increased the activities of catalase and superoxide dismutase in the jejunum and ileum. In addition, puerarin supplementation alleviated ETEC K88-induced intestinal injury in piglets, significantly downregulated the mRNA level of Interleukin-1β and upregulated the mRNA levels of intercellular cell adhesion molecule-1, myxovirus resistance protein 1, myxovirus resistance protein 2, and guanylate-binding protein-1 in the small intestine of piglets. In conclusion, dietary supplementation with puerarin could attenuate ETEC K88-induced intestinal injury by increasing the antioxidant and anti-inflammatory capacity and the number of beneficial intestinal bacteria in piglets.
Collapse
Affiliation(s)
- Yitong Zeng
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi Dong
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
7
|
Chen J, Xia Y, Hu Y, Zhao X, You J, Zou T. A blend of formic acid, benzoic acid, and tributyrin alleviates ETEC K88-induced intestinal barrier dysfunction by regulating intestinal inflammation and gut microbiota in a murine model. Int Immunopharmacol 2023; 114:109538. [PMID: 36502593 DOI: 10.1016/j.intimp.2022.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the effects of an organic acid (OA) blend on intestinal barrier function, intestinal inflammation, and gut microbiota in mice challenged with enterotoxigenic Escherichia coli K88 (ETEC K88). Ninety female Kunming mice (7 weeks old) were randomly allotted to five treatments with six replicates per treatment and three mice per replicate. The five treatments were composed of the non-ETEC K88 challenge group and ETEC K88 challenge + OA blend groups (0, 0.6 %, 1.2 %, and 2.4 % OA blend). The OA blend consisted of 47.5 % formic acid, 47.5 % benzoic acid, and 5 % tributyrin. The feeding trial lasted for 15 days, and mice were intraperitoneally injected with PBS or ETEC K88 solution on day 15. At 24 h post-challenge, one mouse per replicate was selected for sample collection. The results showed that a dosage of 0.6 % OA blend alleviated the ETEC K88-induced intestinal barrier dysfunction, as indicated by the elevated villus height and the ratio of villus height to crypt depth of jejunum, and the reduced serum diamine oxidase (DAO) and D-lactate levels, as well as the up-regulated mRNA levels of ZO-1, Claudin-1, and Occludin in jejunum mucosa of mice. Furthermore, dietary addition with 0.6 % OA blend decreased ETEC K88-induced inflammation response, as suggested by the decreased TNF-α and IL-6 levels, and the increased IgA level in the serum, as well as the down-regulated mRNA level of TNF-α, IL-6, IL-1β, TLR-4, MyD88, and MCP-1 in jejunum mucosa of mice. Regarding gut microbiota, the beta-diversity analysis revealed a remarkable clustering between the 0.6 % OA blend group and the ETEC K88 challenge group. Supplementation of 0.6 % OA blend decreased the relative abundance of Firmicutes, and increased the relative abundance of Bacteroidota, Desulfobacterota, and Verrucomicrobiota of colonic digesta in mice. Also, the butyric acid content in the colonic digesta of mice was increased by dietary 0.6 % OA blend supplementation. Collectively, a dosage of 0.6 % OA blend could alleviate the ETEC K88-induced intestinal barrier dysfunction by regulating intestinal inflammation and gut microbiota of mice.
Collapse
Affiliation(s)
- Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Xia
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Youjun Hu
- Guangdong Nuacid Biotech Co., Ltd, Qingyuan 511500, China
| | - Xiaolan Zhao
- Guangdong Nuacid Biotech Co., Ltd, Qingyuan 511500, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
8
|
Wang W, Xie R, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Zuo J. Effects of glucose oxidase on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli. Front Microbiol 2022; 13:994151. [PMID: 36267185 PMCID: PMC9578003 DOI: 10.3389/fmicb.2022.994151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Glucose oxidase (GOD) could benefit intestinal health and growth performance in animals. However, it is unknown whether GOD can protect piglets against bacterial challenge. This study aimed to evaluate the protective effects of GOD on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli (ETEC). A total of 44 male weaned piglets around 38 days old were divided into four groups (11 replicates/group): negative control (NC), positive control (PC), CS group (PC piglets +40 g/t colistin sulfate), and GOD group (PC piglets +200 g/t GOD). All piglets except those in NC were challenged with ETEC (E. coli K88) on the 11th day of the experiment. Parameter analysis was performed on the 21st day of the experiment. The results showed that the ETEC challenge elevated (p < 0.05) the rectal temperature and fecal score of piglets at certain time-points post-challenge, reduced (p < 0.05) serum glucose and IgG levels but increased (p < 0.05) serum alanine aminotransferase activity, as well as caused (p < 0.05) intestinal morphology impairment and inflammation. Supplemental GOD could replace CS to reverse (p < 0.05) the above changes and tended to increase (p = 0.099) average daily gain during the ETEC challenge. Besides, GOD addition reversed ETEC-induced losses (p < 0.05) in several beneficial bacteria (e.g., Lactobacillus salivarius) along with increases (p < 0.05) in certain harmful bacteria (e.g., Enterobacteriaceae and Escherichia/Shigella). Functional prediction of gut microbiota revealed that ETEC-induced upregulations (p < 0.05) of certain pathogenicity-related pathways (e.g., bacterial invasion of epithelial cells and shigellosis) were blocked by GOD addition, which also normalized the observed downregulations (p < 0.05) of bacterial pathways related to the metabolism of sugars, functional amino acids, nucleobases, and bile acids in challenged piglets. Collectively, GOD could be used as a potential antibiotic alternative to improve growth and serum parameters, as well as attenuate clinical symptoms and intestinal disruption in ETEC-challenged piglets, which could be associated with its ability to mitigate gut microbiota dysbiosis. Our findings provided evidence for the usage of GOD as an approach to restrict ETEC infection in pigs.
Collapse
|
9
|
Ren Z, Fan H, Deng H, Yao S, Jia G, Zuo Z, Hu Y, Shen L, Ma X, Zhong Z, Deng Y, Yao R, Deng J. Effects of dietary protein level on small intestinal morphology, occludin protein, and bacterial diversity in weaned piglets. Food Sci Nutr 2022; 10:2168-2201. [PMID: 35844902 PMCID: PMC9281955 DOI: 10.1002/fsn3.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Due to the physiological characteristics of piglets, the morphological structure and function of the small intestinal mucosa change after weaning, which easily leads to diarrhea in piglets. The aim of this study was to investigate effects of crude protein (CP) levels on small intestinal morphology, occludin protein expression, and intestinal bacteria diversity in weaned piglets. Ninety-six weaned piglets (25 days of age) were randomly divided into four groups and fed diets containing 18%, 20%, 22%, and 24% protein. At 6, 24, 48, 72, and 96 h, changes in mucosal morphological structure, occludin mRNA, and protein expression and in the localization of occludin in jejunal and ileal tissues were evaluated. At 6, 24, and 72 h, changes in bacterial diversity and number of the ileal and colonic contents were analyzed. Results showed that structures of the jejunum and the ileum of piglets in the 20% CP group were intact. The expression of occludin mRNA and protein in the small intestine of piglets in the 20% CP group were significantly higher than those in the other groups. As the CP level increased, the number of pathogens, such as Clostridium difficile and Escherichia coli, in the intestine increased, while the number of beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Roseburia, decreased. It is concluded that maintaining the CP level at 20% is beneficial to maintaining the small intestinal mucosal barrier and its absorption function, reducing the occurrence of diarrhea, and facilitating the growth and development of piglets.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Haoyue Fan
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Huidan Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Shuhua Yao
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Guilin Jia
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Zhicai Zuo
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Yanchun Hu
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Liuhong Shen
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Xiaoping Ma
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Zhijun Zhong
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Youtian Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Renjie Yao
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Junliang Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| |
Collapse
|
10
|
Extraintestinal Pathogenic Escherichia coli: Beta-Lactam Antibiotic and Heavy Metal Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030328. [PMID: 35326791 PMCID: PMC8944441 DOI: 10.3390/antibiotics11030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple-antibiotic-resistant (MAR) extra-intestinal pathogenic Escherichia coli (ExPEC) represents one of the most frequent causes of human nosocomial and community-acquired infections, whose eradication is of major concern for clinicians. ExPECs may inhabit indefinitely as commensal the gut of humans and other animals; from the intestine, they may move to colonize other tissues, where they are responsible for a number of diseases, including recurrent and uncomplicated UTIs, sepsis and neonatal meningitis. In the pre-antibiotic era, heavy metals were largely used as chemotherapeutics and/or as antimicrobials in human and animal healthcare. As with antibiotics, the global incidence of heavy metal tolerance in commensal, as well as in ExPEC, has increased following the ban in several countries of antibiotics as promoters of animal growth. Furthermore, it is believed that extensive bacterial exposure to heavy metals present in soil and water might have favored the increase in heavy-metal-tolerant microorganisms. The isolation of ExPEC strains with combined resistance to both antibiotics and heavy metals has become quite common and, remarkably, it has been recently shown that heavy metal resistance genes may co-select antibiotic-resistance genes. Despite their clinical relevance, the mechanisms underlining the development and spread of heavy metal tolerance have not been fully elucidated. The aim of this review is to present data regarding the development and spread of resistance to first-line antibiotics, such as beta-lactams, as well as tolerance to heavy metals in ExPEC strains.
Collapse
|
11
|
Scarpellini E, Balsiger LM, Maurizi V, Rinninella E, Gasbarrini A, Giostra N, Santori P, Abenavoli L, Rasetti C. Zinc and gut microbiota in health and gastrointestinal disease under the COVID-19 suggestion. Biofactors 2022; 48:294-306. [PMID: 35218585 PMCID: PMC9082519 DOI: 10.1002/biof.1829] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
Abstract
Microelements represent an emerging resource for medicine and its preventive branch. Zinc is the second most abundant element in our organism with peculiar physiologic functions and pathophysiologic implications in systemic and gastrointestinal (GI) diseases. It interacts very often with gut microbiota (GM) and can affect natural course of GI diseases through a bidirectional relationship with intestinal bugs. We aimed to review literature data regarding zinc chemistry, role in health, and GI diseases in man with a special focus on its interaction with GM. We conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: zinc, microelements, gut microbiota, gut health, and COVID-19. Zinc has a rapid and simple metabolism and limited storage within our body. Its efficacy on immune system modulation reflects on improved response to pathogens, reduced inflammatory response, and improved atopic/allergic reactions. Zinc is also involved in cell cycle regulation (namely, apoptosis) with potential anti-cancerogenic effects. All these effects are in a "symbiotic" relationship with GM. Finally, zinc shows preliminary viral antireplicative effects. Zinc seems to gain more and more evidences on its efficacy in allergic, atopic and infectious diseases treatment, and prevention. COVID-19 can be the booster for research on future applications of zinc as perfect "postbiotic" in medicine.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
- T.A.R.G.I.DGasthuisberg University Hospital, KULeuvenLuevenBelgium
| | | | - Valentina Maurizi
- Internal Medicine Residency ProgramUniversità Politecnica delle MarcheAnconaItaly
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Gastroenterology, EndocrinologyNephrology and Urology Department, Fondazione Policlinico A. Gemelli IRCCSRomeItaly
- Institute of Medical PathologyCatholic University of the Sacred HeartRomeItaly
| | - Antonio Gasbarrini
- Institute of Medical PathologyCatholic University of the Sacred HeartRomeItaly
| | - Nena Giostra
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| | - Pierangelo Santori
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| | | | - Carlo Rasetti
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| |
Collapse
|
12
|
Lei XJ, Liu ZZ, Park JH, Kim IH. Novel zinc sources as antimicrobial growth promoters for monogastric
animals: A review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:187-196. [PMID: 35530400 PMCID: PMC9039952 DOI: 10.5187/jast.2022.e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
The essentiality of zinc for animals has been recognized over 80 years. Zinc is
an essential trace element that is a component of many enzymes and is associated
with the various hormones. Apart from the nutritional function, zinc has
antimicrobial property and often be supplemented in diets in the quantities
greater than which is required to meet the nutritional requirement, especially
for weaning pigs. This review will focus on the application of pharmacological
zinc and its mechanisms which may be responsible for the effects of zinc on
performance and health of monogastric animals. Various novel sources of zinc in
non-ruminant animal production will also be discussed. These should assist in
more precisely formulating feed to maximize the production performance and to
maintain the health condition of monogastric animals.
Collapse
Affiliation(s)
- Xin Jian Lei
- College of Animal Science and Technology,
Northwest A&F University, Shaanxi 712100, China
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Zhang Zhuang Liu
- College of Veterinary Medicine, Northwest
A&F University, Shaanxi 712100, China
| | - Jae Hong Park
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: Jae Hong Park, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3659, E-mail:
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: In Ho Kim, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3652, E-mail:
| |
Collapse
|
13
|
Yin D, Tong T, Moss AF, Zhang R, Kuang Y, Zhang Y, Li F, Zhu Y. Effects of Coated Trace Minerals and the Fat Source on Growth Performance, Antioxidant Status, and Meat Quality in Broiler Chickens. J Poult Sci 2022; 59:56-63. [PMID: 35125913 PMCID: PMC8791779 DOI: 10.2141/jpsa.0200108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Inorganic trace minerals may exacerbate lipid peroxidation, thereby impacting lipid metabolism. This study aimed to compare the effects of inorganic and coated trace minerals in diets with different fat sources, on the performance, slaughter characteristics, and antioxidant status of broiler chickens. A total of 576 21-day-old Abor Acres broiler birds were randomly divided into four dietary treatment groups in a 2 (non-coated and coated trace minerals)×2 (soybean oil and lard) factorial design. Each treatment was replicated 12 times (12 birds per replicate). The results showed that coated minerals significantly improved the average daily gain (ADG) in weight and the feed conversion ratio (P<0.01), increased serum iron, zinc, selenium, and thyroxine contents, increased the activities of glutathione peroxidase, superoxide dismutase, total antioxidant capacity, and lipoprotein lipase (P<0.05), and decreased the serum and muscle malondialdehyde (MDA) contents (P<0.01). The use of soybean oil as the fat source resulted in a high ADG in weight, a low F/G ratio, reduced serum MDA content, and drip loss of breast and leg muscles (P<0.05). In conclusion, the supplementation of coated trace minerals improved growth performance, antioxidant status, trace mineral retention within serum, and lipid metabolism. Additionally, soybean oil also improved the growth performance, antioxidant performance, and meat quality of broilers. The combination of coated trace minerals and soybean oil generated the best growth performance, antioxidant status, and meat quality characteristics.
Collapse
Affiliation(s)
- Dafei Yin
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, 110866 Shenyang, China
| | - Tiejin Tong
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, 110866 Shenyang, China
| | - Amy F. Moss
- University of New England, Armidale, NSW 2350, Australia
| | - Ruiyang Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, 110866 Shenyang, China
| | - Yinggu Kuang
- Fujian Syno Biotech Co., Ltd., 350700 Fuzhou, China
| | - Yong Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, 110866 Shenyang, China
| | - Fangfang Li
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, 110866 Shenyang, China
| | - Yujing Zhu
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, 110866 Shenyang, China
| |
Collapse
|
14
|
Wang LL, Yang C, Liu S. Development and antibacterial activity of zinc oxide nanoparticles encapsulated in core–shell microparticles for managing enterotoxigenic Escherichia coli-related post-weaning diarrhea. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Chen J, Luo Y, Li Y, Chen D, Yu B, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Epithelium Injury by Co-Regulating the PI3K/Akt and IκBα/NF-κB Signaling. Antioxidants (Basel) 2021; 10:antiox10121915. [PMID: 34943017 PMCID: PMC8750628 DOI: 10.3390/antiox10121915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol compound abundant in green plants with antioxidant and anti-inflammatory activities. Here, we explore its protective effects and potential mechanisms of action on intestinal epithelium exposure to oxidative stress (OS). We show that CGA attenuated OS-induced intestinal inflammation and injury in weaned pigs, which is associated with elevated antioxidant capacity and decreases in inflammatory cytokine secretion and cell apoptosis. In vitro study showed that CGA elevated phosphorylation of two critical signaling proteins of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway, Akt and nuclear factor erythroid-derived-related factor 2, leading to the elevated expression of intracellular antioxidant enzymes and heme oxygenase-1 (HO-1). Specific inhibition of HO-1 partially abolished its anti-inflammatory effect in IPEC-J2 cells exposure to OS. Interestingly, CGA suppressed the tumor necrosis factor-α (TNF-α) induced inflammatory responses in IPEC-J2 cells by decreasing phosphorylation of two critical inflammatory signaling proteins, NF-kappa-B inhibitor alpha (IκBα) and nuclear factor-κB (NF-κB). Specific inhibition of HO-1 cannot fully abolish its anti-inflammatory effect on the TNF-α-challenged cells. These results strongly suggested that CGA is a natural anti-inflammatory agent that can attenuate OS-induced inflammation and injury of intestinal epithelium via co-regulating the PI3K/Akt and IκBα/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Guilin Fengpeng Bio-Tech Co., Ltd., Guilin 541199, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
16
|
Effect of Replacing in-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals (Basel) 2021; 11:ani11051292. [PMID: 33946355 PMCID: PMC8146111 DOI: 10.3390/ani11051292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Post-weaning diarrhea (PWD) in pigs caused by Escherichia coli (E. coli) is a global problem which results in substantial economic losses, due to decreased performance and a high incidence of mortality and morbidity. Due to the banning of antibiotic growth promoters (AGPs) by many countries, it would be valuable to find environmentally friendly and non-antibiotic alternatives to AGPs and to evaluate their effectiveness. Both immunoglobulins and phytomolecules are separately reported as benefiting animal growth, but the efficiency of combinations of immunoglobulins and phytomolecules as AGP alternatives is largely unknown. In this study, the results showed that a mixture of immunoglobulin and phytomolecule administration had positive effects on feed efficiency, diarrhea reduction, intestinal morphology, and coliform control. Combinations of immunoglobulins and phytomolecules can be used as a potential alternative to AGPs in weanling piglets. Abstract The study was conducted to investigate the effects of replacing antibiotic growth promoters (AGPs) with an egg immunoglobulin (IgY) combined with phytomolecules (PM) on the growth rate, serum immunity, and intestinal health of weaned pigs challenged with Escherichia coli K88 (E. coli K88). A total of 192 piglets were weaned at 28 days old with an average weight of 7.29 (± 0.04) kg. They were randomly divided into four treatments containing eight replicates with six piglets per replicate. The treatment groups were NC and PC fed a basal diet, AGP fed a basal diet supplemented with 75 mg/kg chlortetracycline, 50 mg/kg oxytetracycline calcium, and 40 mg/kg zinc bacitracin, IPM fed a basal diet supplemented with IgY at dose of 2.5 g/kg and 1.0 g/kg and PM at dose of 300 mg/kg and 150 mg/kg during days 1 to 17 and 18 to 42, respectively. On days 7 to 9 of the experiment, piglets in the PC, AGP, and IPM groups were orally challenged with 20 mL E. coli K88 (109 CFU/mL), while piglets in the NC group were challenged with 20 mL medium without E. coli K88. The E. coli K88 challenge model was successful as the incidence of post-weaning diarrhea (PWD) of piglets challenged with E. coli K88 was significantly higher than that of those unchallenged piglets during the challenge time (days 7 to 9) and days 1 to 7 of post-challenge (p < 0.05). A diet with combinations of IgY and PM and AGPs significantly decreased the incidence of PWD during the challenge time and days 1 to 7 of post-challenge (p < 0.05) compared to the PC group and significantly improved the ratio of feed to weight gain (F:G) during days 1 to 17 of the experiment compared to the NC and PC groups (p < 0.05). In comparison with the PC group, piglets in the IPM group had significantly higher serum levels of IgA, IgG, and IgM (p < 0.05), but lower serum IL-1β on day 17 of experiement (p < 0.05). Besides, diet supplementation with AGP significantly decreased serum IL-1β, IL-6, and TNF-α on days 17 and 42 (p < 0.05) with comparison to the PC group. Piglets in the IPM group showed a significantly lower level of fecal coliforms (p < 0.05), but a higher villus height of jejunum and ileum and higher ratio of villus height to crypt depth of duodenum and jejunum (p < 0.05) than those piglets in the PC group. In summary, diet supplementation with a mixture of IgY and PM decreased the incidence of PWD and coliforms, increased feed conversion ratio, and improved intestinal histology and immune function.
Collapse
|
17
|
Lei XJ, Kim IH. Evaluation of coated zinc oxide in young pigs challenged with enterotoxigenic Escherichia coli K88. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Ghazisaeedi F, Ciesinski L, Bednorz C, Johanns V, Pieper L, Tedin K, Wieler LH, Günther S. Phenotypic zinc resistance does not correlate with antimicrobial multi-resistance in fecal E. coli isolates of piglets. Gut Pathog 2020; 12:4. [PMID: 31988666 PMCID: PMC6972033 DOI: 10.1186/s13099-019-0342-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Following the ban on antimicrobial usage for growth promotion in animal husbandry in the EU, non-antimicrobial agents including heavy metal ions (e.g. zinc and copper), prebiotics or probiotics have been suggested as alternatives. Zinc has extensively been used in pig farming, particularly during weaning of piglets to improve animal health and growth rates. Recent studies, however, have suggested that high dietary zinc feeding during weaning of piglets increases the proportion of multi-drug resistant E. coli in the gut, contraindicating the appropriateness of zinc as an alternative. The underlying mechanisms of zinc effects on resistant bacteria remains unclear, but co-selection processes could be involved. In this study, we determined whether E. coli isolates from intestinal contents of piglets that had been supplemented with high concentrations of zinc acquired a higher tolerance towards zinc, and whether multi-drug resistant isolates tolerated higher zinc concentrations. In addition, we compared phenotypic zinc and copper resistance of E. coli isolates for possible correlation between phenotypic resistance/tolerance to different bivalent ionic metals. Results We screened phenotypic zinc/copper tolerance of 210 isolates (including antimicrobial resistant, multi-drug resistant, and non-resistant E. coli) selected from two, independent zinc-feeding animal trials by determining a zinc/copper minimal inhibitory concentration (Merlin, Bornheim-Hersel, Germany). In both trials, groups of piglets were supplemented either with high dietary zinc (> 2000 ppm) or control (50–70 ppm, background) concentrations. Our observations showed that high concentration zinc exposure did not have an effect on either zinc or copper phenotypic tolerance of E. coli isolates from the animals. No significant association was found between antimicrobial resistance and phenotypic zinc/copper tolerance of the same isolates. Conclusion Our findings argue against a co-selection mechanism of antimicrobial drug-resistance and zinc tolerance after dietary zinc supplementation in weaning piglets. An explanation for an increase in multi-drug resistant isolates from piglets with high zinc dietary feeding could be that resistant bacteria to antimicrobial agents are more persistent to stresses such as zinc or copper exposure.
Collapse
Affiliation(s)
- Fereshteh Ghazisaeedi
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L Ciesinski
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - C Bednorz
- 2Institute of Chemical Physiology, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 Munich, Germany
| | - V Johanns
- 3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - L Pieper
- 4Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - K Tedin
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L H Wieler
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Sebastian Günther
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,5Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| |
Collapse
|
19
|
Zhang J, Wan J, Wu G, Chen D, Yu B, Huang Z, Mao X, Zheng P, Yu J, He J. Low-molecular-weight chitosan relieves enterotoxigenic Escherichia coli-induced growth retardation in weaned pigs. Int Immunopharmacol 2020; 78:105798. [DOI: 10.1016/j.intimp.2019.105798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
|
20
|
Lin Q, Su G, Wu A, Chen D, Yu B, Huang Z, Luo Y, Mao X, Zheng P, Yu J, Luo J, He J. Bombyx mori gloverin A2 alleviates enterotoxigenic Escherichia coli-induced inflammation and intestinal mucosa disruption. Antimicrob Resist Infect Control 2019; 8:189. [PMID: 31788236 PMCID: PMC6878672 DOI: 10.1186/s13756-019-0651-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is one of the leading bacterial causes of intestinal inflammation and diarrhea. However, the ETEC is frequently resistant to common antibiotics. In this study, we explored the role of a novel antibacterial peptide Bombyx mori gloverin A2 (BMGlvA2) in alleviating ETEC-induced inflammation and intestinal epithelium disruption in mice. Methods An ETEC-challenged mice model was used, and the ETEC-challenged mice and non-challenged mice were treated by the BMGlvA2 at different doses. Results ETEC challenge not only elevated the concentrations of serum inflammatory cytokines such as the IL-6 and TNF-α (P < 0.01), but also elevated the concentrations of serum creatinine and urea (P < 0.05). However, BMGlvA2 attenuated the inflammatory responses by decreasing the serum inflammatory cytokines and improving the metabolisms in ETEC-challenged mice, and alleviated the ETEC-induced tissue damage in spleen. Moreover, BMGlvA2 treatment significantly elevated the duodenum villus height and decreased the crypt depth in the duodenum and ileum in ETEC-challenged mice (P < 0.05). Interestingly, BMGlvA2 improved the distribution and abundance of tight-junction protein ZO1 in duodenum and ileum epithelium after ETEC-challenge. Moreover, BMGlvA2 significantly down-regulated the expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the apoptosis-related genes (Caspase 8 and Caspase 9) in jejunal mucosa (P < 0.05) in the TETC-challenged mice. Importantly, BMGlvA2 significantly elevated the expression levels of critical genes related to mucosal barrier functions such as the mucins (MUC1 and MUC2) and glucose transporter (GLUT2) in the intestinal mucosa (P < 0.05). Conclusion Our results suggested a novel function of the conventional antibacterial peptides, and the anti-bacterial and anti-inflammatory properties of BMGlvA2 may allow it a potential substitute for conventionally used antibiotics or drugs.
Collapse
Affiliation(s)
- Qian Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Guoqi Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Uilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642 China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| |
Collapse
|
21
|
Zhuo Z, Yu X, Li S, Fang S, Feng J. Heme and Non-heme Iron on Growth Performances, Blood Parameters, Tissue Mineral Concentration, and Intestinal Morphology of Weanling Pigs. Biol Trace Elem Res 2019; 187:411-417. [PMID: 29770950 DOI: 10.1007/s12011-018-1385-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
This experiment was conducted to evaluate the effects of heme and non-heme iron sources on growth performances, blood parameters, tissue mineral concentration, and intestinal morphology in weanling pigs. At 25 days of age, 32 newly weaned piglets (Duroc × Landrace × Yorkshire; 8.66 ± 0.59 kg) were allocated to one of the following dietary treatments: control group (basal diet with no extra iron addition), FeSO4 group (basal diet + 100 mg Fe/kg as FeSO4), Fe-Gly group (basal diet + 100 mg Fe/kg as Fe-Gly), and Heme group (basal diet + 100 mg Fe/kg as Heme). Each treatment had eight replicates and one pig per replicate. The experiment lasted for 28 days. The results showed that compared with basal diet, supplement with 100 mg/kg iron can increase ADG of the piglets, especially in the late experiment period (15~28 days). Heme significantly increased the a* value of longissimus dorsi muscle of piglets when compared with other iron sources (P < 0.05). The iron supplementations had no significant effect on hematological parameters, while Fe-Gly and heme increased pigs' serum iron content on day 28 when compared with FeSO4 and basal diet (P < 0.05). The liver iron deposition in pigs fed Fe-Gly and heme was also higher than those fed FeSO4 or basal diet (P < 0.05). Besides, diet supplement with iron significantly increased villus height (P < 0.05) in duodenum and it had tendency to increase villus height and crypt depth ratio in duodenum (P = 0.095). In conclusion, iron supplementation in diets can improve piglet's body iron state and intestinal development, but Fe-Gly and heme exhibited better bioavailability than traditional additive of FeSO4.
Collapse
Affiliation(s)
- Zhao Zhuo
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaonan Yu
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Sisi Li
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Shenglin Fang
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Feng
- Key Laboratory of Animal Nutrition & Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Ponnamma D, Cabibihan JJ, Rajan M, Pethaiah SS, Deshmukh K, Gogoi JP, Pasha SKK, Ahamed MB, Krishnegowda J, Chandrashekar BN, Polu AR, Cheng C. Synthesis, optimization and applications of ZnO/polymer nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1210-1240. [PMID: 30813004 DOI: 10.1016/j.msec.2019.01.081] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/02/2018] [Accepted: 01/20/2019] [Indexed: 01/15/2023]
Abstract
Polymer composites have established an excellent position among the technologically essential materials because of their wide range of applications. An enormous research interest has been devoted to zinc oxide (ZnO) based polymer nanocomposites, due to their exceptional electrical, optical, thermal, mechanical, catalytic, and biomedical properties. This article provides a review of various polymer composites consisting of ZnO nanoparticles (NPs) as reinforcements, exhibiting excellent properties for applications such as the dielectric, sensing, piezoelectric, electromagnetic shielding, thermal conductivity and energy storage. The preparation methods of such composites including solution blending, in situ polymerization, and melt intercalation are also explained. The current challenges and potential applications of these composites are provided in order to guide future progress on the development of more promising materials. Finally, a detailed summary of the current trends in the field is presented to progressively show the future prospects for the development of ZnO containing polymer nanocomposite materials.
Collapse
Affiliation(s)
| | - John-John Cabibihan
- Mechanical and Industrial Engineering Department, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - S Sundar Pethaiah
- Gashubin Engineering Pvt Ltd, 8 New Industrial Road, 536200, Singapore
| | - Kalim Deshmukh
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, TN, India.
| | - Jyoti Prasad Gogoi
- Department of Physics, The Assam Kaziranga University, Jorhat 785006, India
| | - S K Khadheer Pasha
- Department of Physics, VIT-AP University, Amaravati Campus, Guntur 522501, Andhra Pradesh, India
| | - M Basheer Ahamed
- Department of Physics, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, TN, India
| | - Jagadish Krishnegowda
- Centre for Materials Science and Technology, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570006, India
| | - B N Chandrashekar
- Department of Materials Science and Engineering and Shenzhen Key Laboratory of Nanoimprint Technology, South University of Science and Technology, Shenzhen 518055, PR China
| | - Anji Reddy Polu
- Department of Physics, Vardhaman College of Engineering, Kacharam, Shamshabad, 501218 Hyderabad, Telangana, India
| | - Chun Cheng
- Department of Materials Science and Engineering and Shenzhen Key Laboratory of Nanoimprint Technology, South University of Science and Technology, Shenzhen 518055, PR China
| |
Collapse
|
23
|
Argudín MA, Hoefer A, Butaye P. Heavy metal resistance in bacteria from animals. Res Vet Sci 2018; 122:132-147. [PMID: 30502728 DOI: 10.1016/j.rvsc.2018.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Resistance to metals and antimicrobials is a natural phenomenon that existed long before humans started to use these products for veterinary and human medicine. Bacteria carry diverse metal resistance genes, often harboured alongside antimicrobial resistance genes on plasmids or other mobile genetic elements. In this review we summarize the current knowledge about metal resistance genes in bacteria and we discuss their current use in the animal husbandry.
Collapse
Affiliation(s)
- M A Argudín
- National Reference Centre - Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - A Hoefer
- Department of Biomedical Sciences, University, School of Veterinary Medicine, Basseterre, PO Box 334, Saint Kitts and Nevis
| | - P Butaye
- Department of Biomedical Sciences, University, School of Veterinary Medicine, Basseterre, PO Box 334, Saint Kitts and Nevis; Department of Pathology, Bacteriology, and Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium..
| |
Collapse
|
24
|
Han JH, Song MH, Kim HN, Jang I, Lee CY, Park BC. Effects of the lipid-coated zinc oxide dietary supplement on intestinal mucosal morphology and gene expression associated with the gut health in weanling pigs challenged with enterotoxigenic Escherichia coli K88. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of a lipid-coated zinc oxide (ZnO) Shield Zn® (SZ) vs. ZnO were evaluated. Forty 25-d-old weanling pigs were fed a nursery diet supplemented with 100 mg kg−1 Zn with ZnO (ZnO-100), ZnO-2500, SZ-100, -200, or -400. All piglets were challenged orally with 5 × 108 colony-forming units of enterotoxigenic Escherichia coli K88 on day 7 and euthanized on day 14. The fecal consistency score (FCS) was less for the SZ group vs. ZnO-100 (P < 0.05). The intestinal villus height:crypt depth ratio and goblet cell density were greater for the SZ group vs. ZnO-100. By regression analyses, SZ-100 to -200 and SZ-300 to -400 were comparable to ZnO-2500 in the FCS and intestinal variables, respectively. The jejunal mucosal mRNA level did not differ between the SZ group and either ZnO group in insulin-like growth factor-I and multiple structural proteins and cytokines including zonula occludens protein (ZO) 1 and interleukin (IL) 10 except for lower ZO-1 and IL-10 mRNA levels for the SZ group than for ZnO-2500 and ZnO-100, respectively. The ZO-1 mRNA level regressed positively on the supplemental SZ concentration. Results suggest that SZ play a role in epithelial barrier function and inflammation by modulating the expression of ZO-1 and IL-10.
Collapse
Affiliation(s)
- Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Min Hye Song
- Regional Animal Industry Centre, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Ha Na Kim
- Regional Animal Industry Centre, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Insurk Jang
- Regional Animal Industry Centre, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - C. Young Lee
- Regional Animal Industry Centre, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Byung-Chul Park
- Institute of Green Bio Science and Technology, and Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, South Korea
| |
Collapse
|
25
|
Kim HN, Jeon DG, Lee CY, Jang IS. Effects of dietary lipid-coated zinc on the antioxidant defense system in the small intestine and liver of piglets. Lab Anim Res 2018; 34:65-74. [PMID: 29937913 PMCID: PMC6010399 DOI: 10.5625/lar.2018.34.2.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
The purpose of the study was to investigate the effects of lipid-coated ZnO (LCZ) and the level of LCZ compared with ordinary zinc oxide (ZnO) on antioxidant defense system in the intestine and liver of piglets. A total of forty piglets (n=8) were fed a diet supplemented with 100 ppm Zn with ZnO (ZnO-1), 2,500 ppm Zn with ZnO (ZnO-2), 100 ppm Zn as LCZ (LCZ-1), 200 ppm Zn as LCZ (LCZ-2), or 400 ppm Zn as LCZ (LCZ-3) for 14-d, respectively. The LCZ-3 group resulted in higher (P<0.05) mRNA expressions and activities of CuZn-superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), and glutathione S-transferase (GST) in jejunal mucosa compared with the ZnO-1 and LCZ-1 groups, while no difference was observed in the mRNA level of antioxidant genes between the ZnO-1 and ZnO-2 groups. Within the LCZ groups, the LCZ level linearly and quadratically (P<0.01) increased antioxidant enzymes in the jejunum. The maximum response of jejunal antioxidant enzymes to Zn supplementation was achieved by 400 ppm of LCZ. Hepatic mRNA expression of antioxidant enzymes was unaffected by Zn source and level, while hepatic SOD and GST activities were greater (P<0.05) in the LCZ-3 group than in the ZnO-1 group. No difference was observed in lipid peroxidation of the jejunum and liver and the total antioxidant power of plasma among groups. In conclusion, a supplementation with 400 ppm of LCZ resulted in a maximum increase in antioxidant enzymes, indicating that LCZ may affect antioxidant defense system more profoundly than ZnO.
Collapse
Affiliation(s)
- Ha-Na Kim
- Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - Dong-Gyung Jeon
- Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - Chul Young Lee
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, Korea
- Regional Animal Research Center, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - In-Surk Jang
- Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju, Korea
- Regional Animal Research Center, Gyeongnam National University of Science and Technology, Jinju, Korea
| |
Collapse
|
26
|
Byun YJ, Lee CY, Kim MH, Jung DY, Han JH, Jang I, Song YM, Park BC. Effects of dietary supplementation of a lipid-coated zinc oxide product on the fecal consistency, growth, and morphology of the intestinal mucosa of weanling pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018. [PMID: 29541479 PMCID: PMC5842370 DOI: 10.1186/s40781-017-0159-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Dietary supplementation of zinc oxide (ZnO) to 2000 to 4000 mg/kg is known to be effective for the prevention and treatment of post-weaning diarrhea in the pig. Such a 'pharmacological' supplementation, however, can potentially result in environmental pollution of the heavy metal, because dietary ZnO is mostly excreted unabsorbed. Two experiments (Exp.) were performed in the present study to determine the effects of a lipid-coated ZnO supplement Shield Zn (SZ) compared with those of ZnO. Methods In Exp. 1, a total of 240 21-day-old weanling pigs were fed a diet supplemented with 100 mg Zn/kg as ZnO (ZnO-100), ZnO-2500, SZ-100, or SZ-200 in 24 pens for 14 days on a farm with its post-weaning pigs exhibiting a low incidence of diarrhea. Exp. 2 was performed using 192 24-day-old piglets as in Exp. 1 on a different farm, which exhibited a high incidence of diarrhea. Results In Exp. 1, fecal consistency (diarrhea) score (FCS) was less for the ZnO-2500 and SZ-200 groups than for the SZ-100 group (P < 0.05), with no difference between the SZ-100 and ZnO-100 groups. Both average daily gain (ADG) and gain:feed ratio were less for the SZ-200 group than for the ZnO-2500 group, with no difference between the ZnO-100 group and SZ-100 or SZ-200 group. The villus height (VH), crypt depth (CD), and VH:CD ratio of the intestinal mucosa were not influenced by the treatment. In Exp. 2, FCS was lowest for the ZnO-2500 group, with no difference among the other groups. However, neither the ADG nor gain:feed ratio was influenced by the treatment. Conclusion Results suggest that physiological SZ supplementation has less beneficial effects than pharmacological ZnO for the alleviation of diarrhea irrespective of its severity and for promoting growth without influencing their integrity of the intestinal mucosal structures with little advantage over physiological ZnO in weanling pigs with a small pen size.
Collapse
Affiliation(s)
- Young-Jin Byun
- 1Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, 52725 South Korea
| | - Chul Young Lee
- 1Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, 52725 South Korea
| | - Myeong Hyeon Kim
- 1Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, 52725 South Korea
| | - Dae Yun Jung
- 1Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, 52725 South Korea
| | - Jeong Hee Han
- 2College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341 South Korea
| | - Insurk Jang
- 3Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju, 52725 South Korea
| | - Young Min Song
- 1Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, 52725 South Korea
| | - Byung-Chul Park
- 4Graduate School of International Agricultural Technology, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354 South Korea
| |
Collapse
|
27
|
Song YM, Kim MH, Kim HN, Jang I, Han JH, Fontamillas GA, Lee CY, Park BC. Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:403-409. [PMID: 29268571 PMCID: PMC5838346 DOI: 10.5713/ajas.17.0718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Accepted: 12/17/2017] [Indexed: 11/28/2022]
Abstract
Objective The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO) supplement Shield Zn (SZ) at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively), 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH) and crypt depth (CD) of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05). The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I) and interleukin (IL)-10 regressed and tended to regress (p = 0.053) on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis factor-α, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth factor-β1 mRNA levels were lower for the SZ group than for PC. Conclusion The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.
Collapse
Affiliation(s)
- Young Min Song
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Myeong Hyeon Kim
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Ha Na Kim
- Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Insurk Jang
- Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Giselle Ann Fontamillas
- Graduate School of International Agricultural Technology, and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Chul Young Lee
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
28
|
Oropeza-Moe M, Grøntvedt CA, Phythian CJ, Sørum H, Fauske AK, Framstad T. Zinc oxide enriched peat influence Escherichia coli infection related diarrhea, growth rates, serum and tissue zinc levels in Norwegian piglets around weaning: five case herd trials. Porcine Health Manag 2017; 3:14. [PMID: 28680702 PMCID: PMC5488422 DOI: 10.1186/s40813-017-0060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
Background Zinc oxide (ZnO), commonly used to control post-weaning diarrhea in piglets, has been highlighted as of potential concern from an environmental perspective. The aim of this field trial was to examine effects of different sources and levels of ZnO added to peat on average daily weight gain (ADG), fecal score in pens and serum and tissue zinc (Zn) levels around time of weaning in order to reduce the environmental impact without loss of the beneficial effect of ZnO on intestinal health and growth. Five case herds with enterotoxic colibacillosis challenges were included. The piglets entered the study aged three or five weeks. All piglets received a commercial diet containing <150 mg Zn/ per kg of complete feed. Four treatment groups received commercial peat added A: uncoated ZnO, B: lipid microencapsulated ZnO, C: solely commercial peat or D: no peat (Farms 2 and 3). Results At Farms 1, 2 and 3, a significant effect of treatment was identified for fecal score (P < 0.05). Treatment A led to lower fecal scores compared to treatments C (P < 0.05) and D (P < 0.01). At Farms 2 and 3, there was a significant difference in individual average daily weight gain (iADG) between treatment A and D (P < 0.05). The iADG of piglets receiving treatment B did not differ significantly from treatment A. Conclusions In 2016, The European Medicines Agency’s Committee on Veterinary Medicinal Products concluded that the benefits of ZnO for the prevention of diarrhea in pigs do not outweigh the risks to the environment. Effective alternative measures to reduce the accumulation of Zn in the environment have not been identified. Our results imply that peat added low concentration of both coated and uncoated ZnO influences the gut health of weaned piglets reflected by enhanced weight gain and reduced occurrence of diarrhea. This preventive approach certainly represents a favourable alternative in the “One Health” perspective. It will also contribute to reduced antibiotic use in pig farming while diminishing the environmental consequences caused by ZnO.
Collapse
Affiliation(s)
- M Oropeza-Moe
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Sandnes, Sandnes, Norway
| | | | - C J Phythian
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Sandnes, Sandnes, Norway
| | - H Sørum
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - A K Fauske
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - T Framstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU) Faculty of Veterinary Medicine, Campus Adamstuen, Adamstuen, Norway
| |
Collapse
|
29
|
Papadopoulos GA, Poutahidis T, Tallarico N, Hardas A, Teliousis K, Arsenos G, Fortomaris PD. Dietary supplementation of encapsulated organic acids enhances performance and modulates immune regulation and morphology of jejunal mucosa in piglets. Res Vet Sci 2017; 115:174-182. [PMID: 28458106 DOI: 10.1016/j.rvsc.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/23/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
The aim of the study was to test two encapsulated regimens containing organic acids and/or zinc oxide (ZnO) on weaned piglet performance and jejunal mucosa morphology and immunity. For that, weaned piglets were allocated to treatments including control, supplemented with encapsulated organic acids (ACID group), and supplemented with organic acids and ZnO, both encapsulated (ACIDplus group). Antibiotics were used at similar concentrations in all groups during the first two weeks, but withdrawn from the ACIDplus group during the last three weeks of the experiment. ZnO was given with feed in the Control and ACID groups only during the first two weeks. The experimental period lasted 5 weeks. Piglets from the ACID group exhibited higher average daily gain compared to other groups during the last 3 weeks of the experiment (P<0.05). The ACIDplus group performed similarly with controls. The mucosal height of jejunum was higher in both ACID (P<0.01) and ACIDplus groups compared to controls (P<0.05). Immunohistochemical analysis of jejunal mucosa, showed higher numbers of neutrophils in ACID and ACIDplus groups compared to controls (P<0.01 and P<0.001, respectively). Treatments had the opposite effect on mucosal regulatory T-cells (Foxp3-positive cells) in jejunum, being higher (P<0.001) in control group compared to ACID and ACIDplus groups. The number of CD3-positive cells was higher (P<0.05) in the ACIDplus and control groups compared to the ACID group. In conclusion, the encapsulated products used had beneficial effects on growth performance coexisting with improvements on jejunal histomorphology and modulation of mucosal immunity.
Collapse
Affiliation(s)
- Georgios A Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Alexandros Hardas
- Laboratory of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Teliousis
- Laboratory of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis D Fortomaris
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
30
|
Lee CY, Kim SJ, Park BC, Han JH. Effects of dietary supplementation of bacteriophages against enterotoxigenic Escherichia coli (ETEC) K88 on clinical symptoms of post-weaning pigs challenged with the ETEC pathogen. J Anim Physiol Anim Nutr (Berl) 2016; 101:88-95. [PMID: 27271838 DOI: 10.1111/jpn.12513] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/12/2016] [Indexed: 11/29/2022]
Abstract
The present study was performed to investigate the effects of dietary supplementation of bacteriophages (phages) against enterotoxigenic Escherichia coli (ETEC) K88 as a therapy against the ETEC infection in post-weaning pigs. Two groups of post-weaning pigs aged 35 days, eight animals per group, were challenged with 3.0 × 1010 colony forming units of ETEC K88, a third group given the vehicle. The unchallenged group and one challenged group were fed a basal nursery diet for 14 days while the remaining challenged group was fed the basal diet supplemented with 1.0 × 107 plaque forming units of the phage per kg. Average daily gain (ADG), goblet cell density and villous height:crypt depth (VH:CD) ratio in the intestine were less in the challenged group than in the unchallenged group within the animals fed the basal diet (p < 0.05); the reverse was true for rectal temperature, faecal consistency score (FCS), E. coli adhesion score (EAS) in the intestine, serum interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α) concentrations and digesta pH in the stomach, caecum and colon. The ETEC infection symptom within the challenged animals was alleviated by the dietary phage supplementation (p < 0.05) in ADG, FCS, EAS in the jejunum, serum TNF-α concentration, digesta pH in the colon, goblet cell density in the ileum and colon and VH:CD ratio in the ileum. Moreover, the infection symptom tended to be alleviated (p < 0.10) by the phage supplementation in rectal temperature, EAS in the ileum and caecum, and VH:CD ratio in the duodenum and jejunum. However, EAS in the colon, digesta pH in the stomach and caecum, and goblet cell density in the jejunum did not change due to the dietary phage. Overall, results indicate that the phage therapy is effective for alleviation of acute ETEC K88 infection in post-weaning pigs.
Collapse
Affiliation(s)
- C Y Lee
- Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - S J Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - B C Park
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Korea
| | - J H Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
31
|
Kim HB, Lee CY, Kim SJ, Han JH, Choi KH. Medicinal herb extracts ameliorate impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent porcine epidemic diarrhea virus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:33. [PMID: 26451253 PMCID: PMC4597758 DOI: 10.1186/s40781-015-0065-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/28/2015] [Indexed: 08/22/2023]
Abstract
The objective of this study was to evaluate effects of a combined use of extracts of medicinal herbs Taraxaumi mongolicum, Viola yedoensis Makino, Rhizoma coptidis, and Radix isatidis (MYCI) on porcine epidemic diarrhea (PED). Twenty-two 3-day-old piglets received an oral challenge with 3 × 103.5 TCID50 of the virulent PED virus (PEDV) in PBS or PBS only and daily oral administration of 60 mg of the MYCI mixture suspended in milk replacer or the vehicle for 7 days in a 2 × 2 factorial arrangement of treatments. Average daily gain (ADG) increased (p < 0.05) in response to the MYCI treatment in the PEDV-challenged piglets (−18 vs. 7 g for the vehicle- vs. MYCI-administered group), but not in unchallenged animals (27 vs. 28 g). Diarrhea score and fecal PEDV shedding, however, were not influenced by the MYCI treatment. The PEDV challenge caused severe intestinal villus atrophy and crypt hyperplasia, both of which were alleviated by administration of the MYCI mixture as indicated by an increase in the villus height and a decrease in the crypt depth due to the treatment. Overall, medicinal herb extracts used in this study ameliorated impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent PEDV. Therefore, our results suggest that the MYCI mixture could be used as a prophylactic or therapeutic agent against PED.
Collapse
Affiliation(s)
- Hyeun Bum Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, 330-714 South Korea
| | - Chul Young Lee
- Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 South Korea
| | - Sung Jae Kim
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jeong Hee Han
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Keum Hwa Choi
- Department of Complementary and Alternative Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108 USA
| |
Collapse
|
32
|
Park B, Jung D, Kang S, Ko Y, Ha D, Kwon C, Park M, Han J, Jang I, Lee C. Effects of dietary supplementation of a zinc oxide product encapsulated with lipid on growth performance, intestinal morphology, and digestive enzyme activities in weanling pigs. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2014.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Kim SJ, Kwon CH, Park BC, Lee CY, Han JH. Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:4. [PMID: 26290724 PMCID: PMC4540299 DOI: 10.1186/s40781-014-0038-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/29/2014] [Indexed: 11/10/2022]
Abstract
The study was performed to investigate the effect of dietary supplementation of a lipid-encapsulated Zinc oxide on growth parameters and intestinal mucosal morphology piglets born to Duroc-sired Landrace × Yorkshire dams. Twenty-four 30-day-old piglets weaned at 25 days of age were orally challenged with 5 × 10(8) colony forming units of enterotoxigenic Escherichia coli (ETEC) K88 and fed one of the four diets for 7 days: (i) a nursery basal diet containing 100-ppm ZnO (referred to as BASAL), (ii) BASAL supplemented with 120-ppm apramycin (referred to as ANTIBIO), (iii) BASAL with 2,400-ppm ZnO (referred to as HIGH), and BASAL containing 100-ppm lipid-encapsulated ZnO (referred to as LE). All piglets were killed at the end of the experiment for histological examination on the intestine. The results showed that the average daily gain (ADG), the villus height: crypt depth (CD) ratio in the ileum, and the goblet cell density of the villus and crypt in the duodenum, jejunum, and colon were greater in the LE-fed group that those of the BASAL (p < 0.05). Fecal consistency score (FCS) and the CD ratio in the ileum were less in the LE-fed group, compared to the BASAL-fed one (p < 0.05). The effects observed in the LE-fed group were almost equal to those of the HIGH-fed group as well as even superior to those of the ANTIBIO-fed group. Taken together, our results imply that dietary supplementation of 100-ppm lipid-encapsulated ZnO is as effective as that of 2,400-ppm ZnO for promoting growth diarrhea and intestinal morphology caused by ETEC infection.
Collapse
Affiliation(s)
- Sung Jae Kim
- College of Veterinary Medicine and Institute of Veterinary Science, National University, Chuncheon, 200-701 Republic of Korea
| | - Chang Hoon Kwon
- College of Veterinary Medicine and Institute of Veterinary Science, National University, Chuncheon, 200-701 Republic of Korea
| | - Byung Chul Park
- R & D Institute, Sunjin Co., Ltd, 517-3 Doonchon-dong, Kangdong-gu, Seoul, 134-060 Republic of Korea
| | - Chul Young Lee
- The Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 Republic of Korea
| | - Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, National University, Chuncheon, 200-701 Republic of Korea
| |
Collapse
|
34
|
Jang I, Kwon CH, Ha DM, Jung DY, Kang SY, Park MJ, Han JH, Park BC, Lee CY. Effects of a lipid-encapsulated zinc oxide supplement on growth performance and intestinal morphology and digestive enzyme activities in weanling pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2014; 56:29. [PMID: 26290718 PMCID: PMC4540302 DOI: 10.1186/2055-0391-56-29] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022]
Abstract
This study compared the effects of varying lipid content and dietary concentration of a lipid-encapsulated (LE) ZnO product to those of native ZnO and thereby to find insights into optimal lipid coating and dosage of the Zn supplement. A total of 192 21-d-old weanling pigs were allotted to 48 pens, after which each six pens received a ZnO-free basal diet supplemented with 125 ppm ZnO (100 ppm Zn; BASAL), 2,500 ppm Zn as native ZnO (HIGH), or 100 or 200 ppm Zn as LE ZnO (LE-100 or LE-250) containing 8%, 10%, or 12% lipid [LE-8%, LE-10%, or LE-12%, respectively; 2 × 3 factorial arrangement within the LE-ZnO diets (LE-ALL)] for 14 d. Forty pigs were killed at the end for histological and biochemical examinations. None of ADG, ADFI, gain:feed, and fecal consistency score differed between the LE-ALL and either of the BASAL and HIGH groups. Hepatic and serum Zn concentrations were greater (p <0.05) in the HIGH vs. LE-ALL group, but did not differ between LE-ALL and BASAL, between LE-100 and -250, or among LE-8%, -10%, and -12% groups. Villus height (VH), crypt depth (CD), and the VH:CD ratio in the duodenum, jejunum, and ileum did not differ between the LE-ALL and either of the BASAL and HIGH groups, except for a greater CD in the duodenum in the LE-ALL vs. HIGH group. Additionally, VH and CD in the duodenum and VH:CD in the jejunum were greater in the LE-250 vs. LE-100 group. Specific activities of sucrase, maltase, and leucine aminopeptidase in these intestinal regions and those of amylase and trypsin in the pancreas were not influenced by the lipid content or dietary concentration of LE ZnO and also did not differ between the LE-ALL and either of the BASAL and HIGH groups, except for a greater pancreatic amylase activity in the former vs. HIGH group. In conclusion, the present results indicate that the LE ZnO, regardless of its lipid percentage or supplementation level examined in this study, has no significant effect on growth performance, fecal consistency, or digestive enzyme activities of weanling pigs under the experimental conditions.
Collapse
Affiliation(s)
- Insurk Jang
- The Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 Republic of Korea
| | - Chang Hoon Kwon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 200-701 Republic of Korea
| | - Duck Min Ha
- The Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 Republic of Korea
| | - Dae Yun Jung
- The Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 Republic of Korea
| | - Sun Young Kang
- The Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 Republic of Korea
| | - Man Jong Park
- The Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 Republic of Korea
| | - Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 200-701 Republic of Korea
| | - Byung-Chul Park
- R & D Institute, Sunjin Co., Ltd, 517-3 Doonchon-dong, Kangdong-gu, Seoul, 134-060 Republic of Korea
| | - Chul Young Lee
- The Regional Animal Industry Center, Gyeongnam National University of Science and Technology, Jinju, 660-758 Republic of Korea
| |
Collapse
|
35
|
Skrovanek S, DiGuilio K, Bailey R, Huntington W, Urbas R, Mayilvaganan B, Mercogliano G, Mullin JM. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol 2014; 5:496-513. [PMID: 25400994 PMCID: PMC4231515 DOI: 10.4291/wjgp.v5.i4.496] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.
Collapse
|