1
|
Li J, Zhang X, Luan F, Duan J, Zou J, Sun J, Shi Y, Guo D, Wang C, Wang X. Therapeutic Potential of Essential Oils Against Ulcerative Colitis: A Review. J Inflamm Res 2024; 17:3527-3549. [PMID: 38836243 PMCID: PMC11149639 DOI: 10.2147/jir.s461466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-sp ecific inflammatory disease of the colorectal mucosa. Researchers have associated UC onset with familial genetics, lifestyle behavior, inflammatory immune factors, intestinal microbiota, and the integrity of the intestinal mucosal barrier. The primary therapeutic interventions for UC consist of pharmacological management to control inflammation and promote mucosal healing and surgical interventions. The available drugs effectively control and decelerate the progression of UC in most patients; nonetheless, their long-term administration can exert adverse effects and influence the therapeutic effect. Plant essential oils (EOs) refer to a group of hydrophobic aromatic volatile substances. EOs have garnered considerable attention in both domestic and international research because of their anti-inflammatory, antibacterial, and antioxidant properties. They include peppermint, peppercorns, rosemary, and lavender, among others. Researchers have investigated the role of EOs in medicine and have elucidated their potential to mitigate the detrimental effects of UC through their anti-inflammatory, antioxidant, antidepressant, and anti-insomnia properties as well as their ability to regulate the intestinal flora. Furthermore, EOs exert minimal toxic adverse effects, further enhancing their appeal for therapeutic applications. However, these speculations are based on theoretical experiments, thereby warranting more clinical studies to confirm their effectiveness and safety. In this article, we aim to provide an overview of the advancements in utilizing natural medicine EOs for UC prevention and treatment. We will explore the potential pathogenesis of UC and examine the role of EOs therapy in basic research, quality stability, and management specification of inadequate EOs for UC treatment. We intend to offer novel insights into the use of EOs in UC prevention and management.
Collapse
Affiliation(s)
- Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Fei Luan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Changli Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
De Stefanis D, Balestrini A, Costelli P. Oleocanthal Protects C2C12 Myotubes against the Pro-Catabolic and Anti-Myogenic Action of Stimuli Able to Induce Muscle Wasting In Vivo. Nutrients 2024; 16:1302. [PMID: 38732549 PMCID: PMC11085360 DOI: 10.3390/nu16091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.
Collapse
Affiliation(s)
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (D.D.S.); (A.B.)
| |
Collapse
|
3
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
4
|
Effect of prebiotics administered during embryo development on mitochondria in intestinal and immune tissues of adult broiler chickens. Poult Sci 2023; 102:102663. [PMID: 37030257 PMCID: PMC10105484 DOI: 10.1016/j.psj.2023.102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are cellular organelles that are the place of many metabolic processes and thus have a significant impact on the proper functioning of the organism. These organelles respond easily to environmental stimuli and cellular energy demands. To ensure the proper functioning of mitochondria, a high supply of specific nutrients is needed. Literature reports suggest that a favorable profile of the intestinal microbiota may improve the functioning of the mitochondria. The gut microbiota transmits a signal to the mitochondria of the mucosa cells. This signaling alters mitochondrial metabolism, activates cells of the immune system, and alters intestinal epithelial barrier functions. The aim of the study is to determine the relative number of mtDNA copies and to analyze the mitochondrial expression of genes related to respiratory chain proteins and energy metabolism in the intestinal mucosa and cecal tonsils of broiler chickens injected on the d 12 of egg incubation with various prebiotics. 300 incubated eggs of Ross 308 broiler chicken on d 12 of incubation were injected with: control group with physiological saline, prebiotics: XOS3, XOS4, MOS3, and MOS4. On d 42 after hatching, 8 individuals from each group were sacrificed. Cecal mucosa and cecal tonsils were collected postmortem for DNA and RNA isolation. Relative mitochondrial DNA copy number analysis was performed by qPCR method using 2 calculation methods. Gene expression analysis of the cecal tonsils and cecal mucosa was performed by RT-qPCR for the gene panel selected based on literature data and gene functions related to mitochondria: CS, EPX (MPO), CYCS, TFAM, NRF1, ND2, MnSOD (SOD2). As the results showed the overall mt DNA copy number is stable in both tissues. The significant change in gene expression in cecal mucosa was induced by XOS4 and MOS3. Both prebiotics caused upregulation of gene expression. In cecal tonsils all prebiotics caused downregulation of entire set of genes under the analysis. Statistically significant results of gene expression were detected for CYCS, ND2, NRF, TFAM for all experimental groups.
Collapse
|
5
|
Foti P, Conti-Nibali S, Randazzo CL, Reina S, Romeo FV, Caggia C, De Pinto V. Protective Effect of Treated Olive Mill Wastewater on Target Bacteria and Mitochondrial Voltage-Dependent Anion-Selective Channel 1. Antioxidants (Basel) 2023; 12:antiox12020322. [PMID: 36829881 PMCID: PMC9951878 DOI: 10.3390/antiox12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Olive mill wastewater, a by-product of the olive oil industry, represents an important resource, rich in bioactive compounds with antioxidant activity. In this study, two strategies to concentrate the bioactive components were used: the tangential membrane filtration (ultrafiltration and reverse osmosis) and the selective resin extraction. The concentrates were evaluated for physico-chemical characteristics and antioxidant activity. Furthermore, the antimicrobial activity and the effect on the mitochondrial voltage-dependent anion selective channel 1 were evaluated. The chemical results highlighted that the highest concentration of hydroxytyrosol (as 7204 mg/L) was revealed in the sample obtained by inverse osmosis while the highest concentration of oleuropein (10005 mg/L) was detected in the sample obtained by resin extraction. The latter sample exhibited the highest antimicrobial effects against Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Both samples exhibited a high impact on the electrophysiological parameters of VDAC1 activity. These results showed that both valorization techniques, which can be reproduced at industrial scale, provided phenolic concentrates with antioxidant and antimicrobial activity useful for different future perspectives.
Collapse
Affiliation(s)
- Paola Foti
- Dipartimento di Agricoltura, Alimentazione e Ambiente—Di3A, Università degli Studi di Catania, 95124 Catania, Italy
| | - Stefano Conti-Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Cinzia L. Randazzo
- Dipartimento di Agricoltura, Alimentazione e Ambiente—Di3A, Università degli Studi di Catania, 95124 Catania, Italy
- ProBioEtna srl, Spin Off University of Catania, 95124 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuteuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Simona Reina
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
- We.MitoBiotech S.R.L., 95129 Catania, Italy
| | - Flora V. Romeo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, 95024 Acireale, Italy
| | - Cinzia Caggia
- Dipartimento di Agricoltura, Alimentazione e Ambiente—Di3A, Università degli Studi di Catania, 95124 Catania, Italy
- ProBioEtna srl, Spin Off University of Catania, 95124 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuteuticals and Health Products, University of Catania, 95125 Catania, Italy
- Correspondence:
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuteuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
6
|
Davoodi P, Ghaderi-Zefrehei M, Dolatabady MM, Razmkabir M, Kianpour S, Esfahani EN, Smith J. In silico investigation of uncoupling protein function in avian genomes. Front Vet Sci 2023; 9:1085112. [PMID: 36744229 PMCID: PMC9893418 DOI: 10.3389/fvets.2022.1085112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The uncoupling proteins (UCPs) are involved in lipid metabolism and belong to a family of mitochondrial anionic transporters. In poultry, only one UCP homologue has been identified and experimentally shown to be associated with growth, feed conversion ratio, and abdominal fat according to its predominant expression in bird muscles. In endotherm birds, cell metabolic efficiency can be tuned by the rate of mitochondrial coupling. Thus, avUCP may be a key contributor to controlling metabolic rate during particular environmental changes. Methods This study aimed to perform a set of in-silico investigations primarily focused on the structural, biological, and biomimetic functions of avUCP. Thereby, using in silico genome analyses among 8 avian species (chicken, turkey, swallow, manakin, sparrow, wagtail, pigeon, and mallard) and a series of bioinformatic approaches, we provide phylogenetic inference and comparative genomics of avUCPs and investigate whether sequence variation can alter coding sequence characteristics, the protein structure, and its biological features. Complementarily, a combination of literature mining and prediction approaches was also applied to predict the gene networks of avUCP to identify genes, pathways, and biological crosstalk associated with avUCP function. Results The results showed the evolutionary alteration of UCP proteins in different avian species. Uncoupling proteins in avian species are highly conserved trans membrane proteins as seen by sequence alignment, physio-chemical parameters, and predicted protein structures. Taken together, avUCP has the potential to be considered a functional marker for the identification of cell metabolic state, thermogenesis, and oxidative stress caused by cold, heat, fasting, transfer, and other chemical stimuli stresses in birds. It can also be deduced that avUCP, in migrant or domestic birds, may increase heat stress resistance by reducing fatty acid transport/b-oxidation and thermoregulation alongside antioxidant defense mechanisms. The predicted gene network for avUCP highlighted a cluster of 21 genes involved in response to stress and 28 genes related to lipid metabolism and the proton buffering system. Finally, among 11 enriched pathways, crosstalk of 5 signaling pathways including MAPK, adipocytokine, mTOR, insulin, ErbB, and GnRH was predicted, indicating a possible combination of positive or negative feedback among pathways to regulate avUCP functions. Discussion Genetic selection for fast-growing commercial poultry has unintentionally increased susceptibility to many kinds of oxidative stress, and so avUCP could be considered as a potential candidate gene for balancing energy expenditure and reactive oxygen species production, especially in breeding programs. In conclusion, avUCP can be introduced as a pleiotropic gene that requires the contribution of regulatory genes, hormones, pathways, and genetic crosstalk to allow its finely-tuned function.
Collapse
Affiliation(s)
- Peymaneh Davoodi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Ghaderi-Zefrehei
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran,*Correspondence: Mostafa Ghaderi-Zefrehei ✉ ; ✉
| | | | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Somayeh Kianpour
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom,Jacqueline Smith ✉
| |
Collapse
|
7
|
Leo M, Muccillo L, Pranzini E, Barisciano G, Parri M, Lopatriello G, Carlomagno M, Santi A, Taddei ML, Sabatino L. Transcriptomic Analysis of Colorectal Cancer Cells Treated with Oil Production Waste Products (OPWPs) Reveals Enrichment of Pathways of Mitochondrial Functionality. Cells 2022; 11:cells11243992. [PMID: 36552757 PMCID: PMC9776412 DOI: 10.3390/cells11243992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Oil production waste products (OPWPs) derive from olive mill and represent a crucial environmental problem due to their high polyphenolic content able to pollute the ground. One option to reduce the OPWPs' environmental impact is to exploit polyphenols' biological properties. We sought to analyze the transcriptomic variations of colorectal cancer cells exposed to the OPWPs extracts and hydroxytyrosol, the major component, to recognize unknown and ill-defined characteristics. Among the top affected pathways identified by GSEA, we focused on oxidative phosphorylation in an in vitro system. Colorectal cancer HCT116 and LoVo cells treated with hydroxytyrosol or OPWPs extracts showed enhancement of the respiratory chain complexes' protein levels, ATP production and membrane potential, suggesting stimulation of mitochondrial functions. The major proteins involved in mitochondrial biogenesis and fusion events of mitochondrial dynamics were positively affected, as by Western blot, fostering increase of the mitochondrial mass organized in a network of elongated organelles. Mechanistically, we proved that PPARγ mediates the effects as they are mimicked by a specific ligand and impaired by a specific inhibitor. OPWP extracts and hydroxytyrosol, thus, promote mitochondrial functionality via a feed-forward regulatory loop involving the PPARγ/PGC-1α axis. These results support their use in functional foods and as adjuvants in cancer therapy.
Collapse
Affiliation(s)
- Manuela Leo
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Giovannina Barisciano
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Giulia Lopatriello
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy
| | - Marco Carlomagno
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
- Correspondence: (M.L.T.); (L.S.)
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy
- Correspondence: (M.L.T.); (L.S.)
| |
Collapse
|
8
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Sousa C, Mendes AF. Monoterpenes as Sirtuin-1 Activators: Therapeutic Potential in Aging and Related Diseases. Biomolecules 2022; 12:921. [PMID: 35883477 PMCID: PMC9313249 DOI: 10.3390/biom12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtuin 1 (SIRT) is a class III, NAD+-dependent histone deacetylase that also modulates the activity of numerous non-histone proteins through deacylation. SIRT1 plays critical roles in regulating and integrating cellular energy metabolism, response to stress, and circadian rhythm by modulating epigenetic and transcriptional regulation, mitochondrial homeostasis, proteostasis, telomere maintenance, inflammation, and the response to hypoxia. SIRT1 expression and activity decrease with aging, and enhancing its activity extends life span in various organisms, including mammals, and improves many age-related diseases, including cancer, metabolic, cardiovascular, neurodegenerative, respiratory, musculoskeletal, and renal diseases, but the opposite, that is, aggravation of various diseases, such as some cancers and neurodegenerative diseases, has also been reported. Accordingly, many natural and synthetic SIRT1 activators and inhibitors have been developed. Known SIRT1 activators of natural origin are mainly polyphenols. Nonetheless, various classes of non-polyphenolic monoterpenoids have been identified as inducers of SIRT1 expression and/or activity. This narrative review discusses current information on the evidence that supports the role of those compounds as SIRT1 activators and their potential both as tools for research and as pharmaceuticals for therapeutic application in age-related diseases.
Collapse
Affiliation(s)
- Cátia Sousa
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alexandrina Ferreira Mendes
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
10
|
Blanco-Benítez M, Calderón-Fernández A, Canales-Cortés S, Alegre-Cortés E, Uribe-Carretero E, Paredes-Barquero M, Gimenez-Bejarano A, Duque González G, Gómez-Suaga P, Ortega-Vidal J, Salido S, Altarejos J, Martínez-Chacón G, Niso-Santano M, Fuentes JM, González-Polo RA, Yakhine-Diop SMS. Biological effects of olive oil phenolic compounds on mitochondria. Mol Cell Oncol 2022; 9:2044263. [PMID: 35340790 PMCID: PMC8942445 DOI: 10.1080/23723556.2022.2044263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Phenolic compounds derived from olive oil have beneficial health properties against cancer, neurodegenerative, and metabolic diseases. Therefore, there are discrepancies in their impact on mitochondrial function that result in changes in oxidative capacity, mitochondrial respiration, and energetic demands. This review focuses on the versatile role of oleuropein, a potent antioxidant that regulates the AMPK/SIRT1/mTOR pathway to modulate autophagy/mitophagy and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Mercedes Blanco-Benítez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Ana Calderón-Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Alberto Gimenez-Bejarano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Gema Duque González
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Patricia Gómez-Suaga
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Juan Ortega-Vidal
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Guadalupe Martínez-Chacón
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - José M Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Rosa A González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Sokhna M S Yakhine-Diop
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| |
Collapse
|
11
|
Muroi H, Hori K, Tokutake Y, Hakamata Y, Kawabata F, Toyomizu M, Kikusato M. Oleuropein suppresses mitochondrial reactive oxygen species generation possibly via an activation of transient receptor potential V1 and sirtuin-1 in cultured chicken muscle cells. Anim Sci J 2022; 93:e13677. [PMID: 35029000 DOI: 10.1111/asj.13677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
This study investigated the intracellular mechanism governing the effects of oleuropein (OLE), a phenolic compound of Olea europaea, on mRNA expression of avian uncoupling protein (avUCP) and mitochondrial biogenesis-related factors, and reactive oxygen species (mitROS) generation in a primary cultured chicken muscle cells. The OLE-treated cells exhibited increases in Avucp and ATP5a1z expression and a decrease in mitROS generation (p < 0.05), while the effects was canceled by sirtuin-1 (SIRT1) or transient receptor potential vanilloid 1 (TRPV1) inhibitors, EX-527 or BCTC, respectively. Intracellular Ca2+ concentration was significantly increased by OLE, while the induction was canceled by BCTC. The study also found that TRPV1 was expressed in the cell membrane and endoplasmic reticulum (ER), and Ca2+ could be released from ER in the OLE-treated cells. The OLE-treated cells exhibited increases in the phosphorylation ratio of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content. EX-527 and BCTC inhibitors canceled the effects of OLE on p-AMPK ratio and PGC-1α content, while EX-527 SIRT did not change PGC-1α content. The results suggest that the OLE effects may be due to Ca2+ release, possibly from TRPV1 at ER, and increased p-AMPK ratio, followed by SIRT1 activation and PGC-1α protein expression.
Collapse
Affiliation(s)
- Hikaru Muroi
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kouhei Hori
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yukako Tokutake
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuki Hakamata
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Nardi M, Baldelli S, Ciriolo MR, Costanzo P, Procopio A, Colica C. Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H 2O 2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules 2020; 25:E5472. [PMID: 33238414 PMCID: PMC7700591 DOI: 10.3390/molecules25225472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Oleuropein, a glycosylated secoiridoid present in olive leaves, is known to be an important antioxidant phenolic compound. We studied the antioxidant effect of low doses of oleuropein aglycone (3,4-DHPEA-EA) and oleuropein aglycone peracetylated (3,4-DHPEA-EA(P)) in murine C2C12 myocytes treated with hydrogen peroxide (H2O2). Both compounds were used at a concentration of 10 μM and were able to inhibit cell death induced by the H2O2 treatment, with 3,4-DHPEA-EA(P) being more. Under our experimental conditions, H2O2 efficiently induced the phosphorylated-active form of JNK and of its downstream target c-Jun. We demonstrated, by Western blot analysis, that 3,4-DHPEA-EA(P) was efficient in inhibiting the phospho-active form of JNK. This data suggests that the growth arrest and cell death of C2C12 proceeds via the JNK/c-Jun pathway. Moreover, we demonstrated that 3,4-DHPEA-EA(P) affects the myogenesis of C2C12 cells; because MyoD mRNA levels and the differentiation process are restored with 3,4-DHPEA-EA(P) after treatment. Overall, the results indicate that 3,4-DHPEA-EA(P) prevents ROS-mediated degenerative process by functioning as an efficient antioxidant.
Collapse
Affiliation(s)
- Monica Nardi
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Paola Costanzo
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Antonio Procopio
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy;
| |
Collapse
|
13
|
Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer's disease and brain ageing. Exp Neurol 2020; 328:113248. [PMID: 32084452 DOI: 10.1016/j.expneurol.2020.113248] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
As components of the Mediterranean diet (MedDiet) olive polyphenols may play a crucial role for the prevention of Alzheimer's disease (AD). Since mitochondrial dysfunction is involved in both, brain ageing and early AD, effects of 10 different purified phenolic secoiridoids (hydroxytyrosol, tyrosol, oleacein, oleuroside, oleuroside aglycon, oleuropein, oleocanthal, ligstroside, ligstroside aglycone and ligustaloside B) and two metabolites (the plant metabolite elenolic acid and the mammalian metabolite homovanillic acid) were tested in very low doses on mitochondrial function in SH-SY5Y-APP695 cells - a cellular model of early AD. All tested secoiridoids significantly increased basal adenosine triphosphate (ATP) levels in SY5Y-APP695 cells. Oleacein, oleuroside, oleocanthal and ligstroside showed the highest effect on ATP levels and were additionally tested on mitochondrial respiration. Only oleocanthal and ligstroside were able to enhance the capacity of respiratory chain complexes. To investigate their underlying molecular mechanisms, the expression of genes associated with mitochondrial biogenesis, respiration and antioxidative capacity (PGC-1α, SIRT1, CREB1, NRF1, TFAM, complex I, IV and V, GPx1, SOD2, CAT) were determined using qRT-PCR. Exclusively ligstroside increased mRNA expression of SIRT1, CREB1, complex I, and GPx1. Furthermore, oleocanthal but not ligstroside decreased Aβ 1-40 levels in SH-SY5Y-APP695 cells. To investigate the in vivo effects of purified secoiridoids, the two most promising compounds (oleocanthal and ligstroside) were tested in a mouse model of ageing. Female NMRI mice, aged 12 months, received a diet supplemented with 50 mg/kg oleocanthal or ligstroside for 6 months (equivalent to 6.25 mg/kg b.w.). Young (3 months) and aged (18 months) mice served as controls. Ligstroside fed mice showed improved spatial working memory. Furthermore, ligstroside restored brain ATP levels in aged mice and led to a significant life extension compared to aged control animals. Our findings indicate that purified ligstroside has outstanding performance on mitochondrial bioenergetics in models of early AD and brain ageing by mechanisms that may not interfere with Aβ production. Additionally, ligstroside expanded the lifespan in aged mice and enhanced cognitive function.
Collapse
|
14
|
A peptide isolated from Hippocampus abdominalis improves exercise performance and exerts anti-fatigue effects via AMPK/PGC-1α pathway in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
15
|
Shimao R, Muroi H, Furukawa K, Toyomizu M, Kikusato M. Effects of low-dose oleuropein diet supplementation on the oxidative status of skeletal muscles and plasma hormonal concentration of growing broiler chickens. Br Poult Sci 2019; 60:784-789. [PMID: 31524499 DOI: 10.1080/00071668.2019.1662886] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Oleuropein (Ole) is a major phenolic compound in Olea europaea, with anti-oxidative, anti-obesity, and anti-inflammatory properties. To explore the effect of Ole on the physiology and metabolism of poultry, this study, evaluated the effects of feeding low-dose Ole on the growth performance, metabolic hormonal status, muscle oxidative status in growing broiler chickens.2. Thirty-two 8-day-old chickens were assigned to four different treatments, and fed either 0 (control), 0.1, 0.5, or 2.5 ppm Ole-supplemented diets for 2 weeks.3. There were no differences in the body weight gain, feed consumption, and feed efficiency during the feeding periods between the groups tested. Birds fed Ole 0.5- and 2.5 ppm-supplemented diets exhibited a significant decrease in muscle carbonyl content compared to the control group. In the group fed Ole 0.5 ppm, the mRNA expression levels of mitochondrial ROS-reducing factors: avian uncoupling protein and manganese superoxide dismutase, as well as peroxisome proliferator-activated receptor γ coactivator 1-α, sirtuin-1 and -3 (each of which co-ordinately induce the transcription of the previous two factors) were upregulated compared to the control group, and the changes were independent of plasma noradrenaline and thyroid hormone levels. The group fed Ole-2.5 ppm did not show such transcriptional changes, but exhibited a higher corticosterone concentration.4. This study demonstrates that ingesting a low dose of Ole can reduce muscle oxidative damage, and that the suppression machinery may differ depending on the amount of Ole ingested by growing broiler chickens.
Collapse
Affiliation(s)
- R Shimao
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - H Muroi
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - K Furukawa
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - M Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - M Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Giacometti J, Žauhar G, Žuvić M. Optimization of Ultrasonic-Assisted Extraction of Major Phenolic Compounds from Olive Leaves ( Olea europaea L.) Using Response Surface Methodology. Foods 2018; 7:foods7090149. [PMID: 30200559 PMCID: PMC6165173 DOI: 10.3390/foods7090149] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
The ultrasound-assisted extraction (UAE) of oleuropein (OLE), verbascoside (VER), and luteolin-4′-O-glucoside (L4OG), as the major phenolics from olive leaves, was optimized using response surface methodology (RSM). A Box–Behnken design (BBD) was used to monitor the effect of different modes of ultrasound operation (pulsed and continuous), liquid–solid (L–S) ratio, and sonication time on each phenolic yield. The yield of UAE and conventional solid extraction (CSE) was determined after performing ultrahigh-performance liquid chromatography with a diode-array detector (UHPLC-DAD) analysis on the extracts. The results suggested that, under optimal conditions, the concentrations of OLE, VER, and L4OG were 13.386, 0.363, and 0.527 mg/g of dry powdered olive leaves (DPOL), respectively. Verification of experiments was carried out under the modified optimal conditions and the relative errors between the predicted and experimental values were dependent on the examined phenolic compound (OLE 8.63%, VER 11.3%, and L4OG 22.48%). In comparison with CSE, UAE improved the yields of OLE, VER, and L4OG (32.6%, 41.8%, and 47.5%, respectively, after 1 min) at a temperature of 60 °C, an L–S ratio of 15 (v/w), and in the continuous mode of UAE. We demonstrated that the UAE technique is an efficient method for enhancing yields of OLE, VER, and L4OG in olive-leaf extracts, while the chosen model was adequate to optimize the extraction of major phenolic compounds from olive leaves.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Gordana Žauhar
- Department of Medical Physics and Biophysics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
- Department of Physics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Marta Žuvić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
17
|
Therapeutic Effects of Olive and Its Derivatives on Osteoarthritis: From Bench to Bedside. Nutrients 2017; 9:nu9101060. [PMID: 28954409 PMCID: PMC5691677 DOI: 10.3390/nu9101060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 01/11/2023] Open
Abstract
Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.
Collapse
|
18
|
Kim MH, Min JS, Lee JY, Chae U, Yang EJ, Song KS, Lee HS, Lee HJ, Lee SR, Lee DS. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr Neurosci 2017; 21:520-528. [PMID: 28448247 DOI: 10.1080/1028415x.2017.1317449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mi Hye Kim
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ju-Sik Min
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea.,c Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - Joon Yeop Lee
- d College of Pharmacy, Kyungpook National University , Republic of Korea.,e Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine , Gyeongsangbuk-do , Republic of Korea
| | - Unbin Chae
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Eun-Ju Yang
- d College of Pharmacy, Kyungpook National University , Republic of Korea
| | - Kyung-Sik Song
- d College of Pharmacy, Kyungpook National University , Republic of Korea
| | - Hyun-Shik Lee
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Hong Jun Lee
- f Biomedical Research Institute, Chung-Ang University College of Medicine , Seoul , Republic of Korea
| | - Sang-Rae Lee
- g National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Chungcheongbuk-do , Republic of Korea
| | - Dong-Seok Lee
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
19
|
Achour I, Arel-Dubeau AM, Renaud J, Legrand M, Attard E, Germain M, Martinoli MG. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model. Int J Mol Sci 2016; 17:ijms17081293. [PMID: 27517912 PMCID: PMC5000690 DOI: 10.3390/ijms17081293] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.
Collapse
Affiliation(s)
- Imène Achour
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Anne-Marie Arel-Dubeau
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Justine Renaud
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Manon Legrand
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Everaldo Attard
- Institute of Earth Systems, University of Malta, Msida MSD 2080, Malta.
| | - Marc Germain
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Maria-Grazia Martinoli
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
- Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, QC G9A 5H7, Canada.
| |
Collapse
|