1
|
Lim D, Jeong J, Song YM, Cho CH, Yeom JW, Lee T, Lee JB, Lee HJ, Kim JK. Accurately predicting mood episodes in mood disorder patients using wearable sleep and circadian rhythm features. NPJ Digit Med 2024; 7:324. [PMID: 39557997 PMCID: PMC11574068 DOI: 10.1038/s41746-024-01333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024] Open
Abstract
Wearable devices enable passive collection of sleep, heart rate, and step-count data, offering potential for mood episode prediction in mood disorder patients. However, current models often require various data types, limiting real-world application. Here, we develop models that predict future episodes using only sleep-wake data, easily gathered through smartphones and wearables when trained on an individual's sleep-wake history and past mood episodes. Using mathematical modeling to longitudinal data from 168 patients (587 days average clinical follow-up, 267 days wearable data), we derived 36 sleep and circadian rhythm features. These features enabled accurate next-day predictions for depressive, manic, and hypomanic episodes (AUCs: 0.80, 0.98, 0.95). Notably, daily circadian phase shifts were the most significant predictors: delays linked to depressive episodes, advances to manic episodes. This prospective observational cohort study (ClinicalTrials.gov: NCT03088657, 2017-3-23) shows sleep-wake data, combined with prior mood episode history, can effectively predict mood episodes, enhancing mood disorder management.
Collapse
Affiliation(s)
- Dongju Lim
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jaegwon Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Yun Min Song
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
- Chronobiology Institute, Korea University, Seoul, Republic of Korea
| | - Taek Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea
| | - Jung-Been Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
- Chronobiology Institute, Korea University, Seoul, Republic of Korea.
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea.
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea.
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Gao K, Ayati M, Kaye NM, Koyuturk M, Calabrese JR, Christian E, Lazarus HM, Kaplan D. Possible Role of Correlation Coefficients and Network Analysis of Multiple Intracellular Proteins in Blood Cells of Patients with Bipolar Disorder in Studying the Mechanism of Lithium Responsiveness: A Proof-Concept Study. J Clin Med 2024; 13:1491. [PMID: 38592374 PMCID: PMC10935410 DOI: 10.3390/jcm13051491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Background: The mechanism of lithium treatment responsiveness in bipolar disorder (BD) remains unclear. The aim of this study was to explore the utility of correlation coefficients and protein-to-protein interaction (PPI) network analyses of intracellular proteins in monocytes and CD4+ lymphocytes of patients with BD in studying the potential mechanism of lithium treatment responsiveness. Methods: Patients with bipolar I or II disorder who were diagnosed with the MINI for DSM-5 and at any phase of the illness with at least mild symptom severity and received lithium (serum level ≥ 0.6 mEq/L) for 16 weeks were divided into two groups, responders (≥50% improvement in Montgomery-Asberg Depression Rating Scale and/or Young Mania Rating Scale scores from baseline) and non-responders. Twenty-eight intracellular proteins/analytes in CD4+ lymphocytes and monocytes were analyzed with a tyramine-based signal-amplified flow cytometry procedure. Correlation coefficients between analytes at baseline were estimated in both responders and non-responders and before and after lithium treatment in responders. PPI network, subnetwork, and pathway analyses were generated based on fold change/difference in studied proteins/analytes between responders and non-responders. Results: Of the 28 analytes from 12 lithium-responders and 11 lithium-non-responders, there were more significant correlations between analytes in responders than in non-responders at baseline. Of the nine lithium responders with pre- and post-lithium blood samples available, the correlations between most analytes were weakened after lithium treatment with cell-type specific patterns in CD4+ lymphocytes and monocytes. PPI network/subnetwork and pathway analyses showed that lithium response was involved in four pathways, including prolactin, leptin, neurotrophin, and brain-derived neurotrophic factor pathways. Glycogen synthase kinase 3 beta and nuclear factor NF-kappa-B p65 subunit genes were found in all four pathways. Conclusions: Using correlation coefficients, PPI network/subnetwork, and pathway analysis with multiple intracellular proteins appears to be a workable concept for studying the mechanism of lithium responsiveness in BD. Larger sample size studies are necessary to determine its utility.
Collapse
Affiliation(s)
- Keming Gao
- Department of Psychiatry, University Hospitals Cleveland Medical Center, 10524 Euclid Avenue, 12th Floor, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marzieh Ayati
- Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Nicholas M. Kaye
- CellPrint Biotechnology LLC, Cleveland, OH 44106, USA; (N.M.K.); (E.C.); (H.M.L.); (D.K.)
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Center for Proteomics and Bioinformatics, Case Wester Reserve University, Cleveland, OH 44106, USA;
| | - Joseph R. Calabrese
- Department of Psychiatry, University Hospitals Cleveland Medical Center, 10524 Euclid Avenue, 12th Floor, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Eric Christian
- CellPrint Biotechnology LLC, Cleveland, OH 44106, USA; (N.M.K.); (E.C.); (H.M.L.); (D.K.)
| | - Hillard M. Lazarus
- CellPrint Biotechnology LLC, Cleveland, OH 44106, USA; (N.M.K.); (E.C.); (H.M.L.); (D.K.)
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David Kaplan
- CellPrint Biotechnology LLC, Cleveland, OH 44106, USA; (N.M.K.); (E.C.); (H.M.L.); (D.K.)
| |
Collapse
|
3
|
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024; 112:25-40. [PMID: 37858331 PMCID: PMC10842077 DOI: 10.1016/j.neuron.2023.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.
Collapse
Affiliation(s)
- Hannah K Dollish
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA.
| |
Collapse
|
4
|
Hickie IB, Merikangas KR, Carpenter JS, Iorfino F, Scott EM, Scott J, Crouse JJ. Does circadian dysrhythmia drive the switch into high- or low-activation states in bipolar I disorder? Bipolar Disord 2023; 25:191-199. [PMID: 36661342 PMCID: PMC10947388 DOI: 10.1111/bdi.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Emerging evidence suggests a role of circadian dysrhythmia in the switch between "activation" states (i.e., objective motor activity and subjective energy) in bipolar I disorder. METHODS We examined the evidence with respect to four relevant questions: (1) Are natural or environmental exposures that can disrupt circadian rhythms also related to the switch into high-/low-activation states? (2) Are circadian dysrhythmias (e.g., altered rest/activity rhythms) associated with the switch into activation states in bipolar disorder? (3) Do interventions that affect the circadian system also affect activation states? (4) Are associations between circadian dysrhythmias and activation states influenced by other "third" factors? RESULTS Factors that naturally or experimentally alter circadian rhythms (e.g., light exposure) have been shown to relate to activation states; however future studies need to measure circadian rhythms contemporaneously with these natural/experimental factors. Actigraphic measures of circadian dysrhythmias are associated prospectively with the switch into high- or low-activation states, and more studies are needed to establish the most relevant prognostic actigraphy metrics in bipolar disorder. Interventions that can affect the circadian system (e.g., light therapy, lithium) can also reduce the switch into high-/low-activation states. Whether circadian rhythms mediate these clinical effects is an unknown but valuable question. The influence of age, sex, and other confounders on these associations needs to be better characterised. CONCLUSION Based on the reviewed evidence, our view is that circadian dysrhythmia is a plausible driver of transitions into high- and low-activation states and deserves prioritisation in research in bipolar disorders.
Collapse
Affiliation(s)
- Ian B. Hickie
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Kathleen R. Merikangas
- Genetic Epidemiology Research Branch, Division of Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | - Joanne S. Carpenter
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Frank Iorfino
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Elizabeth M. Scott
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- Norwegian University of Science and TechnologyTrondheimNorway
- Université de ParisParisFrance
| | - Jacob J. Crouse
- Youth Mental Health and Technology Team, Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyNew South WalesSydneyAustralia
| |
Collapse
|
5
|
Gao K, Kaye NM, Ayati M, Koyuturk M, Calabrese JR, Christian E, Lazarus HM, Kaplan D. Divergent Directionality of Immune Cell-Specific Protein Expression between Bipolar Lithium Responders and Non-Responders Revealed by Enhanced Flow Cytometry. Medicina (B Aires) 2023; 59:medicina59010120. [PMID: 36676744 PMCID: PMC9860624 DOI: 10.3390/medicina59010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Background and Objectives: There is no biomarker to predict lithium response. This study used CellPrint™ enhanced flow cytometry to study 28 proteins representing a spectrum of cellular pathways in monocytes and CD4+ lymphocytes before and after lithium treatment in patients with bipolar disorder (BD). Materials and Methods: Symptomatic patients with BD type I or II received lithium (serum level ≥ 0.6 mEq/L) for 16 weeks. Patients were assessed with standard rating scales and divided into two groups, responders (≥50% improvement from baseline) and non-responders. Twenty-eight intracellular proteins in CD4+ lymphocytes and monocytes were analyzed with CellPrint™, an enhanced flow cytometry procedure. Data were analyzed for differences in protein expression levels. Results: The intent-to-treat sample included 13 lithium-responders (12 blood samples before treatment and 9 after treatment) and 11 lithium-non-responders (11 blood samples before treatment and 4 after treatment). No significant differences in expression between the groups was observed prior to lithium treatment. After treatment, the majority of analytes increased expression in responders and decreased expression in non-responders. Significant increases were seen for PDEB4 and NR3C1 in responders. A significant decrease was seen for NR3C1 in non-responders. Conclusions: Lithium induced divergent directionality of protein expression depending on the whether the patient was a responder or non-responder, elucidating molecular characteristics of lithium responsiveness. A subsequent study with a larger sample size is warranted.
Collapse
Affiliation(s)
- Keming Gao
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-844-2400; Fax: +1-214-844-2877
| | | | - Marzieh Ayati
- Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph R. Calabrese
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Hillard M. Lazarus
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CellPrint Biotechnology, Cleveland, OH 44106, USA
| | - David Kaplan
- CellPrint Biotechnology, Cleveland, OH 44106, USA
- Department of Medicine-Hematology/Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Lithium produces bi-directionally regulation of mood disturbance, acts synergistically with anti-depressive/-manic agents, and did not deteriorate the cognitive impairment in murine model of bipolar disorder. Transl Psychiatry 2022; 12:359. [PMID: 36055984 PMCID: PMC9440114 DOI: 10.1038/s41398-022-02087-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Lithium (Li) is a well-established mood disorder treatment and may be neuroprotective. Bi-directional regulation (i.e. affecting manic symptoms and depressive symptoms) by Li has not been demonstrated. This study explored: (1) bidirectional regulation by Li in murine models of depression, mania, and bipolar disorder (BP); and (2) potential Li synergism with antidepressant/anti-mania agents. The chronic unpredictable mild stress (CUMS) and ketamine-induced mania (KM) models were used. These methods were used in series to produce a BP model. In vivo two-photon imaging was used to visualize Ca2+ activity in the dorsolateral prefrontal cortex. Depressiveness, mania, and cognitive function were assessed with the forced swim task (FST), open field activity (OFA) task, and novel object recognition task, respectively. In CUMS mice, Ca2+ activity was increased strongly by Li and weakly by lamotrigine (LTG) or valproate (VPA), and LTG co-administration reduced Li and VPA monotherapy effects; depressive immobility in the FST was attenuated by Li or LTG, and attenuated more strongly by LTG-VPA or LTG-Li; novel object exploration was increased strongly by Li and weakly by LTG-Li, and reduced by LTG, VPA, or LTG-VPA. In KM mice, Li or VPA attenuated OFA mania symptoms and normalized Ca2+ activity partially; Li improved cognitive function while VPA exacerbated the KM alteration. These patterns were replicated in the respective BP model phases. Lithium had bi-directional, albeit weak, mood regulation effects and a cognitive supporting effect. Li co-administration with antidepressant/-manic agents enhanced mood-regulatory efficacy while attenuating their cognitive-impairing effects.
Collapse
|
7
|
Kholghi G, Eskandari M, Shokouhi Qare Saadlou MS, Zarrindast MR, Vaseghi S. Night shift hormone: How does melatonin affect depression? Physiol Behav 2022; 252:113835. [PMID: 35504318 DOI: 10.1016/j.physbeh.2022.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Melatonin is the main hormone secreted by the pineal gland that modulates the circadian rhythm and mood. Previous studies have shown the therapeutic effects of melatonin, or its important analogue, agomelatine, on depression. In this review study, we aimed to discuss the potential mechanisms of melatonin involved in the treatment of depression. It was noted that disrupted circadian rhythm can lead to depressive state, and melatonin via regulating circadian rhythm shows a therapeutic effect. It was also noted that melatonin induces antidepressant effects via promoting antioxidant system and neurogenesis, and suppressing oxidative stress, neuroinflammation, and apoptosis. The interaction effect between melatonin or agomelatine and serotonergic signaling has a significant effect on depression. It was noted that the psychotropic effects of agomelatine are induced by the synergistic interaction between melatonin and 5-HT2C receptors. Agomelatine also interacts with glutamatergic signaling in brain regions involved in regulating mood and circadian rhythm. Interestingly, it was concluded that melatonin exerts both pro- and anti-inflammatory effects, depending on the grade of inflammation. It was suggested that synergistic interaction between melatonin and 5-HT2C receptors may be able to induce therapeutic effects on other psychiatric disorders. Furthermore, dualistic role of melatonin in regulating inflammation is an important point that can be examined at different levels of inflammation in animal models of depression.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
8
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|