1
|
Ivanova M, Germanova K, Petelin DS, Ragimova A, Kopytin G, Volel BA, Nikulin VV, Herrojo Ruiz M. Frequency-specific changes in prefrontal activity associated with maladaptive belief updating in volatile environments in euthymic bipolar disorder. Transl Psychiatry 2025; 15:13. [PMID: 39824803 PMCID: PMC11742065 DOI: 10.1038/s41398-025-03225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of environmental changes. Additionally, we examined if this increased expectation speeds up belief updating in decision-making, associated with modulation of rhythmic neural activity within the prefrontal, orbitofrontal, and anterior cingulate cortex (PFC, OFC, ACC). Twenty-two euthymic BD and 27 healthy control (HC) participants completed a reward-based motor decision-making task in a volatile setting. Hierarchical Bayesian modelling revealed BD participants anticipated greater environmental volatility, resulting in a more stochastic mapping from beliefs to actions and paralleled by lower win rates and a reduced tendency to repeat rewarded actions than HC. Despite this, BD individuals adjusted their expectations of action-outcome contingencies more slowly, but both groups invigorated their actions similarly. On a neural level, while healthy individuals exhibited an alpha-beta suppression and gamma increase during belief updating, BD participants showed dampened effects, extending across the PFC, OFC, and ACC regions. This was accompanied by an abnormally increased beta-band directed information flow in BD. Overall, the results suggest euthymic BD individuals anticipate environmental change without adequately learning from it, contributing to maladaptive belief updating. Alterations in frequency-domain amplitude and functional connectivity within the PFC, OFC, and ACC during belief updating underlie the computational effects and could serve as potential indicators for predicting relapse in future research.
Collapse
Affiliation(s)
- Marina Ivanova
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Ksenia Germanova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Aynur Ragimova
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Grigory Kopytin
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | | | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | |
Collapse
|
2
|
Glas VFJ, Koenders MA, Kupka RW, Regeer EJ. How to study psychological mechanisms of mania? A systematic review on the methodology of experimental studies on manic mood dysregulation of leading theories on bipolar disorder. Bipolar Disord 2024; 26:646-660. [PMID: 39043623 DOI: 10.1111/bdi.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Although there are several psychological theories on bipolar disorders (BD), the empirical evidence on these theories through experimental studies is still limited. The current study systematically reviews experimental methods used in studies on the main theories of BD: Reward Hypersensitivity Theory (RST) or Behavioral Activation System (BAS), Integrative Cognitive Model (ICM), Positive Emotion Persistence (PEP), Manic Defense theory (MD), and Mental Imagery (MI). The primary aim is to provide an overview of the used methods and to identify limitations and suggest areas of improvement. METHODS A systematic search of six databases until October 2023 was conducted. Study selection involved two independent reviewers extracting data on experimental study design and methodology. RESULTS A total of 84 experimental studies were reviewed. BAS and RST were the most frequently studied theories. The majority of these experimental studies focus on mechanisms of reward sensitivity. Other important elements of the reviewed theories, such as goal setting and-attainment, situation selection (avoidance or approach), activation, affective/emotional reactivity, and regulatory strategies, are understudied. Self-report and neuropsychological tasks are most often used, while mood induction and physiological measures are rarely used. CONCLUSION There is a need for more consensus on the operationalization of psychological theories of mania. Standardization of test batteries could improve comparability among studies and foster a more systematic approach to experimental research. Research on affective (activated) states is still underrepresented in comparison with studies on trait vulnerabilities.
Collapse
Affiliation(s)
- V F J Glas
- Altrecht Institute for Mental Health Care, Utrecht, The Netherlands
- Department of Psychiatry and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - M A Koenders
- Clinical Psychology Unit, Leiden University, Leiden, The Netherlands
| | - R W Kupka
- Altrecht Institute for Mental Health Care, Utrecht, The Netherlands
- Department of Psychiatry and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - E J Regeer
- Altrecht Institute for Mental Health Care, Utrecht, The Netherlands
| |
Collapse
|
3
|
Wu YK, Zhu LL, Li JT, Li Q, Dai YR, Li K, Mitchell PB, Si TM, Su YA. Striatal Functional Alterations Link to Distinct Symptomatology Across Mood States in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:777-785. [PMID: 38703823 DOI: 10.1016/j.bpsc.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND As a central hub in cognitive and emotional brain circuits, the striatum is considered likely to be integrally involved in the psychopathology of bipolar disorder (BD). However, it remains unclear how alterations in striatal function contribute to distinct symptomatology of BD during different mood states. METHODS Behavioral assessment (i.e., emotional symptoms and cognitive performance) and neuroimaging data were collected from 125 participants comprising 31 (hypo)manic, 31 depressive, and 31 euthymic patients with BD, and 32 healthy control participants. We compared the functional connectivity (FC) of striatal subregions across BD mood states with healthy control participants and then used a multivariate data-driven approach to explore dimensional associations between striatal connectivity and behavioral performance. Finally, we compared the FC and behavioral composite scores, which reflect the individual weighted representation of the associations, among different mood states. RESULTS Patients in all mood states exhibited increased FC between the bilateral ventral rostral putamen and ventrolateral thalamus. Bipolar (hypo)mania uniquely exhibited increased ventral rostral putamen connectivity and superior ventral striatum connectivity. One latent component was identified, whereby increased FCs of striatal subregions were associated with distinct psychopathological symptomatology (more manic symptoms, elevated positive mood, less depressive symptoms, and worse cognitive performance). Patients with bipolar (hypo)mania had the highest FC and behavioral composite scores while bipolar patients with depression had the lowest scores. CONCLUSIONS Our data demonstrated both trait features of BD and state features specific to bipolar (hypo)mania. The findings underscored the fundamental role of the striatum in the pathophysiological processes underlying specific symptomatology across all mood states.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qian Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - You-Ran Dai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ke Li
- PLA Strategic support Force Characteristic Medical Center, Beijing, China
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, New South Wales, Australia; Black Dog Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
4
|
Macoveanu J, Kjærstad HL, Halvorsen KS, Fisher PM, Vinberg M, Kessing LV, Miskowiak KW. Trajectory of reward-related abnormalities in unaffected relatives of patients with bipolar disorder - A longitudinal fMRI study. J Psychiatr Res 2024; 170:217-224. [PMID: 38157669 DOI: 10.1016/j.jpsychires.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
First-degree relatives of patients with bipolar disorder are at heightened risk of mood episodes, which may be attributed to the existence of endophenotypes i.e., heritable (neuro)biological changes present in patients and their unaffected relatives (UR). In this longitudinal MRI study, we aim to investigate the trajectories of aberrant reward-related functional changes identified in UR vs healthy controls (HC). Sixty-eight UR and 65 HC of similar age and gender distribution underwent MRI at baseline while performing a card guessing task. Of these, 29 UR and 36 HC were investigated with the same protocol following a 16-month period in average. We first identified brain regions showing group differences in the neural response to expected value (EV) and reward prediction error (PE) at baseline and analyzed how the reward-related response in these regions changed over time in UR vs HC. Relative to HC at baseline, UR showed lower EV signal in the right ventrolateral prefrontal cortex (vlPFC) and paracingulate gyrus and lower PE signal in the left vlPFC and dorsomedial PFC. The trajectories of these abnormalities in UR showed a normalization of the prefrontal EV signals, whereas the PE signals which correlated with depressive symptoms remained stable over time. While the UR showed both blunted EV and PE signals, none of these abnormalities increased over time, which is consistent with the observed stable mood symptoms.
Collapse
Affiliation(s)
- Julian Macoveanu
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark.
| | - Hanne Lie Kjærstad
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Kaja Sofie Halvorsen
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Department of Psychology, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Hu Z, Zhou C, He L. Abnormal dynamic functional network connectivity in patients with early-onset bipolar disorder. Front Psychiatry 2023; 14:1169488. [PMID: 37448493 PMCID: PMC10338119 DOI: 10.3389/fpsyt.2023.1169488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Objective To explore the changes in dynamic functional brain network connectivity (dFNC) in patients with early-onset bipolar disorder (BD). Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 39 patients with early-onset BD and 22 healthy controls (HCs). Four repeated and stable dFNC states were characterised by independent component analysis (ICA), sliding time windows and k-means clustering, and three dFNC temporal metrics (fraction of time, mean dwell time and number of transitions) were obtained. The dFNC temporal metrics and the differences in dFNC between the two groups in different states were evaluated, and the correlations between the differential dFNC metrics and neuropsychological scores were analysed. Results The dFNC analysis showed four connected patterns in all subjects. Compared with the HCs, the dFNC patterns of early-onset BD were significantly altered in all four states, mainly involving impaired cognitive and perceptual networks. In addition, early-onset BD patients had a decreased fraction of time and mean dwell time in state 2 and an increased mean dwell time in state 3 (p < 0.05). The mean dwell time in state 3 of BD showed a positive correlation trend with the HAMA score (r = 0.4049, p = 0.0237 × 3 > 0.05 after Bonferroni correction). Conclusion Patients with early-onset BD had abnormal dynamic properties of brain functional network connectivity, suggesting that their dFNC was unstable, mainly manifesting as impaired coordination between cognitive and perceptual networks. This study provided a new imaging basis for the neuropathological study of emotional and cognitive deficits in early-onset BD.
Collapse
Affiliation(s)
- Ziyi Hu
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chun Zhou
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Laichang He
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Edmiston EK, Fournier JC, Chase HW, Aslam HA, Lockovich J, Graur S, Bebko G, Bertocci M, Rozovsky R, Mak K, Forbes EE, Stiffler R, Phillips ML. Left ventrolateral prefrontal cortical activity during reward expectancy predicts mania risk up to one year post scan. J Affect Disord 2022; 319:325-328. [PMID: 36087789 PMCID: PMC11488591 DOI: 10.1016/j.jad.2022.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Identification of neural markers associated with risk for manic symptoms is an important challenge for neuropsychiatric research. Previous work has highlighted the association between predisposition for mania/hypomania and elevated reward sensitivity. Elevated activity in the left ventrolateral prefrontal cortex (L vlPFC) during reward expectancy (RE) is associated with measures predictive of risk for manic/hypomanic symptoms. However, no studies have examined this relationship longitudinally. The goal of this study was to identify a neural marker associated with longitudinal risk for manic/hypomanic symptoms. METHODS We used a card guessing functional magnetic resonance imaging (fMRI) paradigm to examine RE-related L vlPFC activity. One hundred and three young adults who were either healthy or experiencing psychological distress completed a single baseline fMRI scan and self-report measures of manic/hypomanic symptoms. Self-report measures were repeated up to two follow up visits over one year. RESULTS We identified a significant positive relationship between baseline RE-related L vlPFC activity and MOODS Manic Domain scores up to one-year post scan. This relationship was specific to manic symptoms and was not present for MOODS depression-related domains. LIMITATIONS This study was not designed to predict conversion to bipolar disorder, but rather the more proximal construct of lifetime risk for mania/hypomania. CONCLUSIONS RE-related L vlPFC activity may serve as an important marker of risk for future manic/hypomanic symptoms and may also be a potential target for intervention.
Collapse
Affiliation(s)
- E K Edmiston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - J C Fournier
- Department of Psychiatry, The Ohio State University College of Medicine, Columbus, OH, USA
| | - H W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H A Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Lockovich
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - K Mak
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E E Forbes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Altered brain activation during reward anticipation in bipolar disorder. Transl Psychiatry 2022; 12:300. [PMID: 35902559 PMCID: PMC9334601 DOI: 10.1038/s41398-022-02075-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Although altered reward sensitivity has been observed in individuals with bipolar disorder (BD), the brain function findings related to reward processing remain unexplored and inconsistent. This meta-analysis aimed to identify brain activation alterations underlying reward anticipation in BD. A systematic literature research was conducted to identify fMRI studies of reward-relevant tasks performed by BD individuals. Using Anisotropic Effect Size Signed Differential Mapping, whole-brain and ROI of the ventral striatum (VS) coordinate-based meta-analyses were performed to explore brain regions showing anomalous activation in individuals with BD compared to healthy controls (HC), respectively. A total of 21 studies were identified in the meta-analysis, 15 of which were included in the whole-brain meta-analysis and 17 in the ROI meta-analysis. The whole-brain meta-analysis revealed hypoactivation in the bilateral angular gyrus and right inferior frontal gyrus during reward anticipation in individuals with BD compared to HC. No significant activation differences were observed in bilateral VS between two groups by whole-brain or ROI-based meta-analysis. Individuals with BD type I and individuals with euthymic BD showed altered activation in prefrontal, angular, fusiform, middle occipital gyrus, and striatum. Hypoactivation in the right angular gyrus was positively correlated with the illness duration of BD. The present study reveals the potential neural mechanism underlying impairment in reward anticipation in BD. Some clinical features such as clinical subtype, mood state, and duration of illness confound the underlying neurobiological abnormality reward anticipation in BD. These findings may have implications for identifying clinically relevant biomarkers to guide intervention strategies for BD.
Collapse
|
8
|
Okanda Nyatega C, Qiang L, Jajere Adamu M, Bello Kawuwa H. Altered striatal functional connectivity and structural dysconnectivity in individuals with bipolar disorder: A resting state magnetic resonance imaging study. Front Psychiatry 2022; 13:1054380. [PMID: 36440395 PMCID: PMC9682136 DOI: 10.3389/fpsyt.2022.1054380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is a mood swing illness characterized by episodes ranging from depressive lows to manic highs. Although the specific origin of BD is unknown, genetics, environment, and changes in brain structure and chemistry may all have a role. Through magnetic resonance imaging (MRI) evaluations, this study looked into functional abnormalities involving the striatum between BD group and healthy controls (HC), compared the whole-brain gray matter (GM) morphological patterns between the groups and see whether functional connectivity has its underlying structural basis. MATERIALS AND METHODS We applied sliding windows to functional magnetic resonance imaging (fMRI) data from 49 BD patients and 44 HCs to generate temporal correlations maps to determine strength and variability of the striatum-to-whole-brain-network functional connectivity (FC) in each window whilst also employing voxel-based morphometry (VBM) to high-resolution structural MRI data to uncover structural differences between the groups. RESULTS Our analyses revealed increased striatal connectivity in three consecutive windows 69, 70, and 71 (180, 182, and 184 s) in individuals with BD (p < 0.05; Bonferroni corrected) in fMRI images. Moreover, the VBM findings of structural images showed gray matter (GM) deficits in the left precentral gyrus and middle frontal gyrus of the BD patients (p = 0.001, uncorrected) when compared to HCs. Variability of striatal connectivity did not reveal significant differences between the groups. CONCLUSION These findings revealed that BD was associated with a weakening of the precentral gyrus and middle frontal gyrus, also implying that bipolar illness may be linked to striatal functional brain alterations.
Collapse
Affiliation(s)
- Charles Okanda Nyatega
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.,Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Li Qiang
- School of Microelectronics, Tianjin University, Tianjin, China
| | | | | |
Collapse
|
9
|
Abstract
Abstract
Purpose of Review
Anhedonia is a transdiagnostic symptom comprising reduced subjective reward or pleasure. Anhedonia influences subjective anticipation and in-the-moment experiences. This review draws together affective learning and engagement evidence for anhedonia affecting subjective experiences of social environments.
Recent Findings
While social engagement is diminished consistently, subjective appraisals of social contexts vary across different mental health disorders. Low positive affect during social experiences or stimuli is reported in PTSD, mood, schizophrenia, and anxiety disorders. Diminished neural reward networks underpin the anticipation of social experiences in ADHD, schizophrenia spectrum, and autistic spectrum disorders. Multiple theories exist to explain how anhedonia might interfere with social environments.
Summary
Anhedonia is a barrier to engagement, motivation, and enjoyment of social contexts. While many studies characterize experiences during social contexts, learning theories provide the most promise for developing targeted interventions.
Collapse
|
10
|
Bart CP, Titone MK, Ng TH, Nusslock R, Alloy LB. Neural reward circuit dysfunction as a risk factor for bipolar spectrum disorders and substance use disorders: A review and integration. Clin Psychol Rev 2021; 87:102035. [PMID: 34020138 DOI: 10.1016/j.cpr.2021.102035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/13/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
Abstract
Bipolar spectrum disorders (BSDs) and substance use disorders (SUDs) are associated with neural reward dysfunction. However, it is unclear what pattern of neural reward function underlies pre-existing vulnerability to BSDs and SUDs, or whether neural reward function explains their high co-occurrence. The current paper provides an overview of the separate literatures on neural reward sensitivity in BSDs and SUDs. We provide a systematic review of 35 studies relevant to identifying neural reward function vulnerability to BSDs and SUDs. These studies include those examining neural reward processing on a monetary reward task with prospective designs predicting initial onset of SUDs, familial risk studies that examine unaffected offspring or first-degree relatives of family members with BSDs or SUDs, and studies that examine individuals with BSDs or SUDs who are not currently in an episode of the disorder. Findings from the review highlight that aberrant responding and connectivity across neural regions associated with reward and cognitive control confers risk for the development of BSDs and SUDs. Discussion focuses on limitations of the extant literature. We conclude with an integration and theoretical model for understanding how aberrant neural reward responding may constitute a vulnerability to the development of both BSDs and SUDs.
Collapse
Affiliation(s)
- Corinne P Bart
- Department of Psychology, Temple University, Philadelphia, PA, United States of America
| | - Madison K Titone
- Department of Psychology, Temple University, Philadelphia, PA, United States of America
| | - Tommy H Ng
- Department of Psychology, Temple University, Philadelphia, PA, United States of America
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, United States of America
| | - Lauren B Alloy
- Department of Psychology, Temple University, Philadelphia, PA, United States of America.
| |
Collapse
|
11
|
Tang G, Chen P, Chen G, Zhong S, Gong J, Zhong H, Ye T, Chen F, Wang J, Luo Z, Qi Z, Jia Y, Wang Y, Huang L. Inflammation is correlated with abnormal functional connectivity in unmedicated bipolar depression: an independent component analysis study of resting-state fMRI. Psychol Med 2021; 52:1-11. [PMID: 33602352 DOI: 10.1017/s003329172100009x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Inflammation might play a role in bipolar disorder (BD), but it remains unclear the relationship between inflammation and brain structural and functional abnormalities in patients with BD. In this study, we focused on the alterations of functional connectivity (FC), peripheral pro-inflammatory cytokines and their correlations to investigate the role of inflammation in FC in BD depression. METHODS In this study, 42 unmedicated patients with BD II depression and 62 healthy controls (HCs) were enrolled. Resting-state-functional magnetic resonance imaging was performed in all participants and independent component analysis was used. Serum levels of Interleukin-6 (IL-6) and Interleukin-8 (IL-8) were measured in all participants. Correlation between FC values and IL-6 and IL-8 levels in BD was calculated. RESULTS Compared with the HCs, BD II patients showed decreased FC in the left orbitofrontal cortex (OFC) implicating the limbic network and the right precentral gyrus implicating the somatomotor network. BD II showed increased IL-6 (p = 0.039), IL-8 (p = 0.002) levels. Moreover, abnormal FC in the right precentral gyrus were inversely correlated with the IL-8 (r = -0.458, p = 0.004) levels in BD II. No significant correlation was found between FC in the left OFC and cytokines levels. CONCLUSIONS Our findings that serum IL-8 levels are associated with impaired FC in the right precentral gyrus in BD II patients suggest that inflammation might play a crucial role in brain functional abnormalities in BD.
Collapse
Affiliation(s)
- Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - JiaYing Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou510655, China
| | - Hui Zhong
- Biomedical Translational Research Institute, Jinan University, Guangzhou510630, China
| | - Tao Ye
- Clinical Laboratory Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| |
Collapse
|
12
|
Xi C, Lai J, Du Y, Ng CH, Jiang J, Wu L, Zhang P, Xu Y, Hu S. Abnormal functional connectivity within the reward network: a potential neuroimaging endophenotype of bipolar disorder. J Affect Disord 2021; 280:49-56. [PMID: 33221607 DOI: 10.1016/j.jad.2020.11.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reward circuit dysfunction underlies the pathogenesis of bipolar disorder (BD). This study aims to investigate whether nucleus accumbens (NAcc) and ventromedial prefrontal cortex (vmPFC), two key reward regions for BD, have resting-state dysfunctional connectivity with other brain regions in depressed and euthymic BD. METHODS 40 bipolar depressive (DE), 20 euthymic patients (EU) and 20 healthy controls (HC) were recruited to undergo resting-state functional MRI (rs-fMRI) scanning. Seed-based functional connectivity (FC) was calculated between NAcc/vmPFC and the whole brain. Group differences were calculated and their correlations with clinical characteristics were analyzed. Support vector machine was applied to classify BD patients and HC based on the FC between the cluster of group difference and NAcc/vmPFC. RESULTS Whole brain networks of FC identified right anterior insular cortex (AIC) as a significant region with bilateral NAcc when compared among three groups. The right AIC-NAcc FC elevated in both patient groups and was highest in the EU group. Interestingly, vmPFC-based networks also identified the right AIC as a significant cluster. The right AIC-vmPFC FC elevated in both patient groups. However, FC between NAcc and vmPFC did not significantly differ BD patients from HC. Furthermore, the strength of FC between bilateral NAcc and the right AIC was positively associated with the illness course of BD. Notably, the NAcc/vmPFC-right AIC classifier acquired an accuracy of 68.75% and AUC-ROC of 78.17%. LIMITATIONS Our sample size is modest. CONCLUSIONS Our findings indicated that elevated NAcc/vmPFC-right AIC connectivity within the reward circuit could be a neuroimaging endophenotype of BD.
Collapse
Affiliation(s)
- Caixi Xi
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Yanli Du
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chee H Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiajun Jiang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lingling Wu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Peifen Zhang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
13
|
McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, Malhi GS, Nierenberg AA, Rosenblat JD, Majeed A, Vieta E, Vinberg M, Young AH, Mansur RB. Bipolar disorders. Lancet 2020; 396:1841-1856. [PMID: 33278937 DOI: 10.1016/s0140-6736(20)31544-0] [Citation(s) in RCA: 493] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
Bipolar disorders are a complex group of severe and chronic disorders that includes bipolar I disorder, defined by the presence of a syndromal, manic episode, and bipolar II disorder, defined by the presence of a syndromal, hypomanic episode and a major depressive episode. Bipolar disorders substantially reduce psychosocial functioning and are associated with a loss of approximately 10-20 potential years of life. The mortality gap between populations with bipolar disorders and the general population is principally a result of excess deaths from cardiovascular disease and suicide. Bipolar disorder has a high heritability (approximately 70%). Bipolar disorders share genetic risk alleles with other mental and medical disorders. Bipolar I has a closer genetic association with schizophrenia relative to bipolar II, which has a closer genetic association with major depressive disorder. Although the pathogenesis of bipolar disorders is unknown, implicated processes include disturbances in neuronal-glial plasticity, monoaminergic signalling, inflammatory homoeostasis, cellular metabolic pathways, and mitochondrial function. The high prevalence of childhood maltreatment in people with bipolar disorders and the association between childhood maltreatment and a more complex presentation of bipolar disorder (eg, one including suicidality) highlight the role of adverse environmental exposures on the presentation of bipolar disorders. Although mania defines bipolar I disorder, depressive episodes and symptoms dominate the longitudinal course of, and disproportionately account for morbidity and mortality in, bipolar disorders. Lithium is the gold standard mood-stabilising agent for the treatment of people with bipolar disorders, and has antimanic, antidepressant, and anti-suicide effects. Although antipsychotics are effective in treating mania, few antipsychotics have proven to be effective in bipolar depression. Divalproex and carbamazepine are effective in the treatment of acute mania and lamotrigine is effective at treating and preventing bipolar depression. Antidepressants are widely prescribed for bipolar disorders despite a paucity of compelling evidence for their short-term or long-term efficacy. Moreover, antidepressant prescription in bipolar disorder is associated, in many cases, with mood destabilisation, especially during maintenance treatment. Unfortunately, effective pharmacological treatments for bipolar disorders are not universally available, particularly in low-income and middle-income countries. Targeting medical and psychiatric comorbidity, integrating adjunctive psychosocial treatments, and involving caregivers have been shown to improve health outcomes for people with bipolar disorders. The aim of this Seminar, which is intended mainly for primary care physicians, is to provide an overview of diagnostic, pathogenetic, and treatment considerations in bipolar disorders. Towards the foregoing aim, we review and synthesise evidence on the epidemiology, mechanisms, screening, and treatment of bipolar disorders.
Collapse
Affiliation(s)
- Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation Strategic Research Centre, School of Medicine, Deakin University, Melbourne, VIC, Australia; Mental Health Drug and Alcohol Services, Barwon Health, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia; Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia; Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Elisa Brietzke
- Department of Psychiatry, Adult Division, Kingston General Hospital, Kingston, ON, Canada; Department of Psychiatry, Queen's University School of Medicine, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Benjamin I Goldstein
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Carlos López-Jaramillo
- Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Colombia; Mood Disorders Program, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Lars Vedel Kessing
- Copenhagen Affective Disorders Research Centre, Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark; Department of Psychiatry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gin S Malhi
- Discipline of Psychiatry, Northern Clinical School, University of Sydney, Sydney, NSW, Australia; Department of Academic Psychiatry, Northern Sydney Local Health District, Sydney, Australia
| | | | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amna Majeed
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Eduard Vieta
- Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Maj Vinberg
- Department of Psychiatry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley National Health Service Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Eckstrand KL, Forbes EE, Bertocci MA, Chase HW, Greenberg T, Lockovich J, Stiffler R, Aslam HA, Graur S, Bebko G, Phillips ML. Trauma Affects Prospective Relationships Between Reward-Related Ventral Striatal and Amygdala Activation and 1-Year Future Hypo/Mania Trajectories. Biol Psychiatry 2020; 89:868-877. [PMID: 33536131 PMCID: PMC8052260 DOI: 10.1016/j.biopsych.2020.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Trauma exposure is associated with a more severe, persistent course of affective and anxiety symptoms. Markers of reward neural circuitry function, specifically activation to reward prediction error (RPE), are impacted by trauma and predict the future course of affective symptoms. This study's purpose was to determine how lifetime trauma exposure influences relationships between reward neural circuitry function and the course of future affective and anxiety symptoms in a naturalistic, transdiagnostic observational context. METHODS A total of 59 young adults aged 18-25 (48 female and 11 male participants, mean ± SD = 21.5 ± 2.0 years) experiencing psychological distress completed the study. Participants were evaluated at baseline, 6, and 12 months. At baseline, the participants reported lifetime trauma events and completed a monetary reward functional magnetic resonance imaging task. Affective and anxiety symptoms were reported at each visit, and trajectories were calculated using MPlus. Neural activation during RPE and other phases of reward processing were determined using SPM8. Trauma and reward neural activation were entered as predictors of symptom trajectories. RESULTS Trauma exposure moderated prospective relationships between left ventral striatum (β = -1.29, p = .02) and right amygdala (β = 0.58, p = .04) activation to RPE and future hypo/mania severity trajectory: the interaction between greater trauma and greater left ventral striatum activation to RPE was associated with a shallower increase in hypo/mania severity, whereas the interaction between greater trauma and greater right amygdala activation to RPE was associated with increasing hypo/mania severity. CONCLUSIONS Trauma exposure affects prospective relationships between markers of reward circuitry function and affective symptom trajectories. Evaluating trauma exposure is thus crucial in naturalistic and treatment studies aiming to identify neural predictors of future affective symptom course.
Collapse
Affiliation(s)
- Kristen L Eckstrand
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tsafrir Greenberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeanette Lockovich
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ricki Stiffler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haris A Aslam
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Aldridge-Waddon L, Vanova M, Munneke J, Puzzo I, Kumari V. Atypical social reward anticipation as a transdiagnostic characteristic of psychopathology: A meta-analytic review and critical evaluation of current evidence. Clin Psychol Rev 2020; 82:101942. [PMID: 33160160 DOI: 10.1016/j.cpr.2020.101942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Several psychopathologies (e.g. schizophrenia spectrum conditions, autism spectrum disorders) are characterised by atypical interpersonal and social behaviour, and there is increasing evidence to suggest this atypical social behaviour is related to adjusted behavioural and neural anticipation of social rewards. This review brings together social reward anticipation research in psychopathology (k = 42) and examines the extent to which atypical social reward anticipation is a transdiagnostic characteristic. Meta-analyses of anticipatory reaction times revealed that, in comparison to healthy controls, attention-deficit/hyperactivity disorder, autism spectrum disorder, and schizophrenia spectrum conditions are associated with significantly reduced behavioural anticipation of social rewards. The pooled meta-analysis of anticipatory reaction times found that the full clinical sample demonstrated significant social reward hypoanticipation in comparison to the healthy control group with a medium effect size. A narrative synthesis of meta-analytically ineligible behavioural data, self-report data, and neuroimaging studies complemented the results of the meta-analysis, but also indicated that bipolar disorder, eating disorders, and sexual addiction disorders may be associated with social reward hyperanticipation. The evaluation of existing evidence suggests that future research should better account for factors that affect reward anticipation (e.g. gender, psychotropic medication) and highlights the importance of using stimuli other than happy faces as social rewards.
Collapse
Affiliation(s)
- Luke Aldridge-Waddon
- Division of Psychology, Department of Life Sciences & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK.
| | - Martina Vanova
- Division of Psychology, Department of Life Sciences & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK
| | - Jaap Munneke
- Division of Psychology, Department of Life Sciences & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK
| | - Ignazio Puzzo
- Division of Psychology, Department of Life Sciences & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK
| | - Veena Kumari
- Division of Psychology, Department of Life Sciences & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK
| |
Collapse
|
16
|
Shi J, Guo H, Liu S, Xue W, Fan F, Fan H, An H, Wang Z, Tan S, Yang F, Tan Y. Resting-state functional connectivity of neural circuits associated with primary and secondary rewards in patients with bipolar disorder. Soc Cogn Affect Neurosci 2020; 15:755-763. [PMID: 32734286 PMCID: PMC7511880 DOI: 10.1093/scan/nsaa100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/08/2020] [Accepted: 07/11/2020] [Indexed: 01/27/2023] Open
Abstract
Objective We used resting-state functional connectivity (rsFC) to evaluate the integrity of the neural circuits associated with primary and secondary rewards in bipolar disorder (BD) with different mood phases. Methods Sixty patients with BD [21 patients with depressive episode of BD (BDD) and 41 patients with maniac episode of BD (BDM)] and 42 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. rsFC was assessed using region of interest-wise analyses. Results Attenuation of rsFC at the orbitofrontal cortex (OFC) and the left ventral striatum (LVS) was observed in the secondary reward circuit of patients with BD compared to that of HCs. Among BDD, BDM and HCs, the rsFC between OFC and LVS in BDM was intermediate, while the rsFC between OFC and right ventral striatum/right amygdala in BDM was the highest; the corresponding rsFC values in BDD were the lowest. Furthermore, a positive correlation was found between rsFC and Young Mania Rating Scale scores in BDM. Conclusions This study suggests that there may be an abnormal rsFC between OFC and LVS in the second reward of patients with BD and the discrepant patterns of rsFC may exist between different mood states in patients with BD.
Collapse
Affiliation(s)
- Jing Shi
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Hua Guo
- Present Office, The Psychiatric Hospital of Zhumadian, Zhumadian, Henan 463000, China
| | - Sijia Liu
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Wei Xue
- Department of Clinical Pharmacology, Beijing Hospital of the Ministry of Health, Beijing 100730, P.R. China
| | - Fengmei Fan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Hongzhen Fan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Huimei An
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Correspondence: Zhiren Wang, Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China, 100096.
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Fude Yang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Yunlong Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| |
Collapse
|
17
|
Shan X, Qiu Y, Pan P, Teng Z, Li S, Tang H, Xiang H, Wu C, Tan Y, Chen J, Guo W, Wang B, Wu H. Disrupted Regional Homogeneity in Drug-Naive Patients With Bipolar Disorder. Front Psychiatry 2020; 11:825. [PMID: 32922322 PMCID: PMC7456987 DOI: 10.3389/fpsyt.2020.00825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Studies on alterations in the regional neural activity in the brain of patients with bipolar disorder (BD) have provided conflicting results because of different medications used and study designs. A low bone mineral density (BMD) is also observed in patients with BD. This study aimed to further explore regional neural activities in unmedicated patients with BD and their association with BMD. METHODS In this study, 40 patients with BD and 42 healthy controls were scanned through resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with regional homogeneity (ReHo) and pattern classification. Pearson's correlation analyses were performed to explore the correlations between abnormal ReHo and BMD. RESULTS A significant increase in ReHo values in the left inferior frontal gyrus (IFG)/temporal pole, left cerebellum vermis I/vermis II/parahippocampal gyrus/brainstem, and right superior temporal gyrus (STG) and a decrease in ReHo in the occipital gyrus (OG; left middle OG/superior OG/bilateral cuneus) were found in the patients with BD (p < 0.05) compared with those in the healthy controls. No significant correlation was observed between the abnormal ReHo values in any of the brain regions of the patients with BMD.Support vector machine (SVM) analyses revealed that the ReHo values in the right STG for distinguishing patients from healthy controls showed an accuracy of 91.89%, a sensitivity of 75.68%, and a specificity of 83.78%. The ReHo values in the left cerebellum vermis I/vermis II/parahippocampal gyrus/brainstem indicated an accuracy of 78.38%, a sensitivity of 75.68%, and a specificity of 81.08%. CONCLUSION This study further confirms the abnormal brain activities in extensive regions, and these brain regions are primarily located in the fronto-temporal-occipital circuit and the cerebellum vermis of patients with BD. The regional neural activity in the right STG and the left cerebellum vermis I/vermis II/parahippocampal gyrus/brainstem may serve as potential imaging markers to distinguish patients with BD from healthy controls.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pan Pan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuxi Tan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
| | - Bolun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
19
|
Schwarz K, Moessnang C, Schweiger JI, Baumeister S, Plichta MM, Brandeis D, Banaschewski T, Wackerhagen C, Erk S, Walter H, Tost H, Meyer-Lindenberg A. Transdiagnostic Prediction of Affective, Cognitive, and Social Function Through Brain Reward Anticipation in Schizophrenia, Bipolar Disorder, Major Depression, and Autism Spectrum Diagnoses. Schizophr Bull 2020; 46:592-602. [PMID: 31586408 PMCID: PMC7147576 DOI: 10.1093/schbul/sbz075] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The relationship between transdiagnostic, dimensional, and categorical approaches to psychiatric nosology is under intense debate. To inform this discussion, we studied neural systems linked to reward anticipation across a range of disorders and behavioral dimensions. We assessed brain responses to reward expectancy in a large sample of 221 participants, including patients with schizophrenia (SZ; n = 27), bipolar disorder (BP; n = 28), major depressive disorder (MD; n = 31), autism spectrum disorder (ASD; n = 25), and healthy controls (n = 110). We also characterized all subjects with an extensive test battery from which a cognitive, affective, and social functioning factor was constructed. These factors were subsequently related to functional responses in the ventral striatum (vST) and neural networks linked to it. We found that blunted vST responses were present in SZ, BP, and ASD but not in MD. Activation within the vST predicted individual differences in affective, cognitive, and social functioning across diagnostic boundaries. Network alterations extended beyond the reward network to include regions implicated in executive control. We further confirmed the robustness of our results in various control analyses. Our findings suggest that altered brain responses during reward anticipation show transdiagnostic alterations that can be mapped onto dimensional measures of functioning. They also highlight the role of executive control of reward and salience signaling in the disorders we study and show the power of systems-level neuroscience to account for clinically relevant behaviors.
Collapse
Affiliation(s)
- Kristina Schwarz
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Janina I Schweiger
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Michael M Plichta
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,Present address: Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt am Main, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, Zurich, Switzerland,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, ETH and University of Zurich, Zurich, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Carolin Wackerhagen
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Tost
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany,To whom correspondence should be addressed; tel: +49-(0)-621-1703-2001, fax: +49-(0)-621-1703-2005, e-mail:
| |
Collapse
|
20
|
Gu YT, Zhou C, Yang J, Zhang Q, Zhu GH, Sun L, Ge MH, Wang YY. A transdiagnostic comparison of affective decision-making in patients with schizophrenia, major depressive disorder, or bipolar disorder. Psych J 2020; 9:199-209. [PMID: 32077267 DOI: 10.1002/pchj.351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 11/11/2022]
Abstract
Deficit in decision-making has been found in patients with schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD), respectively, while the common and distinct characteristics of this deficit among these patients are still unclear. The present study aimed to make a transdiagnostic comparison of the affective decision-making ability in patients with SCZ, MDD, and BD. In this study, 33 patients with SCZ, 23 patients with MDD, 29 patients with BD, and 34 healthy controls (HCs) were recruited and the Iowa Gambling Task (IGT) was used to assess the affective decision-making ability. The results showed that all three diagnostic groups tended to select the disadvantageous decks but not advantageous decks compared to HCs. For patients with SCZ, an excessive preference for the disadvantageous decks with larger-magnitude less frequent punishments (deck B) may be the main reason of the deficit in affective decision-making, while that in patients with MDD was a significantly decreased ability to choose advantageous decks on the whole but with larger-magnitude less frequent punishments (deck D). As regards patients with BD, the concurrence of more choices of deck B and fewer choices of deck D was the characteristic of the deficit in affective decision-making. Our findings suggest a common affective decision-making impairment in the context of multiple choices in patients with SCZ, MDD, and BD, while the underlying mechanisms of the impairment among these patients may be slightly different.
Collapse
Affiliation(s)
- Yu-Ting Gu
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Chen Zhou
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Juan Yang
- Department of Psychiatry, Mental Health Centre of Weifang City, Weifang, China
| | - Qin Zhang
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Guo-Hui Zhu
- Centre for Depression Therapy, Mental Health Centre of Weifang City, Weifang, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Mao-Hong Ge
- Department of Psychiatry, Mental Health Centre of Weifang City, Weifang, China
| | - Yan-Yu Wang
- Department of Psychology, Weifang Medical University, Weifang, China
| |
Collapse
|
21
|
Kim H, Kim YK, Lee JY, Choi AR, Kim DJ, Choi JS. Hypometabolism and altered metabolic connectivity in patients with internet gaming disorder and alcohol use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109680. [PMID: 31255649 DOI: 10.1016/j.pnpbp.2019.109680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Abstract
Internet gaming disorder (IGD) has become the subject of growing concern as an addictive behavior and has been compared with substance/non-substance-related addiction. Although IGD show clinical impairments and social dysfunction, neurobiological alterations in IGD have not been clearly elucidated. We used 18F-fluorodeoxyglucose PET to investigate differences in glucose metabolism and metabolic connectivity in young men [thirty-six patients with IGD, twenty-six patients with alcohol use disorder (AUD) and thirty-nine healthy controls (HC)]. Compared with the HC, IGD showed hypometabolism in the anterior cingulate cortex (ACC), temporal, frontal, parietal and striatum and AUD exhibited hypometabolism in the occipital, temporal and parietal lobule. Furthermore, IGD showed negative correlations between the ACC and game duration and between the orbitofrontal cortex and impulsivity. Also, IGD had lower metabolic connectivity between temporal and limbic regions and between the motor area and occipital region. And AUD showed greater metabolic connectivity between the orbitofrontal and parietal regions, and between the somatosensory or parietal and temporal regions, but lower metabolic connectivity in the fronto-striatal or fronto-limbic regions. Our results provide evidences that hypometabolism and altered metabolic connectivity in IGD might be related to the abnormal sensory function by longtime gaming and dysfunction of impulsive/motivational states.
Collapse
Affiliation(s)
- Heejung Kim
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Ji Yoon Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - A Ruem Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dai Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Johnson SL, Mehta H, Ketter TA, Gotlib IH, Knutson B. Neural responses to monetary incentives in bipolar disorder. NEUROIMAGE-CLINICAL 2019; 24:102018. [PMID: 31670069 PMCID: PMC6831914 DOI: 10.1016/j.nicl.2019.102018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/18/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
Although behavioral sensitivity to reward predicts the onset and course of mania in bipolar disorder, the evidence for neural abnormalities in reward processing in bipolar disorder is mixed. To probe neural responsiveness to anticipated and received rewards in the context of bipolar disorder, we scanned individuals with remitted bipolar I disorder (n = 24) and well-matched controls (n = 24; matched for age and gender) using Functional Magnetic Resonance Imaging (FMRI) during a Monetary Incentive Delay (MID) task. Relative to controls, the bipolar group showed reduced NAcc activity during anticipation of gains. Across groups, this blunting correlated with individual differences in impulsive responses to positive emotions (Positive Urgency), which statistically accounted for the association of blunted NAcc activity with bipolar diagnosis. These results suggest that blunted NAcc responses during gain anticipation in the context of bipolar disorder may reflect individual differences in Positive Urgency. These findings may help resolve discrepancies in the literature on neural responses to reward in bipolar disorder, and clarify the relationship between brain activity and the propensity to experience manic episodes.
Collapse
Affiliation(s)
- Sheri L Johnson
- Department of Psychology, University of California, Berkeley, CA, United States
| | - Hershel Mehta
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Terence A Ketter
- Department of Psychiatry, Stanford University, Stanford, CA, United States
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
23
|
Wang J, Wang Y, Huang H, Jia Y, Zheng S, Zhong S, Huang L, Huang R. Abnormal intrinsic brain functional network dynamics in unmedicated depressed bipolar II disorder. J Affect Disord 2019; 253:402-409. [PMID: 31103805 DOI: 10.1016/j.jad.2019.04.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous studies analyzed brain functional connectivity (FC) based on resting-state fMRI (RS-fMRI) data to reveal the neuropathology of bipolar disorder (BD) and suggested that their FC alterations are at widespread network-level. However, few studies have analyzed the dynamic functional network connectivity (dFNC) in BD. Thus, we aimed to reveal the dFNC properties of BD in this study. METHODS The RS-fMRI data were collected from 51 unmedicated depressed BD II patients and 50 healthy controls. We analyzed the dFNC properties by using an independent component analysis, sliding window correlation, k-means clustering, and graph theory methods. RESULTS The intrinsic brain FNC could be clustered into three configuration states, one with sparse connections between all functional networks (State 1), another with negative correlations between the salience network, cerebellum, basal ganglia and the sensory networks (State 2), and a third with negative correlations between the default mode network and the other functional networks (State 3). The BD patients had increased time in State 2, decreased time in State 3, and increased transition number between states. And the time spent in State 2 was positively correlated with the HDRS24 score in the BD patients. In addition, the BD patients had increased dynamic variance in the small-world properties of FNC. LIMITATIONS This study did not examine data from BD patients in other episodes and other BD types. CONCLUSIONS This study detected abnormal dFNC properties in BD, which indicated their FNC unstability and provided new insights into the neuropathology of their affective and cognitive deficits.
Collapse
Affiliation(s)
- Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Huiyuan Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Senning Zheng
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
24
|
Perry A, Roberts G, Mitchell PB, Breakspear M. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Mol Psychiatry 2019; 24:1296-1318. [PMID: 30279458 PMCID: PMC6756092 DOI: 10.1038/s41380-018-0267-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The notion that specific cognitive and emotional processes arise from functionally distinct brain regions has lately shifted toward a connectivity-based approach that emphasizes the role of network-mediated integration across regions. The clinical neurosciences have likewise shifted from a predominantly lesion-based approach to a connectomic paradigm-framing disorders as diverse as stroke, schizophrenia (SCZ), and dementia as "dysconnection syndromes". Here we position bipolar disorder (BD) within this paradigm. We first summarise the disruptions in structural, functional and effective connectivity that have been documented in BD. Not surprisingly, these disturbances show a preferential impact on circuits that support emotional processes, cognitive control and executive functions. Those at high risk (HR) for BD also show patterns of connectivity that differ from both matched control populations and those with BD, and which may thus speak to neurobiological markers of both risk and resilience. We highlight research fields that aim to link brain network disturbances to the phenotype of BD, including the study of large-scale brain dynamics, the principles of network stability and control, and the study of interoception (the perception of physiological states). Together, these findings suggest that the affective dysregulation of BD arises from dynamic instabilities in interoceptive circuits which subsequently impact on fear circuitry and cognitive control systems. We describe the resulting disturbance as a "psychosis of interoception".
Collapse
Affiliation(s)
- Alistair Perry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany. .,Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Gloria Roberts
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Philip B. Mitchell
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Randwick, NSW Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Randwick, NSW Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Metro North Mental Health Service, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Vai B, Bertocchi C, Benedetti F. Cortico-limbic connectivity as a possible biomarker for bipolar disorder: where are we now? Expert Rev Neurother 2019; 19:159-172. [PMID: 30599797 DOI: 10.1080/14737175.2019.1562338] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The fronto-limbic network has been suggested as a key circuitry in the pathophysiology and maintenance of bipolar disorder. In the past decade, a disrupted connectivity within prefrontal-limbic structures was identified as a promising candidate biomarker for the disorder. Areas Covered: In this review, the authors examine current literature in terms of the structural, functional and effective connectivity in bipolar disorder, integrating recent findings of imaging genetics and machine learning. This paper profiles the current knowledge and identifies future perspectives to provide reliable and usable neuroimaging biomarkers for bipolar psychopathology in clinical practice. Expert Opinion: The replication and the translation of acquired knowledge into useful and usable tools represents one of the current greatest challenges in biomarker research applied to psychiatry.
Collapse
Affiliation(s)
- Benedetta Vai
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy.,b University Vita-Salute San Raffaele , Milano , Italy
| | - Carlotta Bertocchi
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy
| | - Francesco Benedetti
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy.,b University Vita-Salute San Raffaele , Milano , Italy
| |
Collapse
|
26
|
Shi J, Geng J, Yan R, Liu X, Chen Y, Zhu R, Wang X, Shao J, Bi K, Xiao M, Yao Z, Lu Q. Differentiation of Transformed Bipolar Disorder From Unipolar Depression by Resting-State Functional Connectivity Within Reward Circuit. Front Psychol 2018; 9:2586. [PMID: 30622492 PMCID: PMC6308204 DOI: 10.3389/fpsyg.2018.02586] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/03/2018] [Indexed: 01/23/2023] Open
Abstract
Previous studies have found that neural functional abnormalities detected by functional magnetic resonance imaging (fMRI) in brain regions implicated in reward processing during reward tasks show promise to distinguish bipolar from unipolar depression (UD), but little is known regarding resting-state functional connectivity (rsFC) within the reward circuit. In this study, we investigated neurobiomarkers for early recognition of bipolar disorder (BD) by retrospectively comparing rsFC within the reward circuit between UD and depressed BD. Sixty-six depressed patients were enrolled, none of whom had ever experienced any manic/hypomanic episodes before baseline. Simultaneously, 40 matched healthy controls (HC) were also recruited. Neuroimaging data of each participant were obtained from resting-state fMRI scans. Some patients began to manifest bipolar disorder (tBD) during the follow-up period. All patients were retrospectively divided into two groups (33 tBD and 33 UD) according to the presence or absence of mania/hypomania in the follow-up. rsFC between key regions of the reward circuit was calculated and compared among groups. Results showed decreased rsFC between the left ventral tegmental area (VTA) and left ventral striatum (VS) in the tBD group compared with the UD group, which showed good accuracy in predicting diagnosis (tBD vs. UD) according to receiver operating characteristic (ROC) analysis. No significant different rsFC was found within the reward circuit between any patient group and HC. Our preliminary findings indicated that bipolar disorder, in early depressive stages before onset of mania/hypomania attacks, already differs from UD in the reward circuit of VTA-VS functional synchronicity at the resting state.
Collapse
Affiliation(s)
- Jiabo Shi
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiting Geng
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoxue Liu
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yu Chen
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Junneng Shao
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Kun Bi
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Ming Xiao
- Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| |
Collapse
|
27
|
Kaag AM, Reneman L, Homberg J, van den Brink W, van Wingen GA. Enhanced Amygdala-Striatal Functional Connectivity during the Processing of Cocaine Cues in Male Cocaine Users with a History of Childhood Trauma. Front Psychiatry 2018; 9:70. [PMID: 29593581 PMCID: PMC5857536 DOI: 10.3389/fpsyt.2018.00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Childhood trauma is associated with increased levels of anxiety later in life, an increased risk for the development of substance use disorders, and neurodevelopmental abnormalities in the amygdala and frontostriatal circuitry. The aim of this study was to investigate the (neurobiological) link among childhood trauma, state anxiety, and amygdala-frontostriatal activity in response to cocaine cues in regular cocaine users. METHODS In this study, we included 59 non-treatment seeking regular cocaine users and 58 non-drug using controls. Blood oxygenation level-dependent responses were measured using functional magnetic resonance imaging while subjects performed a cue reactivity paradigm with cocaine and neutral cues. Psychophysiological interaction analyses were applied to assess functional connectivity between the amygdala and other regions in the brain. Self-report questionnaires were used to measure childhood trauma, state anxiety, drug use, drug use severity, and craving. RESULTS Neural activation was increased during the presentation of cocaine cues, in a widespread network including the frontostriatal circuit and amygdala in cocaine users but not in controls. Functional coupling between the amygdala and medial prefrontal cortex was reduced in response to cocaine cues, in both cocaine users and controls, which was further diminished with increasing state anxiety. Importantly, amygdala-striatal connectivity was positively associated with childhood trauma in regular cocaine users, while there was a negative association in controls. At the behavioral level, state anxiety was positively associated with cocaine use severity and craving related to negative reinforcement. CONCLUSION Childhood trauma is associated with enhanced amygdala-striatal connectivity during cocaine cue reactivity in regular cocaine users, which may contribute to increased habit behavior and poorer cognitive control. While we cannot draw conclusions on causality, this study provides novel information on how childhood trauma may contribute to the development and persistence of cocaine use disorder.
Collapse
Affiliation(s)
- Anne Marije Kaag
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Departement of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Departement of Radiology and Nuclear Medicine, Academic Medical Centre, Amsterdam, Netherlands
| | - Judith Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Medical Centre, Nijmegen, Netherlands
| | - Wim van den Brink
- Departement of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
| | - Guido A. van Wingen
- Departement of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Rizvi SJ, Lambert C, Kennedy S. Presentation and Neurobiology of Anhedonia in Mood Disorders: Commonalities and Distinctions. Curr Psychiatry Rep 2018. [PMID: 29520717 DOI: 10.1007/s11920-018-0877-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW To focus on the clinical and behavioral presentation of anhedonia in mood disorders, as well as the differences and commonalities in the underlying neurocircuitry. RECENT FINDINGS Evidence suggests that depression is characterized by hypofunction of the reward system, while bipolar disorder manifests dysregulation of the behavioral activation system that increases goal-directed reward behavior. Importantly, strong evidence does not exist to suggest significant differences in anhedonia severity between depressed unipolar and bipolar patients, suggesting that there are more nuanced fluctuations in reward processing deficits in bipolar patients depending on their state. Both euthymic unipolar and bipolar patients frequently report residual reward dysfunction, which highlights the potential of reward processing deficits that give rise to the clinical symptom of anhedonia to be trait factors of mood disorders; however, the possibility that therapies are not adequately treating anhedonia could also explain the presence of residual symptoms. Reward processing represents a potential diagnostic and treatment marker for mood disorders. Further research should systematically explore the facets of reward processing in at-risk, affected, and remitted patients.
Collapse
Affiliation(s)
- Sakina J Rizvi
- Li Ka Shing Knowledge Institute, Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, 193 Yonge St, 6-009, Toronto, ON, M5B 1M8, Canada. .,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Clare Lambert
- Li Ka Shing Knowledge Institute, Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, 193 Yonge St, 6-009, Toronto, ON, M5B 1M8, Canada
| | - Sidney Kennedy
- Li Ka Shing Knowledge Institute, Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, 193 Yonge St, 6-009, Toronto, ON, M5B 1M8, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|