1
|
Jung SM, Zhu HJ. Regulation of Human Hydrolases and Its Implications in Pharmacokinetics and Pharmacodynamics. Drug Metab Dispos 2024; 52:1139-1151. [PMID: 38777597 PMCID: PMC11495669 DOI: 10.1124/dmd.123.001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including carboxylesterase (CES)-1 CES2, arylacetamide deacetylase (AADAC), paraoxonase (PON)-1 PON3, and cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared with other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases. SIGNIFICANCE STATEMENT: Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases' expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.
Collapse
Affiliation(s)
- Sun Min Jung
- Departments of Pharmaceutical Sciences (S.M.J.) and Clinical Pharmacy (H.-J.Z.), University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Departments of Pharmaceutical Sciences (S.M.J.) and Clinical Pharmacy (H.-J.Z.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
Hussain M, Basheer S, Khalil A, Haider QUA, Saeed H, Faizan M. Pharmacogenetic study of CES1 gene and enalapril efficacy. J Appl Genet 2024; 65:463-471. [PMID: 38261266 DOI: 10.1007/s13353-024-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Enalapril is an orally administered angiotensin-converting enzyme inhibitor which is widely prescribed to treat hypertension, chronic kidney disease, and heart failure. It is an ester prodrug that needs to be activated by carboxylesterase 1 (CES1). CES1 is a hepatic hydrolase that in vivo biotransforms enalapril to its active form enalaprilat in order to produce its desired pharmacological impact. Several single nucleotide polymorphisms in CES1 gene are reported to alter the catalytic activity of CES1 enzyme and influence enalapril metabolism. G143E, L40T, G142E, G147C, Y170D, and R171C can completely block the enalapril metabolism. Some polymorphisms like Q169P, E220G, and D269fs do not completely block the CES1 function; however, they reduce the catalytic activity of CES1 enzyme. The prevalence of these polymorphisms is not the same among all populations which necessitate to consider the genetic panel of respective population before prescribing enalapril. These genetic variations are also responsible for interindividual variability of CES1 enzyme activity which ultimately affects the pharmacokinetics and pharmacodynamics of enalapril. The current review summarizes the CES1 polymorphisms which influence the enalapril metabolism and efficacy. The structure of CES1 catalytic domain and important amino acids impacting the catalytic activity of CES1 enzyme are also discussed. This review also highlights the importance of pharmacogenomics in personalized medicine.
Collapse
Affiliation(s)
- Misbah Hussain
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan.
| | - Sehrish Basheer
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan
| | - Adila Khalil
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | - Hafsa Saeed
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan
| | - Muhammad Faizan
- Rai Medical College Sargodha, Islamabad Road, Sargodha, Pakistan
| |
Collapse
|
3
|
Liu Y, Li J, Zhu HJ. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review. Expert Opin Drug Metab Toxicol 2024; 20:377-397. [PMID: 38706437 PMCID: PMC11151177 DOI: 10.1080/17425255.2024.2348491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jiapeng Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Cura Y, Sánchez-Martín A, Márquez-Pete N, González-Flores E, Martínez-Martínez F, Pérez-Ramírez C, Jiménez-Morales A. Association of Single-Nucleotide Polymorphisms in Capecitabine Bioactivation Pathway with Adjuvant Therapy Safety in Colorectal Cancer Patients. Pharmaceutics 2023; 15:2548. [PMID: 38004528 PMCID: PMC10675271 DOI: 10.3390/pharmaceutics15112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Capecitabine, an oral prodrug of 5-fluorouracil (5-FU), is part of the standard treatment of colorectal cancer (CRC). Severe adverse dose limiting reactions that impair treatment safety and lead to treatment suspension remain a relevant concern. Single-nucleotide polymorphisms (SNPs) in genes involved in the activation of capecitabine may alter the bioavailability of 5-FU and thereby affect therapy outcomes. The aim of this study was to evaluate the association of these SNPs with severe toxicity and treatment suspension in patients with CRC treated with capecitabine-based therapy. An ambispective cohort study was conducted, including 161 patients with CRC. SNPs were analyzed using real-time PCR with TaqMan® probes. Toxicity was assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events v.5.0. CES1 rs71647871-A was associated with a severe hand-foot syndrome (p = 0.030; OR = 11.92; 95% CI = 1.46-73.47; GG vs. A). CDA rs1048977-CC (p = 0.030; OR = 2.30; 95% CI 1.09-5.00; T vs. CC) and capecitabine monotherapy (p = 0.003; OR = 3.13; 95% CI 1.49-6.81) were associated with treatment suspension due to toxicity. SNPs CES1 rs71647871 and CDA rs1048977 may act as potential predictive biomarkers of safety in patients with CRC under capecitabine-based adjuvant therapy.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Almudena Sánchez-Martín
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Noelia Márquez-Pete
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Encarnación González-Flores
- Medical Oncology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Biosanitary Research Institute, Ibs.Granada, 18012 Granada, Spain
| | | | - Cristina Pérez-Ramírez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
5
|
Ikonnikova A, Kazakov R, Rodina T, Dmitriev A, Melnikov E, Zasedatelev A, Nasedkina T. The Influence of Structural Variants of the CES1 Gene on the Pharmacokinetics of Enalapril, Presumably Due to Linkage Disequilibrium with the Intronic rs2244613. Genes (Basel) 2022; 13:genes13122225. [PMID: 36553492 PMCID: PMC9778508 DOI: 10.3390/genes13122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Variants in the CES1 gene encoding carboxylesterase 1 may affect the metabolism of enalapril to the active metabolite enalaprilat. It was shown that the A allele of rs71647871 and the C allele of rs2244613 led to a decrease in plasma enalaprilat concentrations. This study aimed to estimate the effect of structural haplotypes of CES1 containing the pseudogene CES1P1, or a hybrid of the gene and the pseudogene CES1A2, on the pharmacokinetics of enalapril. We included 286 Caucasian patients with arterial hypertension treated with enalapril. Genotyping was performed using real-time PCR and long-range PCR. Peak and trough plasma enalaprilat concentrations were lower in carriers of CES1A2. The studied haplotypes were in linkage disequilibrium with rs2244613: generally, the A allele was in the haplotype containing the CES1P1, and the C allele was in the haplotype with the CES1A2. Thus, carriers of CES1A2 have reduced CES1 activity against enalapril. Linkage disequilibrium of the haplotype containing the CES1P1 or CES1A2 with rs2244613 should be taken into account when genotyping the CES1 gene.
Collapse
Affiliation(s)
- Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Ruslan Kazakov
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, 127051 Moscow, Russia
| | - Tatiana Rodina
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, 127051 Moscow, Russia
| | - Artem Dmitriev
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, 127051 Moscow, Russia
| | - Evgeniy Melnikov
- Institute of Pharmacy of I. M. Sechenov First MSMU of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
The Influence of the CES1 Genotype on the Pharmacokinetics of Enalapril in Patients with Arterial Hypertension. J Pers Med 2022; 12:jpm12040580. [PMID: 35455696 PMCID: PMC9028383 DOI: 10.3390/jpm12040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/13/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
The angiotensin-converting enzyme inhibitor enalapril is hydrolysed to an active metabolite, enalaprilat, in the liver via carboxylesterase 1 (CES1). Previous studies show that variant rs71647871 in the CES1 gene affects the pharmacokinetics of enalapril on liver samples as well as healthy volunteers. This study included 286 Caucasian patients with arterial hypertension who received enalapril. The concentrations of enalapril and enalaprilat were determined before subsequent intake of the drug and 4 h after it with high-performance liquid chromatography (HPLC) and mass spectrometric detection. The study included genetic markers as follows: rs2244613, rs71647871 (c.428G>A, p.G143E) and three SNPs indicating the presence of a subtype CES1A1c (rs12149368, rs111604615 and rs201577108). Mean peak and trough enalaprilat concentrations, adjusted by clinical variables, were significantly lower in CES1 rs2244613 heterozygotes (by 16.6% and 19.6%) and in CC homozygotes (by 32.7% and 41.4%) vs. the AA genotype. In CES1A1c homozygotes, adjusted mean enalaprilat concentrations were 75% lower vs. heterozygotes and wild-type (WT) homozygotes. Pharmacogenetic markers of the CES1 gene may be a promising predictor for individualisation when prescribing enalapril.
Collapse
|
7
|
Shi J, Xiao J, Wang X, Jung SM, Bleske BE, Markowitz JS, Patrick KS, Zhu HJ. Plasma Carboxylesterase 1 Predicts Methylphenidate Exposure: A Proof-of-Concept Study Using Plasma Protein Biomarker for Hepatic Drug Metabolism. Clin Pharmacol Ther 2021; 111:878-885. [PMID: 34743324 DOI: 10.1002/cpt.2486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Hepatic drug-metabolizing enzymes (DMEs) play critical roles in determining the pharmacokinetics and pharmacodynamics of numerous therapeutic agents. As such, noninvasive biomarkers capable of predicting DME expression in the liver have the potential to be used to personalize pharmacotherapy and improve drug treatment outcomes. In the present study, we quantified carboxylesterase 1 (CES1) protein concentrations in plasma samples collected during a methylphenidate pharmacokinetics study. CES1 is a prominent hepatic enzyme responsible for the metabolism of many medications containing small ester moieties, including methylphenidate. The results revealed a significant inverse correlation between plasma CES1 protein concentrations and the area under the concentration-time curves (AUCs) of plasma d-methylphenidate (P = 0.014, r = -0.617). In addition, when plasma CES1 protein levels were normalized to the plasma concentrations of 24 liver-enriched proteins to account for potential interindividual differences in hepatic protein release rate, the correlation was further improved (P = 0.003, r = -0.703), suggesting that plasma CES1 protein could explain ~ 50% of the variability in d-methylphenidate AUCs in the study participants. A physiologically-based pharmacokinetic modeling simulation revealed that the CES1-based individualized dosing strategy might significantly reduce d-methylphenidate exposure variability in pediatric patients relative to conventional trial and error fixed dosing regimens. This proof-of-concept study indicates that the plasma protein of a hepatic DME may serve as a biomarker for predicting its metabolic function and the pharmacokinetics of its substrate drugs.
Collapse
Affiliation(s)
- Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jingcheng Xiao
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sun Min Jung
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Barry E Bleske
- Department of Pharmacy Practice and Administrative Sciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Kennerly S Patrick
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|