1
|
Di Paola A, Marrapodi MM, Di Martino M, Giliberti G, Di Feo G, Rana D, Ahmed S, Argenziano M, Rossi F, Roberti D. Bone Health Impairment in Patients with Hemoglobinopathies: From Biological Bases to New Possible Therapeutic Strategies. Int J Mol Sci 2024; 25:2902. [PMID: 38474150 DOI: 10.3390/ijms25052902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Hemoglobinopathies are monogenic disorders affecting hemoglobin synthesis. Thalassemia and sickle cell disease (SCD) are considered the two major hemoglobinopathies. Thalassemia is a genetic disorder and one of the major hemoglobinopathies determined by an impairment of globin chain production, which causes an alteration of erythropoiesis, an improvement in hemolysis, and an alteration of iron homoeostasis. In SCD, the mutations are on the β-globin chain of hemoglobin which results in a substitution of glutamic acid by valine with consequent formation of Hemoglobin S (HbS). Several factors are involved in bone metabolism alteration in patients with hemoglobinopathies, among them hormonal deficiency, bone marrow hyperplasia, iron overload, inflammation, and increased bone turnover. Bone metabolism is the result of balance maintenance between bone deposition and bone resorption, by osteoblasts (OBs) and osteoclasts (OCs). An impairment of this balance is responsible for the onset of bone diseases, such as osteoporosis (OP). Therefore, here we will discuss the alteration of bone metabolism in patients with hemoglobinopathies and the possible therapeutic strategies to contain and/or counteract bone health impairment in these patients, taking into consideration not only the pharmacological treatments already used in the clinical armamentarium, but also the new possible therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giulia Giliberti
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Di Feo
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Deeksha Rana
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Shakeel Ahmed
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
2
|
Duong HQ, Nguyen TH, Hoang MC, Ngo VL, Le VT. RNA therapeutics for β-thalassemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:97-107. [PMID: 38458745 DOI: 10.1016/bs.pmbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
β-thalassemia is an autosomal recessive disease, caused by one or more mutations in the β-globin gene that reduces or abolishes β-globin chain synthesis causing an imbalance in the ratio of α- and β-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of β-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as β-thalassemia; Especially, ASO therapeutics can completely treat β-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of β-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of β-globin which increases the amount of mature hemoglobin of red blood cells of β-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for β-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of β-thalassemia patients.
Collapse
Affiliation(s)
| | | | | | - Van-Lang Ngo
- Hanoi University of Public Health, Hanoi, Vietnam
| | - Van-Thu Le
- Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
3
|
Michailidou G, Li Y, Zamboulis A, Karlioti G, Meimaroglou D, Pantopoulos K, Bikiaris DN. A Water-Soluble Chitosan Derivative for the Release of Bioactive Deferoxamine. Int J Mol Sci 2024; 25:913. [PMID: 38255991 PMCID: PMC10815119 DOI: 10.3390/ijms25020913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Deferoxamine (DFO) is a water-soluble iron chelator used pharmacologically for the management of patients with transfusional iron overload. However, DFO is not cell-permeable and has a short plasma half-life, which necessitates lengthy parenteral administration with an infusion pump. We previously reported the synthesis of chitosan (CS) nanoparticles for sustained slow release of DFO. In the present study, we developed solid dispersions and nanoparticles of a carboxymethyl water-soluble chitosan derivative (CMCS) for improved DFO encapsulation and release. CS dispersions and nanoparticles with DFO have been prepared by ironical gelation using sodium triphosphate (TPP) and were examined for comparison purposes. The successful presence of DFO in CMCS polymeric dispersions and nanoparticles was confirmed through FTIR measurements. Furthermore, the formation of CMCS nanoparticles led to inclusion of DFO in an amorphous state, while dispersion of DFO in the polymeric matrix led to a decrease in its crystallinity according to X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results. An in vitro release assay indicated sustained release of DFO from CS and CMCS nanoparticles over 48 h and 24 h, respectively. Application of CMCS-DFO dispersions to murine RAW 264.7 macrophages or human HeLa cervical carcinoma cells triggered cellular responses to iron deficiency. These were exemplified in the induction of the mRNA encoding transferrin receptor 1, the major iron uptake protein, and the suppression of ferritin, the iron storage protein. Our data indicate that CMCS-DFO nanoparticles release bioactive DFO that causes effective iron chelation in cultured cells.
Collapse
Affiliation(s)
- Georgia Michailidou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Yupeng Li
- Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Alexandra Zamboulis
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Georgia Karlioti
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Despoina Meimaroglou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| |
Collapse
|
4
|
Chauhan W, Zennadi R. Keap1-Nrf2 Heterodimer: A Therapeutic Target to Ameliorate Sickle Cell Disease. Antioxidants (Basel) 2023; 12:antiox12030740. [PMID: 36978988 PMCID: PMC10045360 DOI: 10.3390/antiox12030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic inheritable disease characterized by severe anemia, increased hemolysis, and recurrent, painful vaso-occlusive crises due to the polymerization of hemoglobin S (HbS)-generated oxidative stress. Up until now, only four drugs are approved for SCD in the US. However, each of these drugs affects only a limited array of SCD pathologies. Importantly, curative therapies, such as gene therapy, or hematopoietic stem cell transplantation are not available for every patient because of their high costs, availability of donor matching, and their serious adverse effects. Therefore, there is an unmet medical need for novel therapeutic strategies that target broader SCD sequelae. SCD phenotypic severity can be alleviated by increasing fetal hemoglobin (HbF) expression. This results in the inhibition of HbS polymerization and thus sickling, and a reduction in oxidative stress. The efficacy of HbF is due to its ability to dilute HbS levels below the threshold required for polymerization and to influence HbS polymer stability in RBCs. Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)-complex signaling is one of the most important cytoprotective signaling controlling oxidative stress. Nrf2 is present in most organs and, after dissociation from Keap1, it accumulates in the cytoplasm, then translocates to the nucleus where it binds to the antioxidant response element (ARE) sequences and increases the expression of various cytoprotective antioxidant genes. Keeping this in mind, various researchers have proposed a role of multiple agents, more importantly tert-Butylhydroquinone (tBHQ), curcumin, etc., (having electrophilic properties) in inhibiting keap1 activity, so that Nrf2 can translocate to the nucleus to activate the gamma globin gene, thus maintaining alpha-hemoglobin-stabilizing protein (AHSP) and HbF levels. This leads to reduced oxidative stress, consequently minimizing SCD-associated complications. In this review, we will discuss the role of the Keap-1–Nrf2 complex in hemoglobinopathies, especially in SCD, and how this complex might represent a better target for more effective treatment options.
Collapse
|
5
|
Peng Y, Liang L, Zhang H, Liu H, Zhang G, Sun S, Guo X, Wang Y, Hu B, Liu R, Li Y, Nie L, Zhang J, Ye M, Ginzburg YZ, Lin Z, Yin B, Chen H, Liu J. Single-cell profiling of ineffective erythropoiesis in a mouse model of β-thalassaemia intermedia. Br J Haematol 2023; 201:982-994. [PMID: 36872867 DOI: 10.1111/bjh.18706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Beta-thalassaemia is an inherited haemoglobin disorder characterised by ineffective erythropoiesis (IE). The detailed pathogenesis of IE remains unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to examine IE in Th3/+ β-thalassaemic mice. The results showed that the erythroid group was remarkably expanded, and genes involved in biological processes such as iron metabolism, haeme synthesis, protein folding, and response to heat were significantly upregulated from erythroid progenitors to reticulocytes in β-thalassaemic mice. In particular, we identified a unique cell population close to reticulocytes, named ThReticulocytes, characterised by a high level of heat shock protein 70 (Hsp70) expression and dysregulation of iron metabolism and haeme synthesis signalling. Treatment of β-thalassaemic mice with the haeme oxygenase inhibitor tin-mesoporphyrin effectively improved the iron disorder and IE, and the ThReticulocyte population and Hsp70 expression were significantly suppressed. This study revealed in detail the progression of IE at the single-cell level and possibly provided clues to find therapeutic targets in thalassaemia.
Collapse
Affiliation(s)
- Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China.,Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Haihang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Guanxiong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuming Sun
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianfeng Guo
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanpeng Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Hu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Rui Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yanan Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Nie
- Xiangya Hospital, Central South University, Changsha, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yelena Z Ginzburg
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Zhong Lin
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Biao Yin
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Huiyong Chen
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China.,Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Vali SW, Lindahl PA. Might nontransferrin-bound iron in blood plasma and sera be a nonproteinaceous high-molecular-mass Fe III aggregate? J Biol Chem 2022; 298:102667. [PMID: 36334631 PMCID: PMC9768373 DOI: 10.1016/j.jbc.2022.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
The HFE (Homeostatic Fe regulator) gene is commonly mutated in hereditary hemochromatosis. Blood of (HFE)(-/-) mice and of humans with hemochromatosis contains toxic nontransferrin-bound iron (NTBI) which accumulates in organs. However, the chemical composition of NTBI is uncertain. To investigate, HFE(-/-) mice were fed iron-deficient diets supplemented with increasing amounts of iron, with the expectation that NTBI levels would increase. Blood plasma was filtered to obtain retentate and flow-through solution fractions. Liquid chromatography detected by inductively coupled plasma mass spectrometry of flow-through solutions exhibited low-molecular-mass iron peaks that did not increase intensity with increasing dietary iron. Retentates yielded peaks due to transferrin (TFN) and ferritin, but much iron in these samples adsorbed onto the column. Retentates treated with the chelator deferoxamine (DFO) yielded a peak that comigrated with the Fe-DFO complex and originated from iron that adhered to the column in the absence of DFO. Additionally, plasma from younger and older 57Fe-enriched HFE mice were separately pooled and concentrated by ultrafiltration. After removing contributions from contaminating blood and TFN, Mössbauer spectra were dominated by features due to magnetically interacting FeIII aggregates, with greater intensity in the spectrum from the older mice. Similar features were generated by adding 57FeIII to "pseudo plasma". Aggregation was unaffected by albumin or citrate at physiological concentrations, but DFO or high citrate concentrations converted aggregated FeIII into high-spin FeIII complexes. FeIII aggregates were retained by the cutoff membrane and adhered to the column, similar to the behavior of NTBI. A model is proposed in which FeII entering blood is oxidized, and if apo-TFN is unavailable, the resulting FeIII ions coalesce into FeIII aggregates, a.k.a. NTBI.
Collapse
Affiliation(s)
- Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA; Department of Chemistry, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
7
|
Di Modica SM, Tanzi E, Olivari V, Lidonnici MR, Pettinato M, Pagani A, Tiboni F, Furiosi V, Silvestri L, Ferrari G, Rivella S, Nai A. Transferrin receptor 2 (Tfr2) genetic deletion makes transfusion-independent a murine model of transfusion-dependent β-thalassemia. Am J Hematol 2022; 97:1324-1336. [PMID: 36071579 PMCID: PMC9540808 DOI: 10.1002/ajh.26673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
β-thalassemia is a genetic disorder caused by mutations in the β-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with β-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.
Collapse
Affiliation(s)
- Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Francesca Tiboni
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Giuliana Ferrari
- Vita Salute San Raffaele UniversityMilanItaly,San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Stefano Rivella
- Division of Hematology, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
8
|
Rossi F, Tortora C, Paoletta M, Marrapodi MM, Argenziano M, Di Paola A, Pota E, Di Pinto D, Di Martino M, Iolascon G. Osteoporosis in Childhood Cancer Survivors: Physiopathology, Prevention, Therapy and Future Perspectives. Cancers (Basel) 2022; 14:4349. [PMID: 36139510 PMCID: PMC9496695 DOI: 10.3390/cancers14184349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The improvement of chemotherapy, radiotherapy, and surgical interventions, together with hematopoietic stem cell transplantation, increased childhood cancer survival rate in the last decades, reaching 80% in Europe. Nevertheless, anti-cancer treatments are mainly responsible for the onset of long-term side effects in childhood cancer survivors (CCS), including alterations of the endocrine system function and activity. In particular, the most frequent dysfunction in CCS is a metabolic bone disorder characterized by low bone mineral density (BMD) with increased skeletal fragility. BMD loss is also a consequence of a sedentary lifestyle, malnutrition, and cancer itself could affect BMD, thus inducing osteopenia and osteoporosis. In this paper, we provide an overview of possible causes of bone impairment in CCS in order to propose management strategies for early identification and treatment of skeletal fragility in this population.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 4, 80138 Napoli, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|