1
|
Jiang L, Lyu S, Yu H, Zhang J, Sun B, Liu Q, Mao X, Chen P, Pan D, Chen W, Fan Z, Li C. Transcription factor encoding gene OsC1 regulates leaf sheath color through anthocyanidin metabolism in Oryza rufipogon and Oryza sativa. BMC PLANT BIOLOGY 2024; 24:147. [PMID: 38418937 PMCID: PMC10900563 DOI: 10.1186/s12870-024-04823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Carbohydrates, proteins, lipids, minerals and vitamins are nutrient substances commonly seen in rice grains, but anthocyanidin, with benefit for plant growth and animal health, exists mainly in the common wild rice but hardly in the cultivated rice. To screen the rice germplasm with high intensity of anthocyanidins and identify the variations, we used metabolomics technique and detected significant different accumulation of anthocyanidins in common wild rice (Oryza rufipogon, with purple leaf sheath) and cultivated rice (Oryza sativa, with green leaf sheath). In this study, we identified and characterized a well-known MYB transcription factor, OsC1, through phenotypic (leaf sheath color) and metabolic (metabolite profiling) genome-wide association studies (pGWAS and mGWAS) in 160 common wild rice (O. rufipogon) and 151 cultivated (O. sativa) rice varieties. Transgenic experiments demonstrated that biosynthesis and accumulation of cyanidin-3-Galc, cyanidin 3-O-rutinoside and cyanidin O-syringic acid, as well as purple pigmentation in leaf sheath were regulated by OsC1. A total of 25 sequence variations of OsC1 constructed 16 functional haplotypes (higher accumulation of the three anthocyanidin types within purple leaf sheath) and 9 non-functional haplotypes (less accumulation of anthocyanidins within green leaf sheath). Three haplotypes of OsC1 were newly identified in our germplasm, which have potential values in functional genomics and molecular breeding of rice. Gene-to-metabolite analysis by mGWAS and pGWAS provides a useful and efficient tool for functional gene identification and omics-based crop genetic improvement.
Collapse
Affiliation(s)
- Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Shuwei Lyu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Dajian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
| |
Collapse
|
2
|
Liu X, Jiang X, Zhang J, Ye H, Shen M, Wu L, Miao Y, Chen L, Zhou K, Hao M, Jiang B, Huang L, Ning S, Chen X, Chen X, Liu D, Zhang L. Molecular cytogenetic identification and nutritional composition evaluation of newly synthesized Triticum turgidum- Triticum boeoticum amphiploids (AABBA bA b). FRONTIERS IN PLANT SCIENCE 2023; 14:1285847. [PMID: 38143580 PMCID: PMC10748598 DOI: 10.3389/fpls.2023.1285847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Triticum boeoticum Boiss. (AbAb, 2n = 2x = 14) is a wheat-related species with the blue aleurone trait. In this study, 18 synthetic Triticum turgidum-Triticum boeoticum amphiploids were identified, which were derived from crosses between T. boeoticum and T. turgidum. Three probes (Oligo-pTa535, Oligo-pSc119.2, and Oligo-pTa713) for multicolor fluorescence in situ hybridization (mc-FISH) were combined with genomic in situ hybridization (GISH) to identify chromosomal composition. Seven nutritional indices (anthocyanins, protein, total essential amino acids TEAA, Fe, Zn, Mn and Cu) were measured, and the nutritional components of 18 synthetic amphiploids were comprehensively ranked by principal component analysis (PCA). The results showed that all three synthetic amphiploids used for cytological identification contained 42 chromosomes, including 14 A, 14 B, and 14 Ab chromosomes. The average anthocyanin content was 82.830 μg/g to 207.606 μg/g in the whole meal of the 17 blue-grained lines (Syn-ABAb-1 to Syn-ABAb-17), which was obviously higher than that in the yellow-grained line Syn-ABAb-18 (6.346 μg/g). The crude protein content was between 154.406 and 180.517 g/kg, and the EAA content was 40.193-63.558 mg/g. The Fe, Zn, Mn and Cu levels in the 17 blue-grained lines were 60.55 to 97.41 mg/kg, 60.55-97.41 mg/kg, 35.11 to 65.20 mg/kg and 5.74 to 7.22 mg/kg, respectively, which were higher than those in the yellow-grained line. The contribution of the first three principal components reached 84%. The first principal component was mainly anthocyanins, Fe, Zn and Mn. The second principal component contained protein and amino acids, and the third component contained only Cu. The top 5 Triticum turgidum-Triticum boeoticum amphiploids were Syn-ABAb-11, Syn-ABAb-17, Syn-ABAb-5, Syn-ABAb-8 and Syn-ABAb-4. These amphidiploids exhibited the potential to serve as candidates for hybridization with common wheat, as indicated by comprehensive score rankings, toward enhancing the nutritional quality of wheat.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mang Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongping Miao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Longyu Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Fragoso-Medina JA, López Vaquera SR, Domínguez-Uscanga A, Luna-Vital D, García N. Single anthocyanins effectiveness modulating inflammation markers in obesity: dosage and matrix composition analysis. Front Nutr 2023; 10:1255518. [PMID: 38024376 PMCID: PMC10651755 DOI: 10.3389/fnut.2023.1255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Anthocyanins (ACNs) are phytochemicals with numerous bioactivities, e.g., antioxidant and anti-inflammatory. Health benefits from consuming ACN-rich foods, extracts, and supplements have been studied in clinical trials (CT). However, the individual effect of single ACNs and their correlation with doses and specific bioactivities or molecular targets have not been thoroughly analyzed. This review shows a recompilation of single anthocyanins composition and concentrations used in CT, conducted to investigate the effect of these anti-inflammatory derivatives in obese condition. Single anthocyanin doses with changes in the levels of frequently monitored markers were correlated. In addition, the analysis was complemented with reports of studies made in vitro with single ACNs. Anthocyanins' efficacy in diseases with high baseline obesity-related inflammation markers was evidenced. A poor correlation was found between most single anthocyanin doses and level changes of commonly monitored markers. Correlations between cyanidin, delphinidin, and pelargonidin derivatives and specific molecular targets were proposed. Our analysis showed that knowledge of specific compositions and anthocyanin concentrations determined in future studies would provide more information about mechanisms of action.
Collapse
Affiliation(s)
- Jorge Alberto Fragoso-Medina
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Selma Romina López Vaquera
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Astrid Domínguez-Uscanga
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Diego Luna-Vital
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Preclinical Research Unit, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
4
|
Charles M, Edwards B, Ravishankar E, Calero J, Henry R, Rech J, Saravitz C, You W, Ade H, O’Connor B, Sederoff H. Emergent molecular traits of lettuce and tomato grown under wavelength-selective solar cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1087707. [PMID: 36909444 PMCID: PMC9999377 DOI: 10.3389/fpls.2023.1087707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The integration of semi-transparent organic solar cells (ST-OSCs) in greenhouses offers new agrivoltaic opportunities to meet the growing demands for sustainable food production. The tailored absorption/transmission spectra of ST-OSCs impacts the power generated as well as crop growth, development and responses to the biotic and abiotic environments. To characterize crop responses to ST-OSCs, we grew lettuce and tomato, traditional greenhouse crops, under three ST-OSC filters that create different light spectra. Lettuce yield and early tomato development are not negatively affected by the modified light environment. Our genomic analysis reveals that lettuce production exhibits beneficial traits involving nutrient content and nitrogen utilization while select ST-OSCs impact regulation of flowering initiation in tomato. These results suggest that ST-OSCs integrated into greenhouses are not only a promising technology for energy-neutral, sustainable and climate-change protected crop production, but can deliver benefits beyond energy considerations.
Collapse
Affiliation(s)
- Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Eshwar Ravishankar
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - John Calero
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Reece Henry
- Department of Physics and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - Jeromy Rech
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States
| | - Carole Saravitz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - Brendan O’Connor
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
5
|
Szewczuk NA, Duchowicz PR, Pomilio AB, Lobayan RM. Resonance structure contributions, flexibility, and frontier molecular orbitals (HOMO-LUMO) of pelargonidin, cyanidin, and delphinidin throughout the conformational space: application to antioxidant and antimutagenic activities. J Mol Model 2022; 29:2. [PMID: 36480114 DOI: 10.1007/s00894-022-05392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
This research refers to the study and understanding of the conformational space of the positive-charged anthocyanidin structures in relation with the known chemical reactivities and bioactivities of these compounds. Therefore, the planar (P) and nonplanar (Z) conformers of the three hydroxylated anthocyanidins pelargonidin, cyanidin, and delphinidin were analyzed throughout the conformational space at the B3LYP/6-311 ++ G** level of theory. The outcome displayed eleven new conformers for pelargonidin, fifty-four for cyanidin, and thirty-one for delphinidin. Positive-charged quinoidal structures showed a significant statistical weight in the conformational space, thus coexisting simultaneously with other resonance structures, such that under certain reaction conditions, the anthocyanidins behave as positive-charged quinoidal structures instead of oxonium salts. The calculations of the permanent dipole moment and the polarizability showed relationships with the quantity and arrangement of hydroxyls in the structure. In addition, theoretical calculations were used to analyze the frontier molecular orbitals (HOMO-LUMO) of the three anthocyanidins. The novel conception of this work lies in the fact that dipole moment, polarizability, and HOMO-LUMO values were related to the reactivity/bioactivity of these three anthocyanidins. HOMO-LUMO energy gaps were useful to explain the antioxidant activity, while the percent atom contributions to HOMO were appropriate to demonstrate the antimutagenic activity as enzyme inhibitors, as well as the steric and electrostatic requirements to form the pharmacophore. Delphinidin was the strongest antioxidant anthocyanidin, and pelargonidin the best anthocyanidin with antimutagenic activity.
Collapse
Affiliation(s)
- Nicolas A Szewczuk
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Universidad Nacional de La Plata (UNLP), Diag. 113 Y 64, C.C. 16, Sucursal 4, B1900, La Plata, Argentina
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Universidad Nacional de La Plata (UNLP), Diag. 113 Y 64, C.C. 16, Sucursal 4, B1900, La Plata, Argentina
| | - Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF, Buenos Aires, Argentina
| | - Rosana M Lobayan
- Departamento de Física, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5300, 3400, Corrientes, Argentina.
| |
Collapse
|
6
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
7
|
Wu CF, Wu CY, Lin CF, Liu YW, Lin TC, Liao HJ, Chang GR. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed Pharmacother 2022; 151:113128. [PMID: 35609368 DOI: 10.1016/j.biopha.2022.113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The haskap (Lonicera caerulea L., Caprifoliaceae) berry has been widely used in traditional medicine in Kuril Islands, Russia, Japan, and China. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin in haskap berries, and C3G induces antiproliferative pharmacological activity in various cancer cells. However, no study has investigated its anti-lung large-cell carcinoma (LCC) pharmacological role. Therefore, this study determined whether C3G alone or C3G combined with 5-fluorouracil (5-FU) inhibits human lung LCC. We determined the tumor growth, apoptosis, inflammation, and metastasis in the H661 lung LCC lines xenografted into BALB/c nude mice. The mice were administered saline (control), 5-FU, C3G, or both C3G and 5-FU. Relative to the control mice, those treated with C3G alone or both C3G and 5-FU exhibited impaired tumor growth; increased tumor apoptosis; decreased inflammatory cytokine levels (e.g., IL-1β, TNF-α, C-reactive protein, and IL-6); decreased inflammation-related factors, including cyclooxygenase-2 protein and nuclear factor-κB (NF-κB) mRNA; increased inhibition of NF-κB kinase α mRNA; and downregulated metastasis-related factors, such as transforming growth factor-β, CD44, epidermal growth factor receptor, and vascular endothelial growth factor. In addition, C3G alone or combined with 5-FU affected the expression of the tumor microenvironment-related factors Ki67, CD45, PDL1, and CD73. Compared with the mice treated with 5-FU or C3G alone, those treated with both C3G and 5-FU exhibited significantly impaired tumor growth, decreased tumor sizes, and increased tumor inhibition. This in vivo study demonstrated that C3G alone or combined with 5-FU may impair the growth of lung LCC and inhibit tumorigenesis. The findings indicate that C3G alone or C3G combined with 5-FU may be beneficial for treating human lung LCC.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan.
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| |
Collapse
|
8
|
Garg M, Kaur S, Sharma A, Kumari A, Tiwari V, Sharma S, Kapoor P, Sheoran B, Goyal A, Krishania M. Rising Demand for Healthy Foods-Anthocyanin Biofortified Colored Wheat Is a New Research Trend. Front Nutr 2022; 9:878221. [PMID: 35634383 PMCID: PMC9131936 DOI: 10.3389/fnut.2022.878221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Wheat is a vital and preferred energy source in many parts of the world. Its unique processing quality helps prepare many products such as bread, biscuit, pasta, and noodles. In the world of rapid economic growth, food security, in terms of nutritional profile, began to receive more significant interest. The development of biofortified colored wheat (black, purple, and blue) adds nutritional and functional health benefits to the energy-rich wheat. Colored wheat exists in three forms, purple, blue, and black, depending upon the types and position of the anthocyanins in wheat layers, regulated by the bHLH-MYC transcription factor. Colored wheat lines with high anthocyanin, iron, and zinc contents showed antioxidant and anti-inflammatory activity and possessed desirable product-making and commercial utilization features. The anthocyanin in colored wheat also has a broad spectrum of health implications, such as protection against metabolic syndromes like obesity, diabetes, hypertension, and dyslipidemia. The idea of developing anthocyanin-biofortified wheat shapes human beings' lifestyles as it is a staple food crop in many parts of the world. This review is a compilation of the currently available information on colored wheat in the critical aspects, including biochemistry, food processing, nutrition, genetics, breeding, and its effect on human health. Market generation and consumer awareness creation are vital challenges for its exploitation as a function food on a large scale.
Collapse
Affiliation(s)
- Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Anjali Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Vandita Tiwari
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Saloni Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Bhawna Sheoran
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Ajay Goyal
- Chitkara University School of Engineering & Technology, Chitkara University, Solan, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, India
| |
Collapse
|
9
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
10
|
Willems MET, Blacker SD. Anthocyanin-Rich Supplementation: Emerging Evidence of Strong Potential for Sport and Exercise Nutrition. Front Nutr 2022; 9:864323. [PMID: 35433792 PMCID: PMC9009509 DOI: 10.3389/fnut.2022.864323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dark-colored fruits, especially berries, have abundant presence of the polyphenol anthocyanin which have been show to provide health benefits. Studies with the berry blackcurrant have provided notable observations with application for athletes and physically active individuals. Alterations in exercise-induced substrate oxidation, exercise performance of repeated high-intensity running and cycling time-trial and cardiovascular function at rest and during exercise were observed with intake of New Zealand blackcurrant. The dynamic plasma bioavailability of the blackcurrant anthocyanins and the anthocyanin-derived metabolites must have changed cell function to provide meaningful in-vivo physiological effects. This perspective will reflect on the research studies for obtaining the applied in-vivo effects by intake of anthocyanin-rich supplementation, the issue of individual responses, and the emerging strong potential of anthocyanins for sport and exercise nutrition. Future work with repeated intake of known amount and type of anthocyanins, gut microbiota handling of anthocyanins, and coinciding measurements of plasma anthocyanin and anthocyanin-derived metabolites and in-vivo cell function will be required to inform our understanding for the unique potential of anthocyanins as a nutritional ergogenic aid for delivering meaningful effects for a wide range of athletes and physically active individuals.
Collapse
|
11
|
Golubev D, Zemskaya N, Shevchenko O, Shaposhnikov M, Kukuman D, Patov S, Punegov V, Moskalev A. Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology 2022; 23:215-235. [PMID: 35122571 DOI: 10.1007/s10522-022-09954-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Honeysuckle Lonicera pallasii (Lonicera caerulea L.) is an excellent source of anthocyanins which have a number of health-promoting properties mainly associated with antioxidant and anti-inflammatory activities. Cyanidin-3-O-glucoside (C3G) is one of the most common anthocyanins naturally found in honeysuckle. The goal of the present study was to investigate antioxidant and anti-aging properties of Lonicera pallasii (Lonicera caerulea L.) extract (LE) and C3G using red blood cells (RBC) and Drosophila melanogaster models. LE and C3G treatment at a concentration of 100 μM induced enhancement of median and maximum lifespan up to 8%. LE and C3G supplementation at a concentration of 100 μM increased stress resistance up to 10%. The locomotor activity decreased during LE and C3G treatment in 4 and 6 weeks up to 52% in females. The integrity of the intestinal barrier was increased by 4% after LE treatment. These effects were accompanied by increased expression of Hif1 (pro-longevity gene) in response to C3G treatment and decreased expression of Keap1 (anti-longevity gene) after C3G and LE supplementation. RNA interference-mediated knockdown of Sirt6 completely abolished the positive effect obtained of LE and C3G supplementation in males which indicates that lifespan-extending effect is associated with Sirt6 activation. The experiments on the various in-vitro models (including radical scavenging activity and oxidative hemolysis of RBC demonstrated antioxidant and membrane-protective activities of LE and C3G. The present study indicates that Lonicera extract can prolong the lifespan and improve the healthspan of Drosophila model through biological and antioxidant activities.
Collapse
Affiliation(s)
- Denis Golubev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Oksana Shevchenko
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Daria Kukuman
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Sergey Patov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Vasily Punegov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
12
|
Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research Progress of the Role of Anthocyanins on Bone Regeneration. Front Pharmacol 2021; 12:773660. [PMID: 34776985 PMCID: PMC8585783 DOI: 10.3389/fphar.2021.773660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Bone regeneration in osteoporosis and fragility fractures which are highly associated with age remains a great challenge in the orthopedic field, even though the bone is subjected to a continuous process of remodeling which persists throughout lifelong. Regulation of osteoblast and osteoclast differentiation is recognized as effective therapeutic targets to accelerate bone regeneration in osteopenic conditions. Anthocyanins (ACNs), a class of naturally occurring compounds obtained from colored plants, have received increasing attention recently because of their well-documented biological effects, such as antioxidant, anti-inflammation, and anti-apoptosis in chronic diseases, like osteoporosis. Here, we summarized the detailed research progress on ACNs on bone regeneration and their molecular mechanisms on promoting osteoblast differentiation as well as inhibiting osteoclast formation and differentiation to explore their promising therapeutic application in repressing bone loss and helping fragility fracture healing. Better understanding the role and mechanisms of ACNs on bone regeneration is helpful for the prevention or treatment of osteoporosis and also for the exploration of new bone regenerative medicine.
Collapse
Affiliation(s)
- Wei Mao
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guowei Huang
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. FRONTIERS IN PLANT SCIENCE 2021; 12:748049. [PMID: 34777426 PMCID: PMC8580863 DOI: 10.3389/fpls.2021.748049] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 05/09/2023]
Abstract
Anthocyanins represent the major red, purple, and blue pigments in many flowers, fruits, vegetables, and cereals. They are also recognized as important health-promoting components in the human diet with protective effects against many chronic diseases, including cardiovascular diseases, obesity, and cancer. Anthocyanin biosynthesis has been studied extensively, and both biosynthetic and key regulatory genes have been isolated in many plant species. Here, we will provide an overview of recent progress in understanding the anthocyanin biosynthetic pathway in plants, focusing on the transcription factors controlling activation or repression of anthocyanin accumulation in cereals and fruits of different plant species, with special emphasis on the differences in molecular mechanisms between monocot and dicot plants. Recently, new insight into the transcriptional regulation of the anthocyanin biosynthesis, including positive and negative feedback control as well as epigenetic and post-translational regulation of MYB-bHLH-WD40 complexes, has been gained. We will consider how knowledge of regulatory mechanisms has helped to produce anthocyanin-enriched foods through conventional breeding and metabolic engineering. Additionally, we will briefly discuss the biological activities of anthocyanins as components of the human diet and recent findings demonstrating the important health benefits of anthocyanin-rich foods against chronic diseases.
Collapse
|
14
|
Mustafa AM, Angeloni S, Abouelenein D, Acquaticci L, Xiao J, Sagratini G, Maggi F, Vittori S, Caprioli G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem 2021; 367:130743. [PMID: 34384982 DOI: 10.1016/j.foodchem.2021.130743] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Berry fruits consumption has increased in recent years because they are rich sources of polyphenols with reported health benefits. The aim of the present work was to develop a new comprehensive and fast HPLC-MS/MS method for simultaneous determination of 36 phenolic compounds (7 anthocyanins, 9 flavonols, 4 flavan-3-ols, 2 dihydrochalcones, 2 flavanones and 12 phenolic acids) present in blueberry, strawberry, and their fruit jam. Blueberry fruits showed higher contents of anthocyanins, flavonols and phenolic acids, while strawberry fruits exhibited higher contents of flavan-3-ols, dihydrochalcones and flavanones. Anthocyanins were the main phenolic constituents in both berries. Furthermore, the higher total phenolic content in the blueberry fruit and jam justified their greater antioxidant capacity measured by DPPH free radical assay, compared to strawberry. In conclusion, this new HPLC-MS/MS method is useful and reliable for quality control and authentication analyses of blueberry and strawberry fruits and their commercial food products, such as jams.
Collapse
Affiliation(s)
- Ahmed M Mustafa
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; RICH - Research and Innovation Coffee Hub, Via E. Betti 1, 62020 Belforte del Chienti, MC, Italy
| | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Laura Acquaticci
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | - Jianbo Xiao
- Faculty of Food Science and Technology, University of Vigo, Spain
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
15
|
Bianconi M, Ceriotti L, Cuzzocrea S, Esposito E, Pressi G, Sgaravatti E, Bertaiola O, Guarnerio C, Barbieri E, Semenzato A, Negri S, Commisso M, Avesani L, Guzzo F. Red Carrot Cells Cultured in vitro Are Effective, Stable, and Safe Ingredients for Skin Care, Nutraceutical, and Food Applications. Front Bioeng Biotechnol 2020; 8:575079. [PMID: 33195137 PMCID: PMC7609948 DOI: 10.3389/fbioe.2020.575079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Plant biomasses growing in bioreactor could be developed as production systems for cosmetic ingredients, nutraceuticals and food additives. We previously reported that the red carrot cell line R4G accumulates high levels of anthocyanins, which are potent antioxidants with multiple health-promoting properties. To investigate the industrial potential of this cell line in detail, we tested extract for antioxidant and anti-inflammatory activity in the mouse monocyte/macrophage cell-line J774A.1 and in reconstructed skin tissue models. We also compared the R4G extract to commercial carrot extracts in terms of stability and metabolomic profiles. We found that the R4G extract have potent antioxidant and anti-inflammatory activities, protecting mammalian cells from the oxidative stress triggered by exposure to bacterial lipopolysaccharides and H2O2. The extract also inhibited the nuclear translocation of NF-κB in an epidermal skin model, and induced the expression of VEGF-A to promote the microcirculation in a dermal microtissue model. The anthocyanins extracted from R4G cells were significantly more stable than those found in natural red carrot extracts. Finally, we showed that R4G extract has similar metabolomic profile of natural extracts by using a combination of targeted and untargeted metabolomics analysis, demonstrating the safety of R4G carrot cells for applications in the nutraceutical and food/feed industries.
Collapse
Affiliation(s)
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | | | | | | | - Alessandra Semenzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Negri
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Bracone F, De Curtis A, Di Castelnuovo A, Pilu R, Boccardi M, Cilla S, Macchia G, Deodato F, Costanzo S, Iacoviello L, de Gaetano G, Morganti AG, Petroni K, Tonelli C, Donati MB, Cerletti C. Skin toxicity following radiotherapy in patients with breast carcinoma: is anthocyanin supplementation beneficial? Clin Nutr 2020; 40:2068-2077. [PMID: 33051045 DOI: 10.1016/j.clnu.2020.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The EU-supported ATHENA project stems from a previous study suggesting that moderate wine consumption reduced the side-effects of radiotherapy (RT) in breast cancer patients, an effect possibly due to non-alcoholic anthocyanin fractions of wine. OBJECTIVE To evaluate the role of anthocyanins on RT skin side effects in breast cancer patients. METHODS Randomized, controlled, double-blind clinical trial. Patients were assigned to an intensity modulated radiation therapy (IMRT) either for three or five weeks, then randomized to receive three times a day a water-soluble anthocyanin (125 mg)-rich extract of corn cob or a placebo. Supplementation started one week before till the end of RT. Skin characteristics were detected by a standardized, non-invasive Cutometer® dual-MPA580, providing quantitative indices of skin maximal distensibility (R0), elasticity (R2, R5, R7) and viscoelasticity (R6); a Mexameter® MX18 probe evaluated the skin erythema (Er) and melanin (M). Measures were performed before (T0), at the end of RT and of supplementation (T1), and 1, 6 and 12 months after RT (T2-T4). Acute and late skin toxicity were scored according to the RTOG/EORTG scale. Selected biomarkers were measured at T0 and T1. RESULTS 193 patients previously assigned to 3- or 5-week RT schedules were randomized to either anthocyanin (97) or placebo (96) supplementation. RT induced changes in skin parameters: R0, R2, R5 and R7 decreased, while R6 increased; the changes in R0 and R6 continued in the same direction up to one year, while the others recovered towards basal values; Er and M peaked at T1 and T2, respectively, and returned to basal values at T4. Comparable skin changes were apparent in anthocyanin and placebo groups. A moderate RT-induced increase in total and HDL cholesterol and triglycerides was prevented by anthocyanins. CONCLUSIONS Anthocyanin supplementation did not prevent RT-induced local skin toxicity. The supplementation was well tolerated and safe.
Collapse
Affiliation(s)
- Francesca Bracone
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Roberto Pilu
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milano, Italy
| | | | - Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital Campobasso, Italy
| | | | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Alessio Giuseppe Morganti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Katia Petroni
- Department of Bioscience, Università degli Studi di Milano, Milano, Italy
| | - Chiara Tonelli
- Department of Bioscience, Università degli Studi di Milano, Milano, Italy
| | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy.
| | | |
Collapse
|
17
|
Tan LQ, Yang CJ, Zhou B, Wang LB, Zou Y, Chen W, Xia T, Tang Q. Inheritance and quantitative trait loci analyses of the anthocyanins and catechins of Camellia sinensis cultivar 'Ziyan' with dark-purple leaves. PHYSIOLOGIA PLANTARUM 2020; 170:109-119. [PMID: 32333383 DOI: 10.1111/ppl.13114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Owing to the potential health benefits, anthocyanin-rich teas (Camellia sinensis) have attracted interest over the past decade. Previously, we developed the cultivar 'Ziyan,' which has dark-purple leaves because of the accumulation of a high amount of anthocyanins. In this study, we performed a genetic analysis of this anthocyanin-rich tea cultivar and 176 of its naturally pollinated offspring. For two consecutive years, we quantified the anthocyanins and catechins of 'Ziyan' and the offspring population. While >60% of the offspring accumulated less than half of the amount of anthocyanins of 'Ziyan,' 17 (2018) and 15 (2019) individuals exceeded 'Ziyan' in anthocyanin content. A negative correlation between anthocyanin and total catechin content (r = -0.59, P < 0.001) was observed. The population was genotyped with 131 SSR markers spanning all linkage groups of the C. sinensis genome. Kruskal-Wallis tests identified 10 markers significantly associated with anthocyanins, catechins and their ratios in both years. Quantitative trait locus (QTL) analyses using the interval mapping method detected 13 QTLs, suggesting the dark-purple trait of 'Ziyan' is because of the pyramiding of anthocyanin-promoting alleles on at least five linkage groups. Two genetic loci reversely related to anthocyanin and total catechin contents were identified. This study provides valuable information for genetic improvement of purple tea cultivars and for fine-mapping related genes.
Collapse
Affiliation(s)
- Li-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chun-Jing Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liu-Bin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
18
|
Saclier M, Bonfanti C, Antonini S, Angelini G, Mura G, Zanaglio F, Taglietti V, Romanello V, Sandri M, Tonelli C, Petroni K, Cassano M, Messina G. Nutritional intervention with cyanidin hinders the progression of muscular dystrophy. Cell Death Dis 2020; 11:127. [PMID: 32071288 PMCID: PMC7028923 DOI: 10.1038/s41419-020-2332-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Muscular Dystrophies are severe genetic diseases due to mutations in structural genes, characterized by progressive muscle wasting that compromises patients' mobility and respiratory functions. Literature underlined oxidative stress and inflammation as key drivers of these pathologies. Interestingly among different myofiber classes, type I fibers display a milder dystrophic phenotype showing increased oxidative metabolism. This work shows the benefits of a cyanidin-enriched diet, that promotes muscle fiber-type switch and reduced inflammation in dystrophic alpha-sarcoglyan (Sgca) null mice having, as a net outcome, morphological and functional rescue. Notably, this benefit is achieved also when the diet is administered in dystrophic animals when the signs of the disease are seriously evident. Our work provides compelling evidence that a cyanidin-rich diet strongly delays the progression of muscular dystrophies, paving the way for a combinatorial approach where nutritional-based reduction of muscle inflammation and oxidative stress facilitate the successful perspectives of definitive treatments.
Collapse
Affiliation(s)
- Marielle Saclier
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Stefania Antonini
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Giuseppe Angelini
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Federica Zanaglio
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Valentina Taglietti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Tonelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Katia Petroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Marco Cassano
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
19
|
Caplliure‐Llopis J, Peralta‐Chamba T, Carrera‐Juliá S, Cuerda‐Ballester M, Drehmer‐Rieger E, López‐Rodriguez MM, de la Rubia Ortí JE. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci Nutr 2020; 8:23-35. [PMID: 31993129 PMCID: PMC6977418 DOI: 10.1002/fsn3.1324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease which is pathogenically based on the mitochondrial alteration of motor neurons, causing progressive neuron death. While ALS is characterized by enormous oxidative stress, the Mediterranean diet has been seen to have high antioxidant power. Therefore, the aim of this study is to determine how the Mediterranean diet can improve mitochondrial activity, establishing the specific nutrients and, in addition, observing the pathogenic mechanisms related to the disease that would achieve this improvement. To this end, a comprehensive review of the literature was performed using PubMed. KBs have been observed to have a neuroprotective effect to improve energy balance, increasing survival and the number of motor neurons. This ketogenesis can be achieved after following a Mediterranean diet which is associated with great benefits in other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and ALS. These benefits are due to the high antioxidant power especially based on polyphenols contained mainly in olive oil, wine, nuts, or berries. In short, KBs could be considered as a promising option to treat ALS, representing an alternative source to glucose in motor neurons by providing neuroprotection. In addition, treatment results can be improved as ketogenesis can be achieved (increase in KBs) by following a Mediterranean diet, thanks to the high antioxidant properties which, at the same time, would improve the high oxidative stress that characterizes the disease.
Collapse
Affiliation(s)
- Jordi Caplliure‐Llopis
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- University Hospital la RiberaAlziraSpain
| | | | - Sandra Carrera‐Juliá
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- Faculty of Medicine and OdontologyCatholic. University of ValenciaValenciaSpain
| | | | - Eraci Drehmer‐Rieger
- Department of Health and Functional ValorizationCatholic University of ValenciaValenciaSpain
| | | | | |
Collapse
|
20
|
Raut N, Wicks SM, Lawal TO, Mahady GB. Epigenetic regulation of bone remodeling by natural compounds. Pharmacol Res 2019; 147:104350. [PMID: 31315065 PMCID: PMC6733678 DOI: 10.1016/j.phrs.2019.104350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
Osteoporosis and osteopenia impact more than 54 million Americans, resulting in significant morbidity and mortality. Alterations in bone remodeling are the hallmarks for osteoporosis, and thus the development of novel treatments that will prevent or treat bone diseases would be clinically significant, and improve the quality of life for these patients. Bone remodeling involves the removal of old bone by osteoclasts and the formation of new bone by osteoblasts. This process is tightly coupled, and is essential for the maintenance of bone strength and integrity. Since the osteoclast is the only cell capable of bone resorption, the development of drugs to treat bone disorders has primarily focused on reducing osteoclast differentiation, maturation, and bone resorption mechanisms, and there are few treatments that actually increase bone formation. Evidence from observational, experimental, and clinical studies demonstrate a positive link between naturally occurring compounds and improved indices of bone health. While many natural extracts and compounds are reported to have beneficial effects on bone, only resveratrol, sulforaphane, specific phenolic acids and anthocyanins, have been shown to both increase bone formation and reduce resorption through their effects on the bone epigenome. Each of these compounds alters specific aspects of the bone epigenome to improve osteoblast differentiation, reduce osteoblast apoptosis, improve bone mineralization, and reduce osteoclast differentiation and function. This review focuses on these specific natural compounds and their epigenetic regulation of bone remodeling.
Collapse
Affiliation(s)
- Nishikant Raut
- Department of Pharmacy Practice, College of Pharmacy, WHO/PAHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, USA; Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sheila M Wicks
- Department of Cellular and Molecular Medicine, Rush University, Chicago, IL 60612, USA
| | - Tempitope O Lawal
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Gail B Mahady
- Department of Pharmacy Practice, College of Pharmacy, WHO/PAHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, USA.
| |
Collapse
|
21
|
Tomay F, Marinelli A, Leoni V, Caccia C, Matros A, Mock HP, Tonelli C, Petroni K. Purple corn extract induces long-lasting reprogramming and M2 phenotypic switch of adipose tissue macrophages in obese mice. J Transl Med 2019; 17:237. [PMID: 31337415 PMCID: PMC6651915 DOI: 10.1186/s12967-019-1972-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background Obesity is a chronic and systemic inflammatory disorder and an important risk factor for the onset of several chronic syndromes. Adipose tissue (AT) plays a crucial role in the development of obesity, promoting the infiltration and accumulation of leukocytes in the tissue and sustaining adipocyte expansion. Anthocyanins exert a broad range of health benefits, but their effect in improving obesity-related inflammation in vivo has been poorly characterized. We examined the effects of a purple corn cob extract in the context of AT inflammation in a murine diet-induced obesity (DIO) model. Methods Male C57BL/6J mice were subjected to control diet (CTR + H2O), high fat diet (HF + H2O) or high fat diet plus purple corn extract (HF + RED) for 12 weeks. Blood glucose, AT, and liver gene expression, metabolism, biochemistry, and histology were analysed and flow cytometry was performed on AT leukocytes and Kupffer cells. Results RED extract intake resulted in lower MCP-1 mediated recruitment and proliferation of macrophages into crown-like structures in the AT. AT macrophages (ATM) of HF + RED group upregulated M2 markers (ArgI, Fizz1, TGFβ), downregulating inflammatory mediators (TNF-α, IL-6, IL-1β, COX-2) thanks to the suppression of NF-kB signalling. ATM also increased the expression of iron metabolism-related genes (FABP4, Hmox1, Ferroportin, CD163, TfR1, Ceruloplasmin, FtL1, FtH1) associated with a reduction in iron storage and increased turnover. ATM from HF + RED mice did not respond to LPS treatment ex vivo, confirming the long-lasting effects of the treatment on M2 polarization. Adipocytes of HF + RED group improved lipid metabolism and displayed a lower inflammation grade. Liver histology revealed a remarkable reduction of steatosis in the HF + RED group, and Kupffer cell profiling displayed a marked switch towards the M2 phenotype. Conclusions RED extract attenuated AT inflammation in vivo, with a long-lasting reprogramming of ATM and adipocyte profiles towards the anti-inflammatory phenotype, therefore representing a valuable supplement in the context of obesity-associated disorders. Electronic supplementary material The online version of this article (10.1186/s12967-019-1972-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Tomay
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Laboratory of Clinical Pathology and Human Genetics, Foundation IRCCS Carlo Besta, Milan, Italy
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
22
|
Liu H, Zhao H, Lyu L, Huang Z, Fan S, Wu W, Li W. Synergistic effect of natural antifungal agents for postharvest diseases of blackberry fruits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3343-3349. [PMID: 30578531 DOI: 10.1002/jsfa.9551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Blackberry postharvest diseases are caused by fungal pathogens, and treatment of fruits with edible, natural products could reduce the postharvest losses and contribute to food sustainability. Based on the hypothesis that inhibition of fungal pathogens will significantly extend the shelf-life of food products, the effects of natural antifungal agents on fungal pathogens were tested. RESULTS Two pathogenic fungal isolates, Aspergillus japonicus and Gilbertella persicaria, from infected blackberry fruits were identified morphologically using scanning electron microscopy and confirmed by DNA sequence analysis. The inhibitory effects and synergistic action of natural antifungal agents against the two fungal isolates were investigated. The results obtained demonstrated that the natamycin, chitosan and ferulic acid exhibited significant antifungal activities against the tested strains based on the calculated minimum inhibitory concentration. The best antifungal activity was obtained using a combination of ferulic acid and natamycin, which generated a total synergistic effect on both tested strains with a fractional inhibitory concentration index of 0.281. Application of the selected agents on postharvest blackberry fruits reduced the rot ratio and weight loss and also increased fruit firmness. In addition, the shelf-life of fresh blackberry fruits was extended up to 12-15 days at 4 °C and 90 ± 5% relative humidity. CONCLUSION The combined utilization of ferulic acid and natamycin showed synergistic antifungal activity against two pathogenic fungal isolates, and extended the shelf life of fresh blackberry fruits up to 12-15 days. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxia Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Huifang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhengjin Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sufan Fan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weilin Li
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
23
|
Del Bo' C, Marino M, Riso P, Møller P, Porrini M. Anthocyanins and metabolites resolve TNF-α-mediated production of E-selectin and adhesion of monocytes to endothelial cells. Chem Biol Interact 2019; 300:49-55. [PMID: 30611791 DOI: 10.1016/j.cbi.2019.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
This study investigated the capacity of an anthocyanin-rich fraction (ACN-RF) from blueberry, single anthocyanins (cyanidin, delphinidin and malvidin-3-glucoside; Cy, Dp and Mv-3-glc) and related metabolites (protocatechuic, gallic and syringic acid; PrA, GA and SA) to resolve an inflammation-driven adhesion of monocytes (THP-1) on endothelial cell (HUVECs) and secretion of cell adhesion molecules E-selectin and vascular cell adhesion molecule 1 (VCAM-1). The adhesion of THP-1 to HUVECs was induced by tumour necrosis factor α (TNF-α, 100 ng mL-1). Subsequently, ACN-RF, single ACNs and metabolites (from 0.01 to 10 μg mL-1) were incubated for 24 h. The adhesion was measured in a fluorescence spectrophotometer. E-selectin and VCAM-1 were quantified by ELISA. No toxicological effects were observed for the compounds and the doses tested. ACN-RF and Mv-3-glc reducedTHP-1 adhesion at all the concentrations with the maximum effect at 10 μg/ml (-60.2% for ACNs and-33.9% for Mv-3-glc). Cy-3-glc decreased the adhesion by about 41.8% at 10 μg mL-1, while PrA and GA reduced the adhesion of THP-1 to HUVECs both at 1 and at 10 μg mL-1 (-29.5% and -44.3% for PrA, respectively, and -18.0%and -59.3% for GA, respectively). At the same concentrations a significant reduction of E-selectin, but notVCAM-1 levels, was documented. No effect was observed following Dp-3-glc and SA supplementation. Overall, ACNs and metabolites seem to resolve, in a dose-dependent manner, the inflammation-driven adhesion of THP-1 to HUVECs by decreasing E-selectin concentrations. Interestingly, Mv-3-glc was active at physiologically relevant concentrations.
Collapse
Affiliation(s)
- Cristian Del Bo'
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences- Division of Human Nutrition, Milan, Italy
| | - Mirko Marino
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences- Division of Human Nutrition, Milan, Italy
| | - Patrizia Riso
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences- Division of Human Nutrition, Milan, Italy.
| | - Peter Møller
- University of Copenhagen, Department of Public Health, Copenhagen, Denmark
| | - Marisa Porrini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences- Division of Human Nutrition, Milan, Italy
| |
Collapse
|
24
|
Poliseli CB, Ribeiro M, Tonin APP, Vagula JM, Santos OO, Visentainer JV, Pontes RM, Moraes LAB, Meurer EC. Anthocyanidins structural study using positive electrospray ionization triple quadrupole mass spectrometry and H/D exchange. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1230-1237. [PMID: 30286511 DOI: 10.1002/jms.4293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
We report herein a detailed structural study by collision-induced dissociation (CID) of nonglycosylated anthocyanins (anthocyanidins) using electrospray ionization triple quadrupole mass spectrometry (ESI-QqQ) and isotope labeling experiments to understand the fragmentation process often used in mass spectrometry analysis of this class of compounds. Tandem mass spectrometric product ion spectra for three anthocyanidins (cyanidin, delphynidin, and pelargonin) were evaluated to propose fragmentation mechanisms to this natural colorant class of organic compounds. The proposed rearrangements, retro Diels-Alder reaction, water loss, CO losses, and stable acylium ion formation, were evaluated based on tandem mass spectrometric experiments of normal and labeled precursor ions together to computational thermochemistry. B3LYP/6-311 + G** ab initio calculations studies were carried out to obtain energy diagrams to show the viability of the proposed mechanisms. The CO losses fragmentation channels have lower energies when compared with water losses and the other proposed fragmentations. The isotope labeling experiments indicate the H/D exchange of the hydroxyl protons and corroborate the proposed general fragmentation mechanism for anthocyanidins.
Collapse
Affiliation(s)
- Camila B Poliseli
- Chemistry Department, State University of Maringa, Maringá, PR, Brazil
| | - Marcos Ribeiro
- Chemistry Department, State University of Maringa, Maringá, PR, Brazil
| | | | - Julianna M Vagula
- Chemistry Department, State University of Maringa, Maringá, PR, Brazil
| | - Oscar O Santos
- Chemistry Department, State University of Maringa, Maringá, PR, Brazil
| | | | - Rodrigo M Pontes
- Chemistry Department, State University of Maringa, Maringá, PR, Brazil
| | | | - Eduardo C Meurer
- Fenn Mass Spectrometry Laboratory, Federal University of Parana (UFPR), Brazil
| |
Collapse
|
25
|
Willems MET, Parktin N, Widjaja W, Ajjimaporn A. Effect of New Zealand Blackcurrant Extract on Physiological Responses at Rest and during Brisk Walking in Southeast Asian Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Nutrients 2018; 10:nu10111732. [PMID: 30424482 PMCID: PMC6266587 DOI: 10.3390/nu10111732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
New Zealand blackcurrant (NZBC) extract affects cardiovascular and metabolic responses during rest and exercise in Caucasian men. Ethnicity and nutritional habits may affect responses to nutritional ergogenic aids. We examined the effects of NZBC extract on cardiovascular, metabolic, and physiological responses during seated rest and moderate-intensity exercise in Southeast Asian men. Seventeen healthy Thai men (age: 22 ± 3 years; body mass index (BMI): 21.8 ± 1.1 kg·m-2) participated. Resting metabolic equivalent (1-MET) was measured (Oxycon™ mobile, Germany), and an incremental walking protocol was completed to establish the relationship between walking speed and MET. In a double-blind, randomized, placebo-controlled, crossover design, cardiovascular (Physioflow, n = 12) and physiological responses (Oxycon, n = 17) were measured during both seated rest and a 30-min treadmill walk at five metabolic equivalent (5-MET), with either a seven-day intake of placebo (PL) or two capsules of NZBC extract (each 300 mg capsule contains 35% blackcurrant extract) with a 14-day washout. Paired t-tests were used with significance accepted at p < 0.05 and a trend for 0.05 > p ≤ 0.10. During 30 min of treadmill walking at 5-MET, no differences were observed for heart rate and substrate oxidation. With intake of NZBC during treadmill walking, there was a trend for increased stroke volume by 12% (PL: 83.2 ± 25.1; NZBC: 93.0 ± 24.3 mL; p = 0.072) and cardiac output increased by 12% (PL: 9.2 ± 2.6; NZBC: 10.3 ± 2.8 L·min-1; p = 0.057). Systemic vascular resistance decreased by 10% (PL: 779 ± 267; NZBC: 697 ± 245 dyn·s·cm-5; p = 0.048). NZBC extract had no effect on metabolic, physiological, and cardiovascular parameters during seated rest and exercise-induced fat oxidation in Thai men, in contrast to observations in Caucasian men. During treadmill walking, Thai men showed cardiovascular response, indicating vasodilatory effects during moderate-intensity exercise with the intake of NZBC extract. Our findings suggest that the ergogenic responses to anthocyanin intake from New Zealand blackcurrant may be ethnicity-dependent.
Collapse
Affiliation(s)
| | - Nisakorn Parktin
- College of Sports Science and Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| | - Waree Widjaja
- College of Sports Science and Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| | - Amornpan Ajjimaporn
- College of Sports Science and Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
26
|
Magni G, Marinelli A, Riccio D, Lecca D, Tonelli C, Abbracchio MP, Petroni K, Ceruti S. Purple Corn Extract as Anti-allodynic Treatment for Trigeminal Pain: Role of Microglia. Front Cell Neurosci 2018; 12:378. [PMID: 30455630 PMCID: PMC6230559 DOI: 10.3389/fncel.2018.00378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Natural products have attracted interest in the search for new and effective analgesics and coadjuvant approaches to several types of pain. It is in fact well known that many of their active ingredients, such as anthocyanins (ACNs) and polyphenols, can exert potent anti-inflammatory actions. Nevertheless, their potential beneficial effects in orofacial painful syndromes have not been assessed yet. Here, we have evaluated the preventive effect of an ACN-enriched purple corn extract against the development of orofacial allodynia, in comparison with isogenic yellow corn extract containing only polyphenols. Orofacial allodynia developed following induction of temporomandibular joint (TMJ) inflammation in male rats, due to the injection of Complete Freund’s Adjuvant (CFA), and was evaluated by von Frey filaments. Animals drank purple or yellow corn extracts or water starting from 11 days before induction of inflammation and up to the end of the experiment 3 days later. To highlight possible additive and/or synergic actions, some animals also received the anti-inflammatory drug acetyl salicylic acid (ASA). In parallel with the evaluation of allodynia, we have focused our attention on the activation of microglia cells in the central nervous system (CNS), as it is well-known that they significantly contribute to neuronal sensitization and pain. Our data demonstrate that purple corn extract is as effective as ASA in preventing the development of orofacial allodynia, and only partial additive effect is observed when the two agents are co-administered. Yellow corn exerted no effect. Multiple mechanisms are possibly involved in the action of purple corn, including reduction of trigeminal macrophage infiltration and the shift of microglia cell polarization to an anti-inflammatory phenotype. In fact, in rats receiving yellow corn or water microglia cells show thick, short cell processes typical of activated cells. Conversely, thinner and longer microglia cell processes are observed in the brainstem of animals drinking purple corn extract; shape changes are accompanied by a reduction in the expression of pro-inflammatory molecules and increased production of anti-inflammatory mediators. Administration of purple corn extracts therefore represents a possible low-cost and easy way to reduce trigeminal-associated pain in various pathological conditions also thanks to the modulation of microglia reactivity.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Daniele Riccio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Lecca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Tonelli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Katia Petroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
Wei J, Xu D, Yang J, Zhang X, Mu T, Wang Q. Analysis of the interaction mechanism of Anthocyanins (Aronia melanocarpa Elliot) with β-casein. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Ya F, Tian J, Li Q, Chen L, Ren J, Zhao Y, Wan J, Ling W, Yang Y. Cyanidin-3-O-β-glucoside, a Natural Polyphenol, Exerts Proapoptotic Effects on Activated Platelets and Enhances Megakaryocytic Proplatelet Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10712-10720. [PMID: 30226049 DOI: 10.1021/acs.jafc.8b03266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated whether the anthocyanin cyanidin-3-O-β-glucoside (Cy-3-g) could affect platelet apoptosis and proplatelet formation in vitro. Thrombin-stimulated or resting human platelets and Meg-01 megakaryocytes were incubated with Cy-3-g (0, 0.5, 5, or 50 μM). We found that the percentage of the platelet mitochondrial membrane potential treated with 5 and 50 μM Cy-3-g was significantly higher than control (15.50% ± 3.24% and 29.77% ± 4.06% versus 2.76% ± 1.33%, respectively; P < 0.05). Treatment with 5 and 50 μM Cy-3-g significantly increased phosphatidylserine exposure compared with control (40.56% ± 10.53% and 76.62% ± 8.28% versus 15.43% ± 3.93%, respectively; P < 0.05). Moreover, Cy-3-g significantly increased the expression of Bax, Bak, and cytochrome c while markedly decreasing Bcl-xL and Bcl-2 expression as well as stimulating caspase-3, caspase-9, caspase-8, Bid, and gelsolin cleavage in thrombin-activated platelets in a dose-dependent manner ( P < 0.05). However, no significant differences were observed in the apoptosis of resting platelets when treated with Cy-3-g ( P > 0.05). Furthermore, Cy-3-g significantly ( P < 0.05) enhanced cell viability (50 μM versus control, 1.34 ± 0.01 versus 0.35 ± 0.02), the number of colony-forming unit-megakaryocytes (50 μM versus control, 38 ± 3 versus 8 ± 3), CD41 expression (50 μM versus control, 96.80% ± 2.55% versus 25.57% ± 2.86%), DNA ploidy (16N) (50 μM versus control, 19.73% ± 2.34% versus 4.42% ± 1.96%), and proplatelet formation (50 μM versus control, 27.5% ± 3.77% versus 7.67% ± 2.25%) in Meg-01 cells. In conclusion, Cy-3-g promotes activated platelet apoptosis and enhances megakaryocyte proliferation, differentiation, and proplatelet formation in vitro.
Collapse
Affiliation(s)
- Fuli Ya
- Department of Nutrition, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province 510080 , China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong Province 510080 , China
- Guangdong Engineering Technology Research Center of Nutrition Translation , Guangzhou , Guangdong Province 510080 , China
| | - Jinju Tian
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong Province 510006 , China
| | - Qing Li
- Department of Nutrition, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province 510080 , China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong Province 510080 , China
- Guangdong Engineering Technology Research Center of Nutrition Translation , Guangzhou , Guangdong Province 510080 , China
| | - Liyi Chen
- Department of Gynecology and Obstetrics, Bao'an Maternal and Child Health Hospital , Jinan University , Shenzhen 518101 , China
| | - Jing Ren
- Baoji Center For Disease Control and Prevention , Baoji , Shaanxi Province 721006 , China
| | - Yimin Zhao
- School of Public Health (Shenzhen) , Sun Yat-sen University , Guangzhou , Guangdong Province 510006 , China
| | - Jianbo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macao 999078 , China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health , Sun Yat-sen University , Guangzhou , Guangdong Province 510080 , China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong Province 510080 , China
- Guangdong Engineering Technology Research Center of Nutrition Translation , Guangzhou , Guangdong Province 510080 , China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou , Guangdong Province 510080 , China
- Guangdong Engineering Technology Research Center of Nutrition Translation , Guangzhou , Guangdong Province 510080 , China
- School of Public Health (Shenzhen) , Sun Yat-sen University , Guangzhou , Guangdong Province 510006 , China
| |
Collapse
|
29
|
McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 2018; 118:114-120. [PMID: 30037596 DOI: 10.1016/j.mehy.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Higher dietary intakes of anthocyanins have been linked epidemiologically to decreased risk for metabolic syndrome, type 2 diabetes and cardiovascular events; clinical trials and rodent studies evaluating ingestion of anthocyanin-rich extracts confirm favorable effects of these agents on endothelial function and metabolic syndrome. However, these benefits of anthocyanins are lost in rats whose gut microbiome has been eliminated with antibiotic treatment - pointing to bacterial metabolites of anthocyanins as the likely protective agents. A human pharmacokinetic assessment of orally administered cyanidin-3-O-glucoside, a prominent anthocyanin, has revealed that, whereas this compound is minimally absorbed, ferulic acid (FA) is one of its primary metabolites that appears in plasma. FA is a strong antioxidant and phase 2 inducer that has exerted marked anti-inflammatory effects in a number of rodent and cell culture studies; in particular, FA is highly protective in rodent models of diet-induced weight gain and metabolic syndrome. FA, a precursor for lignan synthesis, is widely distributed in plant-based whole foods, mostly in conjugated form; whole grains are a notable source. Coffee ingestion boosts plasma FA owing to gastrointestinal metabolism of chlorogenic acid. Hence, it is reasonable to suspect that FA mediates some of the broad health benefits that have been associated epidemiologically with frequent consumption of whole grains, anthocyanins, coffee, and unrefined plant-based foods. The molecular basis of the anti-inflammatory effects of FA may have been clarified by a recent study demonstrating that FA can target the adaptor protein MyD88; this plays an essential role in pro-inflammatory signaling by most toll-like receptors and interleukin-1β. If feasible oral intakes of FA can indeed down-regulate MyD88-dependent signaling, favorable effects of FA on neurodegeneration, hypothalamic inflammation, weight gain, adipocyte and beta cell function, adiponectin secretion, vascular health, and cartilage and bone integrity can be predicted. Since FA is well tolerated, safe, and natural, it may have great potential as a protective nutraceutical, and clinical trials evaluating its effects are needed.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 811 B Nahant Ct., San Diego, CA 92109, USA.
| | | |
Collapse
|
30
|
Song H, Yi H, Lee M, Han CT, Lee J, Kim H, Park JI, Nou IS, Kim SJ, Hur Y. Purple Brassica oleracea var. capitata F. rubra is due to the loss of BoMYBL2-1 expression. BMC PLANT BIOLOGY 2018; 18:82. [PMID: 29739331 PMCID: PMC5941660 DOI: 10.1186/s12870-018-1290-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Water-soluble anthocyanin pigments are important ingredients in health-improving supplements and valuable for the food industry. Although great attention has been paid to the breeding and production of crops containing high levels of anthocyanin, genetic variation in red or purple cabbages (Brassica oleracea var. capitata F. rubra) has not yet been characterized at the molecular level. In this study, we identified the mechanism responsible for the establishment of purple color in cabbages. RESULTS BoMYBL2-1 is one of the regulatory genes in the anthocyanin biosynthesis pathway in cabbages. It is a repressor whose expression is inversely correlated to anthocyanin synthesis and is not detectable in purple cabbages. Sequence analysis of purple cabbages revealed that most lacked BoMYBL2-1 coding sequences, although a few had a substitution in the region of the promoter 347 bp upstream of the gene that was associated with an absence of BoMYBL2-1 expression. Lack of transcriptional activity of the substitution-containing promoter was confirmed using transgenic Arabidopsis plants transformed with promoter::GUS fusion constructs. The finding that the defect in BoMYBL2-1 expression was solely responsible for purple coloration in cabbages was further demonstrated using genomic PCR and RT-PCR analyses of many other structural and regulatory genes in anthocyanin biosynthesis. Molecular markers for purple cabbages were developed and validated using 69 cabbage lines. CONCLUSION Expression of BoMYBL2-1 was inversely correlated to anthocyanin content, and purple color in cabbages resulted from a loss of BoMYBL2-1 expression, caused by either the promoter substitution or deletion of the gene. This is the first report of molecular markers that distinguish purple cabbages. Such markers will be useful for the production of intraspecific and interspecific hybrids for functional foods, and for industrial purposes requiring high anthocyanin content.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myungjin Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ching-Tack Han
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Jeongyeo Lee
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yuseong-gu, Daejoen, 34141, Republic of Korea
| | - HyeRan Kim
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yuseong-gu, Daejoen, 34141, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Sun-Ju Kim
- Department of BioEnvironmental Chemistry, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
31
|
Ouanouki A, Lamy S, Annabi B. Periostin, a signal transduction intermediate in TGF-β-induced EMT in U-87MG human glioblastoma cells, and its inhibition by anthocyanidins. Oncotarget 2018; 9:22023-22037. [PMID: 29774119 PMCID: PMC5955165 DOI: 10.18632/oncotarget.25153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Periostin is a secreted protein that is highly expressed in glioblastoma cells as compared to normal brain tissue, and is therefore considered as a potential biomarker in therapeutic modalities. Its contribution in the cancer cells invasive phenotype is, however, poorly understood. This work investigates the role of periostin in U-87 MG glioblastoma cell invasion, cell migration and in Transforming Growth Factor β (TGF-β)-induced epithelial-mesenchymal transition (EMT). Periostin gene silencing, using small interfering RNA, decreased TGF-β-induced mesenchymal marker expression of fibronectin and vimentin, partly through reduced Smad2, Akt and Fak phosphorylation as well as U-87 MG cell invasion and migration. The effects of anthocyanidins, the most abundant diet-derived flavonoids, were examined on periostin-mediated downstream signaling pathways. Anthocyanidins were found to decrease periostin expression whether added under pre-, co- or post-treatment conditions along with TGF-β, and altered the Akt and Fak signaling pathways. These effects were similar to Galunisertib (LY2157299), a small molecule inhibitor of the TGF-β receptor I kinase. Taken together, our data demonstrate that periostin acts as a central element in TGF-β-induced EMT, which can be prevented by diet-derived anthocyanidins.
Collapse
Affiliation(s)
- Amira Ouanouki
- Laboratoire d’Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Sylvie Lamy
- Laboratoire d’Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| |
Collapse
|
32
|
Intuyod K, Priprem A, Pairojkul C, Hahnvajanawong C, Vaeteewoottacharn K, Pinlaor P, Pinlaor S. Anthocyanin complex exerts anti-cholangiocarcinoma activities and improves the efficacy of drug treatment in a gemcitabine-resistant cell line. Int J Oncol 2018; 52:1715-1726. [PMID: 29512768 DOI: 10.3892/ijo.2018.4306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/01/2018] [Indexed: 11/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deleterious bile duct tumor with poor prognosis and is relatively resistant to chemotherapy. Therefore, alternative or supplementary agents with anticancer and chemosensitizing activities may be useful for the treatment of CCA. A novel anthocyanin complex (AC) nanoparticle, developed from extracts of cobs of purple waxy corn and petals of blue butterfly pea, has exhibited chemopreventive potential in vivo. In the present study, the anti-CCA activities of AC and their underlying molecular mechanisms were investigated further in vitro using a CCA cell line (KKU213). The potential use of AC as a chemosensitizer was also evaluated in a gemcitabine-resistant CCA cell line (KKU214GemR). It was demonstrated that AC treatment suppressed proliferation of KKU213 CCA cells in dose- and time-dependent manners. AC treatment also induced apoptosis and mitochondrial superoxide production, decreased clonogenicity of CCA cells, and downregulated forkhead box protein M1 (FOXM1), nuclear factor-κB (NF-κB) and pro-survival protein B-cell lymphoma-2 (Bcl-2). The expression of endoplasmic reticulum (ER) stress-response proteins, including protein kinase RNA-like ER kinase, phosphorylated eIF2α, eukaryotic initiation factor 2α and activating transcription factor 4, also decreased following AC treatment. It was also identified that AC treatment inhibited KKU214GemR cell proliferation in dose- and time-dependent manners. Co-treatment of KKU214GemR cells with low doses of AC together with gemcitabine significantly enhanced efficacy of the latter against this cell line. Therefore, it is suggested that AC treatment is cytotoxic to KKU213 cells, possibly via downregulation of FOXM1, NF-κB, Bcl-2 and the ER stress response, and by induction of mitochondrial superoxide production. AC also sensitizes KKU214GemR to gemcitabine treatment, which may have potential for overcoming drug resistance of CCA.
Collapse
Affiliation(s)
- Kitti Intuyod
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonsri Priprem
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chariya Hahnvajanawong
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kulthida Vaeteewoottacharn
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
33
|
Yang P, Yuan C, Wang H, Han F, Liu Y, Wang L, Liu Y. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions. Molecules 2018; 23:E354. [PMID: 29414926 PMCID: PMC6017626 DOI: 10.3390/molecules23020354] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.
Collapse
Affiliation(s)
- Ping Yang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Yangjie Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
34
|
Andrew R, Izzo AA. Principles of pharmacological research of nutraceuticals. Br J Pharmacol 2017; 174:1177-1194. [PMID: 28500635 DOI: 10.1111/bph.13779] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Ruth Andrew
- Centre for Cardiovascular Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Pharmacokinetic profile of bilberry anthocyanins in rats and the role of glucose transporters: LC–MS/MS and computational studies. J Pharm Biomed Anal 2017; 144:112-121. [DOI: 10.1016/j.jpba.2017.04.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 11/21/2022]
|
36
|
Lin B, Gong C, Song H, Cui Y. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 2017; 174:1226-1243. [PMID: 27646173 PMCID: PMC5429338 DOI: 10.1111/bph.13627] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 02/04/2023] Open
Abstract
Anthocyanins are a class of water-soluble flavonoids, which show a range of pharmacological effects, such as prevention of cardiovascular disease, obesity control and antitumour activity. Their potential antitumour effects are reported to be based on a wide variety of biological activities including antioxidant; anti-inflammation; anti-mutagenesis; induction of differentiation; inhibiting proliferation by modulating signal transduction pathways, inducing cell cycle arrest and stimulating apoptosis or autophagy of cancer cells; anti-invasion; anti-metastasis; reversing drug resistance of cancer cells and increasing their sensitivity to chemotherapy. In this review, the latest progress on the anticancer activities of anthocyanins and the underlying molecular mechanisms is summarized using data from basic research in vitro and in vivo, from clinical trials and taking into account theory and practice. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Bo‐Wen Lin
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Cheng‐Chen Gong
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Hai‐Fei Song
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Ying‐Yu Cui
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
- Key Laboratory of ArrhythmiasMinistry of Education (Tongji University)ShanghaiChina
- Institute of Medical GeneticsTongji University School of MedicineShanghaiChina
| |
Collapse
|
37
|
Oki T, Sato-Furukawa M, Terahara N. A Modified Method for the Determination of Acylated Anthocyanins in Purple-fleshed Sweet Potato ( Ipomoea batatas (L).) Tubers by High-performance Liquid Chromatography with Visible Absorption. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tomoyuki Oki
- Crop Development and Agribusiness Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization
| | - Maki Sato-Furukawa
- Crop Development and Agribusiness Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization
| | | |
Collapse
|
38
|
Minuz P, Velo G, Violi F, Ferro A. Are nutraceuticals the modern panacea? From myth to science. Br J Clin Pharmacol 2017; 83:5-7. [PMID: 27933660 PMCID: PMC5338160 DOI: 10.1111/bcp.13142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Pietro Minuz
- Unit of Internal Medicine C, Department of MedicineUniversity of VeronaVeronaItaly
| | - Giampaolo Velo
- Pharmacology Unit, Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly
- International School of PharmacologyEttore Majorana Foundation and Centre for Scientific CultureEriceTrapaniItaly
| | - Francesco Violi
- Clinica Medica, Atherothrombosis Centre, Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| | - Albert Ferro
- Department of Clinical Pharmacology, Cardiovascular Division, British Heart Foundation Centre of Research ExcellenceKing's College LondonLondonUK
| |
Collapse
|
39
|
Cerletti C, De Curtis A, Bracone F, Digesù C, Morganti AG, Iacoviello L, de Gaetano G, Donati MB. Dietary anthocyanins and health: data from FLORA and ATHENA EU projects. Br J Clin Pharmacol 2016; 83:103-106. [PMID: 27016122 DOI: 10.1111/bcp.12943] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 11/29/2022] Open
Abstract
Adherence to a 'Mediterranean diet' has been shown to be beneficial to human health. Fruit and vegetables represent some of the main components of the Mediterranean diet and their role has been increasingly considered in the process of preventing or reducing the risk of chronic degenerative diseases, such as cerebrovascular or coronary heart disorders, cancer and neurodegenerative diseases. To investigate the beneficial effect of these dietary compounds, two EU-funded projects were conducted during the last 10 years. Their results from experimental models suggest that dietary anthocyanin enrichment is beneficial against a number of ischemic and degenerative conditions. On the other hand, human studies demonstrated that anthocyanin supplementation can counteract the inflammatory response to stress conditions, such as a fatty meal. Moreover, an intervention trial in patients with breast cancer undergoing radiotherapy is presently testing the possible beneficial effect of the administration of a product enriched in anthocyanins on the inflammatory response to radiation and on its consequent skin toxicity, as well as on systemic low-grade inflammation reaction.
Collapse
Affiliation(s)
- Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, IS, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, IS, Italy
| | | | - Cinzia Digesù
- Radiotherapy Department, Fondazione Giovanni Paolo II, Catholic University, Campobasso, Italy
| | - Alessio G Morganti
- Radiotherapy Department, Fondazione Giovanni Paolo II, Catholic University, Campobasso, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, IS, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, IS, Italy
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, IS, Italy
| |
Collapse
|