1
|
Hao EY, Liu XL, Chang LY, Xue H, Su BF, Chen YF, Wang DH, Shi L, Chen H. Melatonin alleviates endoplasmic reticulum stress to improve ovarian function by regulating the mTOR pathway in aged laying hens. Poult Sci 2024; 103:103703. [PMID: 38631228 PMCID: PMC11040121 DOI: 10.1016/j.psj.2024.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Granular cell apoptosis is a key factor leading to follicular atresia and decreased laying rate in aged laying hens. Endoplasmic reticulum stress (ERS) induced cell apoptosis is a new type of apoptosis pathway. Previous studies have shown that the ERS pathway is involved in the regulation of follicular development and atresia, and can be regulated by mTOR. Melatonin (MEL) can protect the normal development of follicles, but the precise mechanism by which MEL regulates follicular development is not yet clear. So, we investigated the potential relationship between MEL and ERS and mTOR signaling pathway in vivo through intraperitoneal injection of MEL in aged laying hens. The results show that the laying rate, ovarian follicle number, plasma MEL, E2, LH, FSH concentrations, as well as the mRNA expression of mTOR signaling-associated genes TSC1, TSC2, mTOR, 4E-BP1, and S6K in old later-period chicken control (Old-CN) group was significantly decreased (P < 0.01). In contrast, the ERS-related of plasma and granular cell layer mRNA expression of Grp78, CHOP, and Caspase-3 was significantly increased (P < 0.01). While both of the effects were reversed by MEL. Then, aging granulosa cells were treated with MEL in vitro, followed by RNA seq analysis, and it was found that 259 and 322 genes were upregulated and downregulated. After performing GO enrichment analysis, it was found that DEGs significantly contribute to the biological processes including cell growth and apoptosis. Using pathway enrichment analysis, we found significant overrepresentation of cellular processes related to mTOR signaling and endoplasmic reticulum (ER) stress, involving genes such as GRB10, SGK1, PRKCA, RPS6KA2, RAF1, PIK3R3, FOXO1, DERL3, HMOX1, TLR7, VAMP7 and INSIG2. The obtained results of RT-PCR showed consistency with the RNA-Seq data. In summary, the underlined results revealed that MEL has significantly contributed to follicular development via activating the mTOR signaling pathway-related genes and alleviating ERS-related genes in laying hens. The current study provides a theoretical background for enhancing the egg-laying capability of hens and also providing a basis for elucidating the molecular mechanism of follicular selection.
Collapse
Affiliation(s)
- Er-Ying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xue-Lu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Li-Yun Chang
- Tangshan Normal University, Tangshan, Hebei 063002, China
| | - Han Xue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bo-Fei Su
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yi-Fan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
2
|
Li G, Yan L, Wang L, Ma W, Wu H, Guan S, Yao Y, Deng S, Yang H, Zhang J, Zhang X, Wu H, He C, Ji P, Lian Z, Wu Y, Zhang L, Liu G. Ovarian overexpression of ASMT gene increases follicle numbers in transgenic sheep: Association with lipid metabolism. Int J Biol Macromol 2024; 269:131803. [PMID: 38670205 DOI: 10.1016/j.ijbiomac.2024.131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Melatonin plays an important role in mammalian reproductive activities, to further understand the effects of endogenous melatonin on functions of ovary, the transgenic sheep with overexpression of melatonin synthetic enzyme gene ASMT in ovary were generated. The results showed that total melatonin content in follicular fluid of transgenic sheep was significantly greater than that in the wild type. Accordingly, the follicle numbers of transgenic sheep were also significantly greater than those in the WT. The results of follicular fluid metabolites sequencing showed that compared with WT, the differential metabolites of the transgenic sheep were significantly enriched in several signaling pathways, the largest number of metabolites was lipid metabolism pathway and the main differential metabolites were lipids and lipoid molecules. SMART-seq2 were used to analyze the oocytes and granulosa cells of transgenic sheep and WT sheep. The main differential enrichment pathway was metabolic pathway, in which lipid metabolism genes accounted for the majority. In conclusion, this is the first report to show that ovary overexpression of ASMT increased local melatonin production and follicle numbers. These results may imply that ASMT plays an important role in follicle development and formation, and melatonin intervention may be a potential method to promote this process.
Collapse
Affiliation(s)
- Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Likai Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengyu Guan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Hai Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin 300112, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin 300112, China
| | - Haixin Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Changjiu He
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingjie Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Nascimento DR, Barbalho EC, Gondim Barrozo L, de Assis EIT, Costa FC, Silva JRV. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro. ZYGOTE 2023:1-11. [PMID: 37221099 DOI: 10.1017/s0967199423000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Preantral to early antral follicles transition is a complex process regulated by endocrine and paracrine factors, as well as by a precise interaction among oocyte, granulosa cells and theca cells. Understanding the mechanisms that regulate this step of folliculogenesis is important to improve in vitro culture systems, and opens new perspectives to use oocytes from preantral follicles for assisted reproductive technologies. Therefore, this review aims to discuss the endocrine and paracrine mechanisms that control granulosa cell proliferation and differentiation, formation of the antral cavity, estradiol production, atresia, and follicular fluid production during the transition from preantral to early antral follicles. The strategies that promote in vitro growth of preantral follicles are also discussed.
Collapse
Affiliation(s)
- D R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - L Gondim Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - F C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| |
Collapse
|
4
|
Zhai B, Li X, Zhao Z, Cao Y, Liu X, Liu Z, Ma H, Lu W. Melatonin Protects the Apoptosis of Sheep Granulosa Cells by Suppressing Oxidative Stress via MAP3K8 and FOS Pathway. Genes (Basel) 2023; 14:genes14051067. [PMID: 37239427 DOI: 10.3390/genes14051067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Melatonin is not only a highly effective active oxygen scavenger but also an important reproductive hormone. Melatonin has a regulatory effect on animal reproduction, especially on the ovaries. It can affect the proliferation and apoptosis of cells in follicles. However, the mechanisms of the dual antioxidation and anti-apoptosis effects of melatonin on granulosa cells are still not clear, especially in sheep. Therefore, we investigated the mechanisms of the protective effect of melatonin against oxidative damage in granulosa cells. At a concentration of 250 µmol/L, H2O2 promoted granulosa cell apoptosis; however, 10 ng/mL melatonin effectively alleviated the pro-apoptotic effect of H2O2. Furthermore, through the application of high-throughput sequencing technology, we identified 109 significantly differentially expressed genes (35 upregulated and 74 downregulated genes) involved in the protective effect of melatonin against apoptosis. The expression levels of nine related genes, i.e., ATF3, FIBIN, FOS, HSPA6, MAP3K8, FOSB, PET117, DLX2, and TRIB1, changed significantly. MAP3K8 and FOS gene overexpression impacted the protective effect of melatonin in granulosa cells; the two genes exhibited an upstream and downstream regulatory relationship. Our findings indicated that melatonin alleviated H2O2-induced apoptosis in sheep granulosa cells through the MAP3K8-FOS pathway.
Collapse
Affiliation(s)
- Bo Zhai
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China
| | - Xu Li
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China
| | - Zhongli Zhao
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China
| | - Yang Cao
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China
| | - Xinxin Liu
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China
| | - Zheng Liu
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China
| | - Huihai Ma
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Bai K, Hao E, Huang CX, Yue QX, Wang DH, Shi L, Chen YF, Chen H, Huang RL. Melatonin alleviates ovarian function damage and oxidative stress induced by dexamethasone in the laying hens through FOXO1 signaling pathway. Poult Sci 2023; 102:102745. [PMID: 37302326 PMCID: PMC10276286 DOI: 10.1016/j.psj.2023.102745] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress can trigger follicular atresia, and decrease follicles quantity in each development stage, thereby alleviating reproductive activity. The induction of oxidative stress in chickens through intraperitoneal injection of dexamethasone is a reliable and stable method. Melatonin has been shown to mitigate oxidative stress in this model, but the underlying mechanism remains unclear. Therefore, this study aimed to investigate whether melatonin can recover aberrant antioxidant status induced by dexamethasone and the specific mechanism behind melatonin-dependent protection. A total of 150 healthy 40-wk-old Dawu Jinfeng laying hens with similar body weights and laying rates were randomly divided into three groups, with five replicates per group and 10 hens per replicate. The hens in the control group (NS) received intraperitoneal injections of normal saline for 30 d, the dexamethasone group (Dex+NS) received 20 mg/kg dose of dexamethasone for the first 15 d, followed by the 15 d of normal saline treatment. While in the melatonin group (Dex+Mel), dexamethasone (20 mg/kg dose) was injected intraperitoneally in the first 15 d, and melatonin (20 mg/kg/d) was injected in the last 15 d. The results showed that dexamethasone treatment significantly enhanced oxidative stress (P < 0.05), while melatonin not only inhibited the oxidative stress but also notably enhanced the antioxidant enzymes superoxide dismutase (SOD), catalase activity (CAT), glutathione peroxidase (GSH-Px), and antioxidant genes CAT, superoxide dismutase 1 (SOD1), glutathione peroxidase 3 (GPX3), and recombinant peroxiredoxin 3 (PRDX3) expression (P < 0.05). Melatonin treatment also markedly reduced 8-hydroxy deoxyguanosine (8-OHdG), malondialdehyde (MDA), and reactive oxygen species (ROS) levels (P < 0.05) and apoptotic genes Caspase-3, Bim, and Bax in the follicle. In the Dex+Mel group, the Bcl-2 and SOD1 protein levels were also increased (P < 0.05). Melatonin inhibited the forkhead Box Protein O1 (FOXO1) gene and its protein expression (P < 0.05). In general, this investigation revealed that melatonin might decrease oxidative stress and ROS by enhancing antioxidant enzymes and genes, activating the antiapoptotic genes, and inhibiting the FOXO1 pathway in laying hens.
Collapse
Affiliation(s)
- Kang Bai
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Chen-Xuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China; Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - Qiao-Xian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China; Department of Animal Breeding and Genetics, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Yi-Fan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China.
| | - Ren-Lu Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| |
Collapse
|
6
|
Ma J, Wang J, Hu S, Li Y, Zhang Y, Yang Y, Yang C, Huo S, Yang Y, Zhaxi Y, Luo W. Effects of melatonin on development and hormone secretion of sheep theca cells in vitro. Theriogenology 2023; 198:172-182. [PMID: 36592515 DOI: 10.1016/j.theriogenology.2022.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Theca cells (TCs) play a unique role in the structure and function of the ovary. They are not only the structural basis of the follicle but also the androgen-secreting cells in female mammals, which can affect the normal development and atresia of the follicle. The results showed that melatonin receptor (MTR) MT1 and MT2 were expressed on sheep TCs. In the present study, the effects of different concentrations of MT at 0, 10-10, 10-8, 10-6 and 10-4 M/L on sheep TCs with regards to the antioxidant levels, proliferation, apoptosis and steroid hormone secretion were investigated. The results showed that in sheep TCs, all concentrations of MT significantly decreased reactive oxygen species (ROS) concentration and BAX expression; increased Cat, Sod1, and BCL-2 expression. The proliferation viability of TCs was significantly inhibited in all groups except for 10-10 M/L MT, and the expression of cyclin D1 and CDK4 was significantly reduced. MT significantly increased StAR expression and progesterone secretion in TCs, but there was no significant effect on androgen secretion and CYP11A1, CYP17A1 and 3β-HSD expression in all groups. MT-induced progesterone secretion was completely inhibited by Luzindole (a nonspecific MT1 and MT2 inhibitor) and partially inhibited by 4p-PDOT (specific MT2 inhibitor). MT-induced progesterone secretion can be inhibited by LY294002 (PI3K/AKT pathway inhibitor). This study indicated that MT inhibits apoptosis and proliferation of in vitro cultured sheep TCs, which has implications for slowing ovarian atresia and aging. MT activates the PI3K/Akt pathway to mediate the synthesis and secretion of progesterone by TCs. This study provides a basis for further exploration of the role of TCs on follicle development and ovarian steroid hormone secretion.
Collapse
Affiliation(s)
- Junyuan Ma
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Jine Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Songming Hu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yang Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yaxin Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yahua Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Chongfa Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Shengdong Huo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China.
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yingpai Zhaxi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Wenxue Luo
- Tianzhu County Animal Husbandry Technology Extension Station, Wuwei, Gansu, 733200, China
| |
Collapse
|
7
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
8
|
Ge W, Xiao L, Duan H, Zhao X, Li J, Hu J. Proteomic analysis of iTRAQ in melatonin-treated sheep epididymal epithelial cells. Reprod Domest Anim 2022; 57:1406-1417. [PMID: 35881670 DOI: 10.1111/rda.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
During maturation, spermatozoa acquire motility and fertilizing capacity as they transit through the epididymis. Melatonin is a lipophilic hormone with multiple functions in regulating the fertility. Previous studies have shown that melatonin affected the capacitation or maturation of sperm in the epididymis. The aim of this study was to investigate the effects of melatonin on epididymal caput epithelial cells in sheep. In the study, we used iTRAQ labelling coupled with LC-MS/MS for quantitative identification of differentially expressed proteins in melatonin-treated sheep epididymal caput epithelial cells. We identified 69 differentially expressed protein; 41 were upregulated and 28 were downregulated in samples from sheep in melatonin treated. We validated the differential expression of a subset of these proteins using qPCR and Western blot. Gene ontology annotation identified that the differentially expressed proteins function in cellular processes and metabolic processes. Notably, five of the differentially expressed proteins as SOD1, COL1A1, PRM1, NQO2, and FN1 are involved in sperm migration and sperm maturation. KEGG enrichment analysis demonstrated significant enrichment in several cardiac-related pathways, such as "PI3K-Akt signaling pathway", "AGE-RAGE signaling pathway in diabetic complications", "ECM-receptor interaction", and "Ribosome". Our results suggest that candidate biomarker (SOD1, COL1A1, PRM1, NQO2, and FN1) discovery can aid in understanding sperm development and maturation in sheep. These results provide insights into the potential mechanisms of melatonin regulation of sperm maturation in epididymal caput epithelial cells.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Duan D, Ding Y, Li L, Ma G. Rapid quantitative detection of melatonin by electrochemical sensor based on carbon nanofibers embedded with FeCo alloy nanoparticles. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Zou K, Asiamah CA, Lu LL, Liu Y, Pan Y, Chen T, Zhao Z, Su Y. Ovarian transcriptomic analysis and follicular development of Leizhou black duck. Poult Sci 2020; 99:6173-6187. [PMID: 33142535 PMCID: PMC7647846 DOI: 10.1016/j.psj.2020.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022] Open
Abstract
This study investigated the factors that caused the differences in egg production during the development of ovarian follicles in Leizhou black ducks. Leizhou black ducks population was divided into 2 groups as high-yield group (HG) and low-yield group (LG). The number of eggs (NE), age at first egg (AFE), weight at first egg, and egg weight (EW) of both groups were recorded, and differences were analyzed using the t test. The logistic model was used to simulate the egg production curves to analyze the production rules. The ovarian follicles of both duck groups were collected to count the number of different grades sized follicles, weigh the ovaries, and observe follicular sections to analyze the developmental differences. Ovarian transcriptomic sequencing was performed to investigate differentially expressed genes and signal pathways in both duck groups. The results revealed a significant difference (P < 0.01) in the NE laid, AFE, and EW between both groups. Comparatively, HG had significantly more (P < 0.01) large yellow follicles (LYF) than LG. The density of medullary layer cells of the follicle section was greater in HG than LG ducks. Transcriptome sequencing revealed a total of 1,027 differentially expressed genes between the HG and LG ducks of which 495 genes were upregulated, and 532 genes were downregulated. Fifty genes were related to reproduction and reproductive processes. Kyoto Encyclopedia of Genes and Genomes–enriched signaling pathways revealed 274 signal pathways enriched in these differentially expressed genes of which the steroid biosynthesis pathway was significantly enriched. Analysis (Q < 0.05) showed that HSD3β → gonadotropin-releasing hormone (GnRH) and estrogen receptor (ESR) → LHβ/ERK1/2 were enriched in the steroid biosynthesis signal pathway. Follicle-stimulating hormone signal pathway mediated by HSD3β → GnRH and ESR → LHβ/ERK1/2 may be involved in ovarian follicle development to regulate LYF reserve process and affect its ovulation cycle, which in turn influence the egg production of Leizhou black ducks.
Collapse
Affiliation(s)
- Kun Zou
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | | | - Li-Li Lu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Yuanbo Liu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Yiting Pan
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Tongxin Chen
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China
| | - Zhihui Zhao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China.
| | - Ying Su
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524025, PR China.
| |
Collapse
|
11
|
Sukhorum W, Umka Welbat J, Krutsri S, Iamsaard Comma S. Protective effect of melatonin against methotrexate-induced testicular damage in the rat model: An experimental study. Int J Reprod Biomed 2020; 18:327-338. [PMID: 32637861 PMCID: PMC7306061 DOI: 10.18502/ijrm.v13i5.7153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/22/2019] [Accepted: 11/19/2019] [Indexed: 11/24/2022] Open
Abstract
Background Methotrexate (MTX) has been shown to affect the testes adversely, especially the seminiferous epithelium. As melatonin, an endocrine hormone, has been shown to normalize testicular function, its ability to prevent MTX-induced testicular damage should be considered. Objective Based on the antioxidant, anti-inflammatory, and antiapoptotic activities of melatonin, this study aimed to investigate its protective effect against testicular damage induced by MTX. Materials and Methods Forty adult male rats (200-230 g) were divided into five groups (n = 8/each). The rats in group I were injected with vehicle as a control. In group II, the rats were received intraperitoneal injections of melatonin (8 mg/kg) for 15 consecutive days. The rats in group III were intravenously injected with MTX (75 mg/kg) for 15 consecutive days. The remaining two groups received melatonin (8 mg/kgBW) for 15 (group IV) and 30 (group V) consecutive days, intraperitoneally, and then intravenously received MTX (75 mg/kgBW) on days 8 and 15 of the experimental period. Reproductive parameters, including epididymal sperm concentration, testicular tyrosine-phosphorylated protein expression, steroidogenic acute regulatory (StAR) protein expression, and caspase-3 and malondialdehyde levels, were examined. Results The sperm concentrations ( × 10 6 /ml) of groups IV (58.75 ± 1.28) and V (55.93 ± 2.57) were improved significantly (p = 0.032) compared with that of group II (32.92 ± 2.14). The seminiferous epithelium in groups IV and V also increased, while caspase-3 expression decreased. In the melatonin-treated groups, the expression of tyrosine-phosphorylated proteins at 32 kDa was decreased and that of proteins at 47 kDa was increased compared with the MTX group. StAR protein expression was not altered in any of the groups. Conclusion Our results indicate that melatonin improves the epididymal sperm concentration by decreasing the expression of caspase-3 and increasing that of tyrosine-phosphorylated proteins in MTX-treated testes.
Collapse
Affiliation(s)
- Wannisa Sukhorum
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Suchada Krutsri
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen, Thailand
| | | |
Collapse
|
12
|
D'Occhio MJ, Ghuman SS, Neglia G, Della Valle G, Baruselli PS, Zicarelli L, Visintin JA, Sarkar M, Campanile G. Exogenous and endogenous factors in seasonality of reproduction in buffalo: A review. Theriogenology 2020; 150:186-192. [PMID: 32000994 DOI: 10.1016/j.theriogenology.2020.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022]
Abstract
Seasonal breeding in buffalo is influenced by exogenous (photoperiod, climate, nutrition, management) and endogenous (hormones, genotype) factors. Buffalo are negatively photoperiodic and show a natural increase in fertility during decreasing day length. The hormone melatonin is produced by the pineal gland and has a fundamental role in photoperiodic time measurement within the brain. This drives annual cycles of gonadotropin secretion and gonadal function in buffaloes. Some melatonin is released into the systemic circulation and, together with peripherally produced melatonin, acts at somatic tissues. In the ovaries and testes of buffalo, melatonin acts as an antioxidant and scavenges oxygen free radicals to reduce both oxidative stress and apoptosis. This has beneficial effects on gametogenesis and steroidogenesis. Female buffalo treated with melatonin show an improved response to estrus synchronization protocols in out-of-season breeding. Melatonin acts through melatonin receptors MT1 and MT2 and the gene for MT1 (MTNR1A) is polymorphic in buffaloes. Single nucleotide polymorphisms (SNPs) in gene MTNR1A have been associated with fertility in female buffalo. The knowledge and tools are available to lift the reproductive performance of buffalo. This is highly important as the global demand for nutritious buffalo food products has undergone a sharp rise, and continues to grow. Buffalo can make an important contribution to affordable, nutritious animal protein. This will help address global nutritional security.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarvpreet S Ghuman
- Department of Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Mihir Sarkar
- Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Barros VRP, Monte APO, Santos JMS, Lins TLBG, Cavalcante AYP, Gouveia BB, Müller MC, Oliveira JL, Donfack NJ, Araújo VR, Matos MHT. Melatonin improves development, mitochondrial function and promotes the meiotic resumption of sheep oocytes from in vitro grown secondary follicles. Theriogenology 2019; 144:67-73. [PMID: 31918071 DOI: 10.1016/j.theriogenology.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022]
Abstract
The aim of this study was to evaluate follicular survival and development of ovine isolated secondary follicles cultured in medium containing fixed or sequential concentrations of melatonin and further oocyte maturation. Isolated secondary follicles were cultured for 18 days in α-MEM+ alone (control) or with different concentrations of melatonin (100, 500 or 1000 pg/mL) or sequential concentrations of melatonin (Mel Seq: Day 6 = 100; Day 12 = 500; Day 18 = 1000 pg/mL). The percentages of morphologically normal follicles and antral cavity formation increased significantly in 1000 pg/mL melatonin compared to the other treatments. After 18 days, 1000 pg/mL melatonin (Mel 100) showed a greater (P < 0.05) follicular diameter than α-MEM+, 100 and 500 pg/mL melatonin. In addition, the concentration of 500 pg/mL melatonin showed a higher (P < 0.05) percentage of fully grown oocytes than α-MEM+, Mel 100 and Mel Seq treatments. After oocyte maturation, the levels of ROS were lower (P < 0.05) in 1000 pg/mL melatonin (Mel 1000) than in other treatments. Both Mel 1000 and Mel Seq treatments showed significantly higher levels of mitochondrial activity than other treatments. There were no significant differences between 500 and 1000 pg/mL melatonin regarding meiotic stages. In conclusion, the concentration of 1000 pg/mL melatonin maintains survival, promotes follicular development and increases the levels of active mitochondria after in vitro culture of sheep secondary follicles. Moreover, this concentration promotes the meiotic competence of oocytes and decreases the production of ROS during oocyte maturation.
Collapse
Affiliation(s)
- V R P Barros
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - A P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - J M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - T L B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - A Y P Cavalcante
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - B B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - M C Müller
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - J L Oliveira
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - N J Donfack
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - V R Araújo
- Health Center Science, State University of Ceará, 60714-903, Fortaleza, CE, Brazil
| | - M H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil.
| |
Collapse
|