1
|
Merigo G, Florio G, Madotto F, Magliocca A, Silvestri I, Fumagalli F, Cerrato M, Motta F, De Giorgio D, Panigada M, Zanella A, Grasselli G, Ristagno G. Treatment with inhaled Argon: a systematic review of pre-clinical and clinical studies with meta-analysis on neuroprotective effect. EBioMedicine 2024; 103:105143. [PMID: 38691938 PMCID: PMC11070688 DOI: 10.1016/j.ebiom.2024.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.
Collapse
Affiliation(s)
- Giulia Merigo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aurora Magliocca
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ivan Silvestri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesca Fumagalli
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Cerrato
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Motta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daria De Giorgio
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Ristagno
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Argon Attenuates Multiorgan Failure in Relation with HMGB1 Inhibition. Int J Mol Sci 2021; 22:ijms22063257. [PMID: 33806919 PMCID: PMC8111890 DOI: 10.3390/ijms22063257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Argon inhalation attenuates multiorgan failure (MOF) after experimental ischemic injury. We hypothesized that this protection could involve decreased High Mobility Group Box 1 (HMGB1) systemic release. We investigated this issue in an animal model of MOF induced by aortic cross-clamping. Anesthetized rabbits were submitted to supra-coeliac aortic cross-clamping for 30 min, followed by 300 min of reperfusion. They were randomly divided into three groups (n = 7/group). The Control group inhaled nitrogen (70%) and oxygen (30%). The Argon group was exposed to a mixture of argon (70%) and oxygen (30%). The last group inhaled nitrogen/oxygen (70/30%) with an administration of the HMGB1 inhibitor glycyrrhizin (4 mg/kg i.v.) 5 min before aortic unclamping. At the end of follow-up, cardiac output was significantly higher in Argon and Glycyrrhizin vs. Control (60 ± 4 and 49 ± 4 vs. 33 ± 8 mL/kg/min, respectively). Metabolic acidosis was attenuated in Argon and Glycyrrhizin vs. Control, along with reduced amount of norepinephrine to reverse arterial hypotension. This was associated with reduced interleukin-6 and HMGB1 plasma concentration in Argon and Glycyrrhizin vs. Control. End-organ damages were also attenuated in the liver and kidney in Argon and Glycyrrhizin vs. Control, respectively. Argon inhalation reduced HMGB1 blood level after experimental aortic cross-clamping and provided similar benefits to direct HMGB1 inhibition.
Collapse
|
3
|
Hemşinli D, Ergene S, Karakişi SO, Mercantepe T, Tumkaya L, Yilmaz A, Akyilzdiz K. Tea Grape Reduces Abdominal Aortic Occlusion-Induced Lung Injury. Braz J Cardiovasc Surg 2020; 35:512-520. [PMID: 32864932 PMCID: PMC7454615 DOI: 10.21470/1678-9741-2019-0392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Ischemia-associated mortality caused by aortic cross-clamps, as in ruptured abdominal aorta aneurysm surgeries, and reperfusion following their removal represent some of the main emergency conditions in cardiovascular surgery. The purpose of our study was to examine the potential protective effect of tea grape against aortic occlusion-induced lung injury using biochemical, histopathological, immunohistochemical, and quantitative analyses. Methods Thirty-two male Sprague-Dawley rats were randomly assigned into four groups: control (healthy), glycerol + ischemia/reperfusion (I/R) (sham), I/R, and I/R + tea grape. Results Following aortic occlusion, we observed apoptotic pneumocytes, thickening in the alveolar wall, edematous areas in interstitial regions, and vascular congestion. We also observed an increase in pulmonary malondialdehyde (MDA) levels and decrease in pulmonary glutathione (GSH). However, tea grape reduced apoptotic pneumocytes, edema, vascular congestion, and MDA levels, while increased GSH levels in lung tissue. Conclusion Our findings suggest that tea grape is effective against aortic occlusion-induced lung injury by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Doğuş Hemşinli
- Department of Cardiovascular Surgery, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Saban Ergene
- Department of Cardiovascular Surgery, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Sedat Ozan Karakişi
- Department of Cardiovascular Surgery, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | | |
Collapse
|
4
|
Ergene Ş, Hemşinli D, Karakişi SO, Mercantepe T, Tumkaya L, Yilmaz A. The Role of Vaccinium Myrtillus in the Prevention of Renal Injury in an Experimental Model of Ruptured Abdominal Aortic Aneurysm. Braz J Cardiovasc Surg 2020; 35:490-497. [PMID: 32864929 PMCID: PMC7454617 DOI: 10.21470/1678-9741-2019-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective To examine the biochemical and histopathological renal effects of ischemia/reperfusion (I/R) injury using a ruptured abdominal aortic aneurysm (RAAA) model in rats and to investigate the potential protective effects of whortleberry (Vaccinium myrtillus). Methods Thirty-two male Sprague-Dawley rats were randomly assigned into four groups - control, sham (I/R+glycerol), I/R, and I/R+whortleberry. Midline laparotomy alone was performed in the control group. Atraumatic abdominal clamps were attached under anesthesia to the abdominal aorta beneath the level of the renal artery in the groups subjected to I/R. Sixty-minute reperfusion was established one hour after ischemia. The sham group received five intraperitoneal doses of glycerol five days before I/R. The I/R+whortleberry group received a single intraperitoneal 50 mg/kg dose diluted with saline solution five days before I/R. All animals were finally euthanized by cervical dislocation following 60-min reperfusion. Results Increases were observed in malondialdehyde (MDA) levels and tubular necrosis scores (TNS) in thin kidney tissues and in numbers of apoptotic renal tubule cells, together with a decrease in glutathione (GSH) levels, in sham and I/R groups. In contrast, we observed a decrease in MDA levels, TNS, and numbers of apoptotic renal tubule cells, and an increase in GSH levels with whortleberry treatment compared to the I/R group. Conclusion Our findings suggest that whortleberry may be effective against acute kidney injury by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Şaban Ergene
- Department of Cardiovascular Surgery, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Doğuş Hemşinli
- Department of Cardiovascular Surgery, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Sedat Ozan Karakişi
- Department of Cardiovascular Surgery, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| |
Collapse
|
5
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|
6
|
The effects of whortleberry on ischemia reperfusion-induced myocardial injury in rats. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 28:63-69. [PMID: 32175144 DOI: 10.5606/tgkdc.dergisi.2020.18389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/19/2019] [Indexed: 02/05/2023]
Abstract
Background The aim of this study was to investigate the potential protective effect of whortleberry by examining the effects on heart tissue at the molecular level of ischemia-reperfusion injury caused by surgical repair of a ruptured abdominal aortic aneurysm. Methods Between May 2018 and February 2019, a total of 32 male Sprague-Dawley rats were randomly assigned into control, sham (ischemia-reperfusion+glycerol), ischemia-reperfusion, and ischemia-reperfusion+whortleberry groups. Hypovolemic shock was applied to the rats in the ischemia-reperfusion groups for one hour. The abdominal aorta was explored following midline laparotomy and atraumatic microvascular clamps were applied from the infrarenal level. Following one-hour ischemia, the clamps were removed, and reperfusion was established for two hours. In the sham group, intraperitoneal glycerol once daily was applied five days before surgery. In the whortleberry group, whortleberry treatment was administered via the intraperitoneal route five days before ischemia-reperfusion. Results The ischemia-reperfusion group exhibited a decrease in the glutathione levels and an increase in the malondialdehyde levels (p<0.01 and p<0.01, respectively). We also observed an increase in the caspase-3 positivity in cardiac myofibrils (p<0.01). Whortleberry administration lowered both malondialdehyde levels and numerical density of caspase-3 positive cardiac myofibrils, while increasing the heart tissue glutathione levels, compared to the ischemia-reperfusion alone group (p<0.01, p=0.011, and p=0.011, respectively). Conclusion Whortleberry may be beneficial in preventing cardiac tissue damage caused by ischemia-reperfusion in the surgical repair of ruptured abdominal aortic aneurysms.
Collapse
|
7
|
Savary G, Lidouren F, Rambaud J, Kohlhauer M, Hauet T, Bruneval P, Costes B, Cariou A, Ghaleh B, Mongardon N, Tissier R. Argon attenuates multiorgan failure following experimental aortic cross-clamping. Br J Clin Pharmacol 2018; 84:1170-1179. [PMID: 29388238 DOI: 10.1111/bcp.13535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/27/2017] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Argon has been shown to prevent ischaemic injuries in several scenarios of regional ischaemia. We determined whether it could provide a systemic effect in a model of multiorgan failure (MOF) induced by aortic cross-clamping. METHODS Anaesthetized rabbits were submitted to aortic cross-clamping (30 min) and subsequent reperfusion (300 min). They were either ventilated with oxygen-enriched air throughout the protocol [fraction of inspired oxygen (FiO2 ) = 30%; control group) or with a mixture of 30% oxygen and 70% argon (argon groups). In a first group treated with argon ('Argon-Total'), its administration was started 30 min before ischaemia and maintained throughout the protocol. In the two other groups, the administration was started either 30 min before ischaemia ('Argon-Pre') or at the onset of reperfusion ('Argon-Post'), for a total duration of 2 h. Cardiovascular, renal and inflammatory endpoints were assessed throughout protocol. RESULTS Compared with control, shock was significantly attenuated in Argon-Total and Argon-Pre but not Argon-Post groups (e.g. cardiac output = 62±5 vs. 29 ± 5 ml min-1 kg-1 in Argon-Total and control groups at the end of the follow-up). Shock and renal failure were reduced in all argon vs. control groups. Histopathological examination of the gut showed attenuation of ischaemic lesions in all argon vs. control groups. Blood transcription levels of interleukin (IL) 1β, IL-8, IL-10 and hypoxia-inducible factor 1α were not significantly different between groups. CONCLUSION Argon attenuated clinical and biological modifications of cardiovascular, renal and intestinal systems, but not the inflammatory response, after aortic cross-clamping. The window of administration was crucial to optimize organ protection.
Collapse
Affiliation(s)
- Guillaume Savary
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Jérôme Rambaud
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Thierry Hauet
- Faculté de Médecine et de Pharmacie, Inserm, U1082, Université de Poitiers, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France
| | - Patrick Bruneval
- Service d'Anatomie Pathologique, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Paris, France
| | | | - Alain Cariou
- Service de Réanimation Médicale, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Nicolas Mongardon
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.,Service d'Anesthésie et des Réanimations Chirurgicales, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Renaud Tissier
- Inserm, U955, Equipe 3, Créteil, France.,Université Paris Est, UMR_S955, UPEC, DHU A-TVB Créteil, France.,Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|