1
|
Pușcaș A, Buț MG, Vari CE, Ősz BE, Ștefănescu R, Filip C, Jîtcă G, Istrate TI, Tero-Vescan A. Meldonium Supplementation in Professional Athletes: Career Destroyer or Lifesaver? Cureus 2024; 16:e63634. [PMID: 39092347 PMCID: PMC11292090 DOI: 10.7759/cureus.63634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Meldonium is a substance with known anti-anginal effects demonstrated by numerous studies and human clinical trials; however, it does not possess marketing authorization within the European Union, only in ex-Soviet republics. Since 2016, meldonium has been included by the World Anti-doping Agency (WADA) on the S4 list of metabolic modulators. In performance athletes, meldonium is now considered a doping agent due to its capacity to decrease lactate production during and after exercise, its capability to enhance the storage and utilization of glycogen, and its protective action against oxidative stress. Together, these attributes can significantly improve aerobic endurance, cardiac function, and capacity as well as shorten recovery times (allowing higher intensity training), thereby enhancing performance. The purpose of this review is to highlight the most important mechanisms underlying the protective effect of meldonium against mitochondrial dysfunction (MD), which is responsible for oxidative stress, inflammation, and the cardiac changes known as "athletic heart syndrome." Meldonium acts as an inhibitor of γ-butyrobetaine hydroxylase (BBOX), preventing the de novo synthesis of carnitine and its absorption at the intestinal level via the organic cation/carnitine transporter 2 (OCTN2) and directing the oxidation of fatty acids to the peroxisomes. The decrease in mitochondrial β-oxidation of fatty acids leads to a reduction in lipid peroxidation products that cause oxidative stress and prevent the formation of acyl/acetyl-carnitines involved in numerous pathological disorders. Given the recent findings of the potentially detrimental effects of prolonged high-intensity exercise on cardiovascular health and coronary atherosclerosis, there may be legitimate arguments for the justification of the use of substances like meldonium as protective supplements for athletes.
Collapse
Affiliation(s)
- Amalia Pușcaș
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Mădălina-Georgiana Buț
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Bianca-Eugenia Ősz
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Ruxandra Ștefănescu
- Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Cristina Filip
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - George Jîtcă
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Tudor-Ionuț Istrate
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Amelia Tero-Vescan
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| |
Collapse
|
2
|
Huguenard CJC, Cseresznye A, Evans JE, Darcey T, Nkiliza A, Keegan AP, Luis C, Bennett DA, Arvanitakis Z, Yassine HN, Mullan M, Crawford F, Abdullah L. APOE ε4 and Alzheimer's disease diagnosis associated differences in L-carnitine, GBB, TMAO, and acylcarnitines in blood and brain. Curr Res Transl Med 2023; 71:103362. [PMID: 36436355 PMCID: PMC10066735 DOI: 10.1016/j.retram.2022.103362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The apolipoprotein E (APOE) ε4 allele, involved in fatty acid (FA) metabolism, is a major genetic risk factor for Alzheimer's disease (AD). This study examined the influence of APOE genotypes on blood and brain markers of the L-carnitine system, necessary for fatty acid oxidation (FAO), and their collective influence on the clinical and pathological outcomes of AD. METHODS L-carnitine, its metabolites γ-butyrobetaine (GBB) and trimethylamine-n-oxide (TMAO), and its esters (acylcarnitines) were analyzed in blood from predominantly White community/clinic-based individuals (n = 372) and in plasma and brain from the Religious Order Study (ROS) (n = 79) using liquid chromatography tandem mass spectrometry (LC-MS/MS). FINDINGS Relative to total blood acylcarnitines, levels of short chain acylcarnitines (SCAs) were higher whereas long chain acylcarnitines (LCAs) were lower in AD, which was observed pre-clinically in APOE ε4s. Plasma medium chain acylcarnitines (MCAs) were higher amongst cognitively healthy APOE ε2 carriers relative to other genotypes. Compared to their respective controls, elevated TMAO and lower L-carnitine and GBB were associated with AD clinical diagnosis and these differences were detected preclinically among APOE ε4 carriers. Plasma and brain GBB, TMAO, and acylcarnitines were also associated with post-mortem brain amyloid, tau, and cerebrovascular pathologies. INTERPRETATION Alterations in blood L-carnitine, GBB, TMAO, and acylcarnitines occur early in clinical AD progression and are influenced by APOE genotype. These changes correlate with post-mortem brain AD and cerebrovascular pathologies. Additional studies are required to better understand the role of the FAO disturbances in AD.
Collapse
Affiliation(s)
- Claire J C Huguenard
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK
| | | | - James E Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - Aurore Nkiliza
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA
| | | | - Cheryl Luis
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK; James A. Haley VA Hospital, Tampa, FL, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK; James A. Haley VA Hospital, Tampa, FL, USA.
| |
Collapse
|
3
|
Coleman CN, Eke I, Makinde AY, Chopra S, Demaria S, Formenti SC, Martello S, Bylicky M, Mitchell JB, Aryankalayil MJ. Radiation-induced Adaptive Response: New Potential for Cancer Treatment. Clin Cancer Res 2020; 26:5781-5790. [PMID: 32554542 PMCID: PMC7669567 DOI: 10.1158/1078-0432.ccr-20-0572] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
Radiotherapy is highly effective due to its ability to physically focus the treatment to target the tumor while sparing normal tissue and its ability to be combined with systemic therapy. This systemic therapy can be utilized before radiotherapy as an adjuvant or induction treatment, during radiotherapy as a radiation "sensitizer," or following radiotherapy as a part of combined modality therapy. As part of a unique concept of using radiation as "focused biology," we investigated how tumors and normal tissues adapt to clinically relevant multifraction (MF) and single-dose (SD) radiation to observe whether the adaptations can induce susceptibility to cell killing by available drugs or by immune enhancement. We identified an adaptation occurring after MF (3 × 2 Gy) that induced cell killing when AKT-mTOR inhibitors were delivered following cessation of radiotherapy. In addition, we identified inducible changes in integrin expression 2 months following cessation of radiotherapy that differ between MF (1 Gy × 10) and SD (10 Gy) that remain targetable compared with preradiotherapy. Adaptation is reflected across different "omics" studies, and thus the range of possible molecular targets is not only broad but also time, dose, and schedule dependent. While much remains to be studied about the radiation adaptive response, radiation should be characterized by its molecular perturbations in addition to physical dose. Consideration of the adaptive effects should result in the design of a tailored radiotherapy treatment plan that accounts for specific molecular changes to be targeted as part of precision multimodality cancer treatment.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Iris Eke
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Adeola Y Makinde
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sandra Demaria
- Radiation Oncology and Pathology, Weill Cornell Medicine, New York, New York
| | - Silvia C Formenti
- Radiation Oncology and Pathology, Weill Cornell Medicine, New York, New York
| | - Shannon Martello
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michelle Bylicky
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B Mitchell
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
4
|
Gureev AP, Shaforostova EA, Vitkalova IY, Sadovnikova IS, Kalinina YI, Cherednichenko VR, Reznikova KA, Valuyskikh VV, Popov VN. Long-term mildronate treatment increased Proteobacteria level in gut microbiome, and caused behavioral deviations and transcriptome change in liver, heart and brain of healthy mice. Toxicol Appl Pharmacol 2020; 398:115031. [PMID: 32389661 DOI: 10.1016/j.taap.2020.115031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Mildronate is a cardiac and neuroprotective drug that is widely used in some countries. By inhibiting carnitine biosynthesis, mildronate impairs the fatty acids transport into mitochondria, thereby decreasing the β-oxidation intensity. Since 2016, it has been prohibited by the World Anti-Doping Agency (WADA). However, the information on its safety and its influence on the athletes' health is scarce. There are no published studies on whether mildronate-induced long-term metabolism "rearrangement" may cause negative effects on high-metabolic-rate organs and on the whole organism. Here, we demonstrate that long-term mildronate treatment of healthy mice induced global metabolism change at the transcriptome level in liver, heart, and brain. Mildronate treatment also induced some behavioral changes such as anxiety-related behavior and diminished explorative behavior. We also found that mildronate induced a dysbiosis, as manifested by an increase in Proteobacteria level in gut microbiome. At the same time, the absence of a statistically significant increase in mouse strength and endurance procedures suggests that mildronate effect on productivity is negligible. The sum of our data suggests that long-term treatment of healthy mice with mildronate induces dysbiosis and behavioral deviations despite the effectiveness of mildronate for cardiac and neurological diseases. Thus, we suggest that long-term mildronate treatment is undesirable or at the very least should be accompanied by prebiotics treatments, but this issue should be studied further.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Inna Yu Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Yulia I Kalinina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vadim R Cherednichenko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Karina A Reznikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Valeria V Valuyskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
5
|
Berlato DG, Bairros AVD. Meldonium: Pharmacological, toxicological, and analytical aspects. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320915143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Meldonium is the active molecule from Mildronate® with similar chemical structure to an amino acid, and it is known as (3-(2,2,2-trimethylhydrazine) propionate) (CAS 76144-81-5). This pharmaceutical substance is approved in Eastern Europe for cerebral and myocardial ischemia and has been on the World Doping Association’s banned substances list since January 2016. The goal of this review is to relate the use of meldonium as a doping agent, considering its pharmacological, toxicological, and analytical aspects. This review is based on the scientific literature from digital platforms. The main mechanism of action of meldonium is based on a decrease in l-carnitine levels and increase of peroxisomes activity in the cytosol. Females were more susceptible to the substance in animal experiments for toxicological tests. There is currently no report in the scientific literature about acute or chronic intoxication cases by meldonium in humans. Based on the literature findings, meldonium showed ergogenic effect in animals and human volunteers. For anti-doping analysis, urine is the biological matrix of choice, and dilute-and-shoot is the most common sample treatment in addition to liquid chromatography–mass spectrometry analysis. Other approaches could be used to determine meldonium levels, mainly for screening tests, such as l-carnitine or gamma-butyrobetaine levels.
Collapse
Affiliation(s)
- Dener Gomes Berlato
- Nucleus of Applied Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - André Valle de Bairros
- Nucleus of Applied Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS DISCOVERY 2018; 24:89-110. [PMID: 30523710 DOI: 10.1177/2472555218812821] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Lorena Pochini
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,2 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
7
|
Rabin O, Uiba V, Miroshnikova Y, Zabelin M, Samoylov A, Karkischenko V, Semyonov S, Astrelina T, Razinkin S. Meldonium long-term excretion period and pharmacokinetics in blood and urine of healthy athlete volunteers. Drug Test Anal 2018; 11:554-566. [PMID: 30328291 DOI: 10.1002/dta.2521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022]
Abstract
Meldonium is a metabolic drug whose inclusion in the 2016 List of Prohibited Substances and Methods followed the analysis of data collected under the 2015 World Anti-Doping Agency Monitoring Program. In the early months of 2016, anti-doping laboratories reported an unusually high number of cases in which urine samples contained high concentrations of meldonium. Consequently, the meldonium excretion period in healthy athletes and the substance's long-term urine and blood (plasma) pharmacokinetics became central questions for the anti-doping community to address, to ensure appropriate assessment of the scientific and medical situation, and also fair treatment of athletes from a result management and legal standpoint. At the present time, data on meldonium pharmacokinetics is limited to a few studies, with no known data available on long-term excretion of high oral doses. The primary objective of this open-label study was to determine long-term urine and plasma pharmacokinetic parameters of meldonium in healthy volunteers. Study design included single and repeated functional load testing and assessment of L-carnitine administration on meldonium excretion and pharmacokinetics. Thirty-two volunteers were equally divided into two groups receiving either 1.0 g or 2.0 g of oral meldonium daily for 3 weeks. The study found meldonium takes several days to attain a steady state in blood and displays an elimination period over several months after cessation of treatment. Moreover, findings demonstrate that the daily dose, periodicity and duration of treatment with meldonium are the most important factors to consider in calculating the substance's elimination and complete body clearance.
Collapse
Affiliation(s)
| | - Vladimir Uiba
- Federal Medical Biological Agency (FMBA), Moscow, Russia
| | | | - Maksim Zabelin
- Federal Medical Biological Agency (FMBA), Moscow, Russia
| | - Aleksander Samoylov
- State Research Center Federal Medical Biophysical Center (SRC-FMBC), FMBA, Moscow, Russia
| | | | - Sergey Semyonov
- Research and Technical Center of Radiation-Chemical Safety and Hygiene, FMBA, Moscow, Russia
| | - Tatiana Astrelina
- State Research Center Federal Medical Biophysical Center (SRC-FMBC), FMBA, Moscow, Russia
| | - Sergey Razinkin
- State Research Center Federal Medical Biophysical Center (SRC-FMBC), FMBA, Moscow, Russia
| |
Collapse
|
8
|
Forsdahl G, Jančić-Stojanović B, Anđelković M, Dikić N, Geisendorfer T, Jeitler V, Gmeiner G. Urinary excretion studies of meldonium after multidose parenteral application. J Pharm Biomed Anal 2018; 161:289-295. [DOI: 10.1016/j.jpba.2018.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
|
9
|
Nazarenko AY. Crystal structures of binary compounds of meldonium 3-(1,1,1-tri-methyl-hydrazin-1-ium-2-yl)prop-ano-ate with sodium bromide and sodium iodide. Acta Crystallogr E Crystallogr Commun 2018; 74:829-834. [PMID: 29951240 PMCID: PMC6002828 DOI: 10.1107/s2056989018006977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022]
Abstract
3-(1,1,1-Tri-methyl-hydrazin-1-ium-2-yl)propano-ate (C6H14N2O2, M, more commonly known under its commercial names Meldonium or Mildronate) co-crystalizes with sodium bromide and sodium iodide forming polymeric hydrates poly[[tetra-μ-aqua-di-aqua-bis-[3-(1,1,1-tri-methyl-hydrazin-1-ium-2-yl)propano-ate]disodium] dibromide tetra-hydrate], [Na2(C6H14N2O2)2(H2O)6]Br2·4H2O, and poly[[di-μ-aqua-di-aqua-[μ-3-(1,1,1-tri-methyl-hydrazin-1-ium-2-yl)propano-ate]disodium] diiodide], [Na2(C6H14N2O2)2(H2O)4]I2. The coordination numbers of the sodium ions are 6; the coordination polyhedra can be described as distorted octa-hedra. Metal ions and M zwitterions are assembled into infinite layers via electrostatic inter-actions and hydrogen-bonded networks. These layers are connected via electrostatic attraction between halogenide ions and positive tri-methyl-hydrazinium groups into a three-dimensional structure.
Collapse
|
10
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2017; 10:9-27. [DOI: 10.1002/dta.2336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|
11
|
Knych HK, Stanley SD, McKemie DS, Arthur RM, Bondesson U, Hedeland M, Thevis M, Kass PH. Pharmacokinetics and pharmacodynamics of meldonium in exercised thoroughbred horses. Drug Test Anal 2017; 9:1392-1399. [DOI: 10.1002/dta.2214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/06/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Heather K. Knych
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis California USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine; University of California; Davis California USA
| | - Scott D. Stanley
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis California USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine; University of California; Davis California USA
| | - Dan S. McKemie
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis California USA
| | - Rick M. Arthur
- School of Veterinary Medicine; University of California; Davis California USA
| | - Ulf Bondesson
- National Veterinary Institute (SVA); Uppsala Sweden
- Uppsala University; Uppsala Sweden
| | - Mikael Hedeland
- National Veterinary Institute (SVA); Uppsala Sweden
- Uppsala University; Uppsala Sweden
| | - Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University; Cologne Germany
| | - Philip H. Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine; University of California; Davis California USA
| |
Collapse
|