1
|
Song B, Chen J, Lev-Yadun S, Niu Y, Gao Y, Ma R, Armbruster WS, Sun H. Multifunctionality of angiosperm floral bracts: a review. Biol Rev Camb Philos Soc 2024; 99:1100-1120. [PMID: 38291834 DOI: 10.1111/brv.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Floral bracts (bracteoles, cataphylls) are leaf-like organs that subtend flowers or inflorescences but are of non-floral origin; they occur in a wide diversity of species, representing multiple independent origins, and exhibit great variation in form and function. Although much attention has been paid to bracts over the past 150 years, our understanding of their adaptive significance remains remarkably incomplete. This is because most studies of bract function and evolution focus on only one or a few selective factors. It is widely recognised that bracts experience selection mediated by pollinators, particularly for enhancing pollinator attraction through strong visual, olfactory, or echo-acoustic contrast with the background and through signalling the presence of pollinator rewards, either honestly (providing rewards for pollinators), or deceptively (attraction without reward or even trapping pollinators). However, studies in recent decades have demonstrated that bract evolution is also affected by agents other than pollinators. Bracts can protect flowers, fruits, or seeds from herbivores by displaying warning signals, camouflaging conspicuous reproductive organs, or by providing physical barriers or toxic chemicals. Reviews of published studies show that bracts can also promote seed dispersal and ameliorate the effects of abiotic stressors, such as low temperature, strong ultraviolet radiation, heavy rain, drought, and/or mechanical abrasion, on reproductive organs or for the plants' pollinators. In addition, green bracts and greening of colourful bracts after pollination promote photosynthetic activity, providing substantial carbon (photosynthates) for fruit or seed development, especially late in a plant's life cycle or season, when leaves have started to senesce. A further layer of complexity derives from the fact that the agents of selection driving the evolution of bracts vary between species and even between different developmental stages within a species, and selection by one agent can be reinforced or opposed by other agents. In summary, our survey of the literature reveals that bracts are multifunctional and subject to multiple agents of selection. To understand fully the functional and evolutionary significance of bracts, it is necessary to consider multiple selection agents throughout the life of the plant, using integrative approaches to data collection and analysis.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jiaqi Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Huannan Road, East of University Town, Chenggong New Area, Kunming, 650500, China
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Kiryat Tiv'on, 36006, Israel
| | - Yang Niu
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yongqian Gao
- Yunnan Forestry Technological College, 1 Jindian, Kunming, 650224, China
| | - Rong Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, PO Box 757000, Fairbanks, AK, 99775, USA
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
2
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
3
|
Llorens L, Tomàs J, Ferriol P, García MT, Gil L. Floral Aroma and Pollinator Relationships in Two Sympatric Late-Summer-Flowering Mediterranean Asparagus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3219. [PMID: 37765383 PMCID: PMC10537274 DOI: 10.3390/plants12183219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
This research delves into plant-pollinator relationships within the Mediterranean region, focusing on two synchronous and sympatric asparagus species: A. acutifolius and A. albus. For the first time, the floral scents of the genus Asparagus are reported. We investigate the volatile organic compounds (VOCs) present in their floral scents and their impact on pollinator attraction. Captured flower-emitted VOCs underwent solid-phase microextraction of headspace (SPME-HS) and gas chromatography and mass spectrometry (GC-MS) analysis. The investigation confirms distinctive aroma profiles for each species. A. albus predominantly emits benzene derivatives and sesquiterpenes, while A. acutifolius is characterized by carotenoid derivatives, monoterpenes, and sesquiterpenes. The only shared compounds between the two species are the sesquiterpenes (Z,E)-α-farnesene and (E,E)-α-farnesene. A positive correlation links peak floral aroma intensity (benzenoids in A. albus and ionones in A. acutifolius) with a higher pollinator visit frequency, emphasizing the critical role of intense floral scents in pollinator attraction. The study of reproductive aspects reveals almost complete gynodioecy in A. acutifolius, influencing unique dynamics for the two species. These adaptations hold significant importance within the Mediterranean ecosystem, particularly during the late dry summer period, when a limited number of plant species vie for a shared primary pollinator.
Collapse
Affiliation(s)
- Leonardo Llorens
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands (UIB), Ctra. Palma-Valldemossa Km. 7.5, E-07122 Palma, Balearic Islands, Spain; (P.F.); (L.G.)
| | - Joan Tomàs
- Department of Biology (Botany), University of the Balearic Islands (UIB), Ctra. Palma-Valldemossa Km. 7.5, E-07122 Palma, Balearic Islands, Spain;
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands (UIB), Ctra. Palma-Valldemossa Km. 7.5, E-07122 Palma, Balearic Islands, Spain; (P.F.); (L.G.)
| | - María Trinitat García
- Scientific and Technical Services, University of the Balearic Islands (UIB), Carretera de Valldemossa Km. 7.5, E-07122 Palma de Mallorca, Balearic Islands, Spain;
| | - Lorenzo Gil
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands (UIB), Ctra. Palma-Valldemossa Km. 7.5, E-07122 Palma, Balearic Islands, Spain; (P.F.); (L.G.)
| |
Collapse
|
4
|
Wang R, Chen L, Jia Y, Liu L, Sun L, Liu Y, Li Y. Heat production and volatile biosynthesis are linked via alternative respiration in Magnolia denudata during floral thermogenesis. FRONTIERS IN PLANT SCIENCE 2022; 13:955665. [PMID: 36311085 PMCID: PMC9614359 DOI: 10.3389/fpls.2022.955665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Floral thermogenesis is coupled with odor emission in known thermogenic plants. It is widely accepted that elevation in floral temperature can help release of volatile organic compounds (VOCs). However, no information is available about whether floral thermogenesis is associated with VOC biosynthesis. Here, we used RNA-Sequencing (RNA-Seq) to draw a gene expression atlas of floral thermogenesis in Magnolia denudata and captured an upregulation of Alternative Oxidase (AOX) during floral thermogenesis. Western blot analyses also suggested upregulation of AOX during floral thermogenesis. Moreover, oxygen consumption analyses revealed increased activity of the AOX respiration pathway during floral thermogenesis. Using HPLC analyses, we further found that increased AOX respiration substantially promoted production of citric acid by 1.35 folds, which provided fundamental metabolite skeletons for biosynthesis of VOCs. RNA-Seq also showed upregulation of genes regulating lignin catabolism, which was in agreement with in situ Raman chemical imaging of lignin. Taken together, our results suggest the central role of AOX by coupling heat production and VOC biosynthesis in floral thermogenesis of M. denudata.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ling Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yaping Jia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Liya Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Liu H, Sun X, Shi Z, An X, Khashaveh A, Li Y, Gu S, Zhang Y. Identification and functional analysis of odorant-binding proteins provide new control strategies for Apolygus lucorum. Int J Biol Macromol 2022; 224:1129-1141. [DOI: 10.1016/j.ijbiomac.2022.10.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
6
|
Etl F, Kaiser C, Reiser O, Schubert M, Dötterl S, Schönenberger J. Evidence for the recruitment of florivorous plant bugs as pollinators. Curr Biol 2022; 32:4688-4698.e6. [DOI: 10.1016/j.cub.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
|
7
|
Qu C, Yang ZK, Wang S, Zhao HP, Li FQ, Yang XL, Luo C. Binding Affinity Characterization of Four Antennae-Enriched Odorant-Binding Proteins From Harmonia axyridis (Coleoptera: Coccinellidae). Front Physiol 2022; 13:829766. [PMID: 35350682 PMCID: PMC8957989 DOI: 10.3389/fphys.2022.829766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Harmonia axyridis is an important natural enemy that consumes many agricultural and forestry pests. It relies on a sensitive olfactory system to find prey and mates. Odorant-binding proteins (OBPs) as the first-step of recognizing volatiles, transport odors through sensillum lymph to odorant receptors (ORs). However, little is known about the molecular mechanisms of H. axyridis olfaction. In this study, four H. axyridis antenna specific OBP genes, HaxyOBP3, 5, 12, and 15, were bacterially expressed and the binding features of the four recombinant proteins to 40 substances were investigated using fluorescence competitive binding assays. Three-dimensional structure modeling and molecular docking analysis predicted the binding sites between HaxyOBPs and candidate volatiles. Developmental expression analyses showed that the four HaxyOBP genes displayed a variety of expression patterns at different development stages. The expression levels of HaxyOBP3 and HaxyOBP15 were higher in the adult stage than in the other developmental stages, and HaxyOBP15 was significantly transcriptionally enriched in adult stage. Ligand-binding analysis demonstrated that HaxyOBP3 and HaxyOBP12 only combined with two compounds, β-ionone and p-anisaldehyde. HaxyOBP5 protein displayed binding affinities with methyl salicylate, β-ionone, and p-anisaldehyde (Ki = 18.15, 11.71, and 13.45 μM). HaxyOBP15 protein had a broad binding profile with (E)-β-farnesene, β-ionone, α-ionone, geranyl acetate, nonyl aldehyde, dihydro-β-ionone, and linalyl acetate (Ki = 4.33-31.01 μM), and hydrophobic interactions played a key role in the binding of HaxyOBP15 to these substances according to molecular docking. Taken together, HaxyOBP15 exhibited a broader ligand-binding spectrum and a higher expression in adult stage than HaxyOBP3, 5, and 12, indicating HaxyOBP15 may play a greater role in binding volatiles than other three HaxyOBPs. The results will increase our understanding of the molecular mechanism of H. axyridis olfaction and may also result in new management strategies (attractants/repellents) that increase the biological control efficacy of H. axyridis.
Collapse
Affiliation(s)
- Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhao-kai Yang
- Department of Applied Chemistry, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hai-peng Zhao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Feng-qi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xin-ling Yang
- Department of Applied Chemistry, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
8
|
NÓBREGA RAFAELLAL, MAIA ARTURC, LIMA CARLAHELENAMDE, FELIX KAROLINAELLENS, SOUZA THAMYRYSBDE, PONTES WENDELJOSÉT. Behavioral traits and sexual recognition: multiple signaling in the reproductive behavior of Cyclocephala distincta (Melolonthidae, Cyclocephalini). AN ACAD BRAS CIENC 2022; 94:e20200694. [DOI: 10.1590/0001-3765202220200694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022] Open
|
9
|
Abstract
The evolutionary trajectories of insects and angiosperms appear to be intimately interconnected. Increases in the diversity of phytophagous beetles and angiosperms co-occur in the Mesozoic fossil record, and there is fossil evidence of pollinivory and pollination by insects, both in flowering plants and in gymnosperms. The oldest records of angiosperm pollination indicate flies as pollen vectors. A basal group of angiosperms, the order Magnoliales, has retained plesiomorphic characters such as dozens of pistils and stamens spiraling around the receptacle. In a family of this order, Annonaceae, over 90% of species are pollinated by beetles. In many Annonaceae species, flowers display wide spaces, referred to as floral chambers, where beetles can find shelter from weather conditions and predators, food in the form of pollen and tissues, and a mating site. Two basic types of floral chambers can be distinguished: small chambers visited by small beetles (Nitidulidae, Staphylinidae, Chrysomelidae, and Curculionidae) with diurnal and/or nocturnal activity and large and thermogenic floral chambers visited by beetles of the tribe Cyclocephalini (Scarabaeoidea, Melolonthidae). In the latter case, the heat that the flowers produce may serve as a resource for the beetles that visit them, resulting in smaller endothermy costs for the scarabs. This study reviewed the literature including PhD and MSc theses on cantharophilous Annonaceae in the Cerrado. In this biome, both types of associations are found, although cantharophilous Annonaceae represent a small portion of the plant species (<5%). Cantharophilous Annonaceae in the Cerrado share attributes according to the beetles that pollinate them: species pollinated by small beetles, for instance, may flower throughout the year, whereas Annonaceae pollinated by Cyclocephalini normally flower in the beginning of the rainy season (October/November), in synchrony with the phenological patterns of their pollinators. Cantharophilous Annonaceae flowers, regardless of their size, tend to have light colors and sweet and fruity odors. In addition to the lack of studies on the attraction of beetles by these floral characters, the taxonomic composition of the beetles that pollinate Annonaceae in the Cerrado is poorly known. This review attempts to discuss, in light of what has already been published, potential fields of investigation concerning pollinating beetles’ behavior and evolution.
Collapse
|
10
|
Sayers TDJ, Johnson KL, Steinbauer MJ, Farnier K, Miller RE. Divergence in floral scent and morphology, but not thermogenic traits, associated with pollinator shift in two brood-site-mimicking Typhonium (Araceae) species. ANNALS OF BOTANY 2021; 128:261-280. [PMID: 33758905 PMCID: PMC8389470 DOI: 10.1093/aob/mcab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Flowers which imitate insect oviposition sites probably represent the most widespread form of floral mimicry, exhibit the most diverse floral signals and are visited by two of the most speciose and advanced taxa of insect - beetles and flies. Detailed comparative studies on brood-site mimics pollinated exclusively by each of these insect orders are lacking, limiting our understanding of floral trait adaptation to different pollinator groups in these deceptive systems. METHODS Two closely related and apparent brood-site mimics, Typhonium angustilobum and T. wilbertii (Araceae) observed to trap these distinct beetle and fly pollinator groups were used to investigate potential divergence in floral signals and traits most likely to occur under pollinator-mediated selection. Trapped pollinators were identified and their relative abundances enumerated, and thermogenic, visual and chemical signals and morphological traits were examined using thermocouples and quantitative reverse transcription-PCR, reflectance, gas chromatography-mass spectrometry, floral measurements and microscopy. KEY RESULTS Typhonium angustilobum and T. wilbertii were functionally specialized to trap saprophagous Coleoptera and Diptera, respectively. Both species shared similar colour and thermogenic traits, and contained two highly homologous AOX genes (AOX1a and AOX1b) most expressed in the thermogenic tissue and stage (unlike pUCP). Scent during the pistillate stage differed markedly - T. angustilobum emitted a complex blend of sesquiterpenes, and T. wilbertii, a dung mimic, emitted high relative amounts of skatole, p-cresol and irregular terpenes. The species differed significantly in floral morphology related to trapping mechanisms. CONCLUSIONS Functional specialization and pollinator divergence were not associated with differences in anthesis rhythm and floral thermogenic or visual signals between species, but with significant differences in floral scent and morphological features, suggesting that these floral traits are critical for the attraction and filtering of beetle or fly pollinators in these two brood-site mimics.
Collapse
Affiliation(s)
- Thomas D J Sayers
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Blvd, Richmond, VIC 3121, Australia
| | - Kim L Johnson
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Martin J Steinbauer
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kevin Farnier
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Melbourne, VIC 3083, Australia
| | - Rebecca E Miller
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Blvd, Richmond, VIC 3121, Australia
- Royal Botanic Gardens Victoria, South Yarra, VIC, 3141, Australia
| |
Collapse
|
11
|
Favaris AP, Túler AC, Silva WD, Rodrigues SR, Leal WS, Bento JMS. (3S,6E)-nerolidol-mediated rendezvous of Cyclocephala paraguayensis beetles in bottle gourd flowers. PLoS One 2020; 15:e0235028. [PMID: 33362256 PMCID: PMC7757865 DOI: 10.1371/journal.pone.0235028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/29/2020] [Indexed: 11/21/2022] Open
Abstract
Cyclocephalini beetles of the genus Cyclocephala (Coleoptera: Melolonthidae: Dynastinae) use flowers of some plants as food, shelter, and mating sites. However, little is known about floral scent chemistry involved in this interaction. Here we show that a sesquiterpene alcohol mediates attraction of Cyclocephala paraguayensis Arrow, on bottle gourd flowers, Lagenaria siceraria (Cucurbitaceae). Both males and females started to aggregate on the flowers at twilight; after that, mating began and remained for the entire night. GC-FID/EAD analysis of the L. siceraria floral scent collected in the field revealed that only the major constituent of the airborne volatiles elicited electroantennographic responses on male and female antennae of C. paraguayensis. This compound was identified as (3S,6E)-nerolidol, which was tested in two field trapping trials in Brazil. In the first bioassay, traps baited with nerolidol (mix of isomers) captured significantly more adult C. paraguayensis than control traps. In the second field trial, catches in traps baited with a mixture of isomers or enantiopure nerolidol were significantly higher than captures in control traps, but the treatments did not differ significantly. Analysis from the gut content of adult C. paraguayensis showed the presence of pollen, suggesting that they also use bottle gourd flowers for their nourishment. Taken together, these results suggest that (3S,6E)-nerolidol plays an essential role in the reproductive behavior of C. paraguayensis by eliciting aggregation, mating, and feeding.
Collapse
Affiliation(s)
- Arodí P. Favaris
- Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Amanda C. Túler
- Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Weliton D. Silva
- Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Sérgio R. Rodrigues
- State University of Mato Grosso do Sul, Cassilândia, Mato Grosso do Sul, Brazil
| | - Walter S. Leal
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
- * E-mail:
| | - José M. S. Bento
- Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
12
|
Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg Top Life Sci 2020; 4:19-32. [PMID: 32478390 PMCID: PMC7326339 DOI: 10.1042/etls20190134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Existing assessments of the ecosystem service of pollination have been largely restricted to diurnal insects, with a particular focus on generalist foragers such as wild and honey bees. As knowledge of how these plant-pollinator systems function, their relevance to food security and biodiversity, and the fragility of these mutually beneficial interactions increases, attention is diverting to other, less well-studied pollinator groups. One such group are those that forage at night. In this review, we document evidence that nocturnal species are providers of pollination services (including pollination of economically valuable and culturally important crops, as well as wild plants of conservation concern), but highlight how little is known about the scale of such services. We discuss the primary mechanisms involved in night-time communication between plants and insect pollen-vectors, including floral scent, visual cues (and associated specialized visual systems), and thermogenic sensitivity (associated with thermogenic flowers). We highlight that these mechanisms are vulnerable to direct and indirect disruption by a range of anthropogenic drivers of environmental change, including air and soil pollution, artificial light at night, and climate change. Lastly, we highlight a number of directions for future research that will be important if nocturnal pollination services are to be fully understood and ultimately conserved.
Collapse
|
13
|
Barros RP, Astúa D, Grossi PC, Iannuzzi L, Maia ACD. Landmark-based geometric morphometrics as a tool for the characterization of biogeographically isolated populations of the pollinator scarab beetle Erioscelis emarginata (Coleoptera: Melolonthidae). ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Paiva EAS, Dötterl S, De-Paula OC, Schlindwein C, Souto LS, Vitarelli NC, da Silva CI, Mateus S, Alves-Dos-Santos I, Oliveira DMT. Osmophores of Caryocar brasiliense (Caryocaraceae): a particular structure of the androecium that releases an unusual scent. PROTOPLASMA 2019; 256:971-981. [PMID: 30796515 DOI: 10.1007/s00709-019-01356-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Caryocar brasiliense is a flagship species of the Brazilian Cerrado. It produces flowers with a strong peculiar scent, which are pollinated by bats and occasionally moths with short mouthparts. However, the cues responsible for attracting these nocturnal pollinators remain unknown. We aimed to identify osmophores of C. brasiliense, describe the ultrastructure of the cells involved in the synthesis and release of floral odour, and identify the constituents of the floral bouquet. We performed field observations and histochemical and ultrastructural analyses of flowers focusing on the androecium. Gas chromatography-mass spectrometry was used to analyse the scents emitted. Filament epidermal cells were found to possess an unusual shape and be responsible for the main production and release of odour. These cells, called foraminous cells, are elongate and possess pores where their cell walls are abruptly thin. The cuticle is practically absent over the pores, which facilitates odour emission. The foraminous cells have conspicuous nuclei and organelle-rich cytoplasm where oil droplets can be seen prior to anthesis. The features of these cells remain similar during anthesis, but many vesicles fuse with the plasma membrane and the number of oil droplets in the cytosol decreases. Twenty-nine components were found in the scent, especially fatty acid derivatives and N- and S-bearing compounds. Our analyses revealed that the androecium of C. brasiliense has a particular structure that acts as an osmophore. The scent from the androecium resembles that of the entire flower, which is an unprecedented finding for a plant with single flowers as the pollination unit.
Collapse
Affiliation(s)
- Elder Antônio Sousa Paiva
- Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, Belo Horizonte, MG, 31270-901, Brazil.
| | - Stefan Dötterl
- Department of Biosciences, Plant Ecology, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | | | - Clemens Schlindwein
- Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Letícia Silva Souto
- Departamento de Biologia, CCHB, Universidade Federal de São Carlos, Campus Sorocaba, Sorocaba, SP, 18052-780, Brazil
| | - Narah Costa Vitarelli
- Departamento de Educação e Ciências, Núcleo de Biologia, Instituto Federal de Ciências e Tecnologia do Sudeste de Minas Gerais (IFSUDESTEMG, Campus Juiz de Fora), Rua Bernardo Mascarenhas, 1283 - Bairro Fábrica, Juiz de Fora, MG, Brazil
| | - Claudia Inês da Silva
- Departamento de Ecologia, IBUSP, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Sidnei Mateus
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Isabel Alves-Dos-Santos
- Departamento de Ecologia, IBUSP, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Denise Maria Trombert Oliveira
- Departamento de Botânica, ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
15
|
Parizotto DR, Grossi PC. Revisiting pollinating Cyclocephala scarab beetles (Coleoptera: Melolonthidae: Dynastinae) associated with the soursop (Annona muricata, Annonaceae). NEOTROPICAL ENTOMOLOGY 2019; 48:415-421. [PMID: 30484161 DOI: 10.1007/s13744-018-0647-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
The soursop (Annona muricata L., Annonaceae) is an important fruit crop in several countries of South America, including Brazil, and the presence of the scarab beetles in this orchads can reduce pollination deficits and increase the productivity. For this reason, we report Cyclocephala celata Dechambre, 1980 as a flower visitor and potential pollinator of the soursop. Additionally, this work presents an updated list of Cyclocephala species found on A. muricata, corrects some misidentifications, and provides comments and an identification key for all taxa cited as floral visitors of this crop.
Collapse
Affiliation(s)
| | - P C Grossi
- Depto. de Agronomia, Univ. Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n, Dois Irmãos, Recife, 52171-900, Brasil.
| |
Collapse
|
16
|
Cordeiro GD, Fernandes Dos Santos IG, Silva CID, Schlindwein C, Alves-Dos-Santos I, Dötterl S. Nocturnal floral scent profiles of Myrtaceae fruit crops. PHYTOCHEMISTRY 2019; 162:193-198. [PMID: 30939396 DOI: 10.1016/j.phytochem.2019.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Communication between plants and nocturnal pollinators in low light conditions is mainly guided by floral scents, which is well documented for plants pollinated by bats, moths, and beetles. Just recently, nocturnal bees have been added to the list of pollinators known to respond to floral scents of their host plants. Little is known about the floral scent chemistry of plants visited and pollinated by nocturnal bees. Among these plants are economically important fruit crops of the family Myrtaceae. We aimed to analyze the nocturnal floral scent profiles of 10 species of Myrtaceae (only diurnal P. cattleianum was sampled after sunrise) and address the following questions: i) What are the main floral scent compounds emitted by the species? ii) Are the floral scent profiles similar to those described for other species pollinated by nocturnal bees? Floral scents were collected by dynamic headspace and analyzed by GC-MS (gas chromatography - mass spectrometry). The total amount of scent trapped ranged from 74 ng/flower/hour for Syzygium malaccense to 7556 ng/flower/hour for Eugenia dysenterica. A total of 46 floral scent compounds were detected in the samples with the most abundant compounds being the aromatics benzaldehyde, benzyl alcohol, 2-phenylethanol, methyl salicylate, 2-phenylethyl acetate, and benzyl acetate; the aliphatic compound 1-octanol; and the monoterpene linalool. The different species exhibited different relative scent patterns. Overall, the nocturnal scents of the studied species of Myrtaceae are dominated by aromatic compounds, which is in contrast to the scent profiles described for other plants pollinated by nocturnal bees.
Collapse
Affiliation(s)
- Guaraci Duran Cordeiro
- Departamento de Ecologia, IBUSP, Universidade de São Paulo. Rua do Matão, travessa 14, Cidade Universitária, 05508-900, São Paulo, SP, Brazil
| | | | - Claudia Inês da Silva
- Departamento de Ecologia, IBUSP, Universidade de São Paulo. Rua do Matão, travessa 14, Cidade Universitária, 05508-900, São Paulo, SP, Brazil
| | - Clemens Schlindwein
- Departamento de Botânica, ICB, Universidade Federal de Minas Gerais. Caixa Postal 486, 31270-901, Belo Horizonte, MG, Brazil
| | - Isabel Alves-Dos-Santos
- Departamento de Ecologia, IBUSP, Universidade de São Paulo. Rua do Matão, travessa 14, Cidade Universitária, 05508-900, São Paulo, SP, Brazil.
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, Hellbrunnerstr. 34, 5020. Salzburg, Austria
| |
Collapse
|
17
|
Maia ACD, Grimm C, Schubert M, Etl F, Gonçalves EG, Do Amaral Ferraz Navarro DM, Schulz S, Dötterl S. Novel Floral Scent Compounds from Night-Blooming Araceae Pollinated by Cyclocephaline Scarabs (Melolonthidae, Cyclocephalini). J Chem Ecol 2019; 45:204-213. [PMID: 30229355 PMCID: PMC6469606 DOI: 10.1007/s10886-018-1018-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022]
Abstract
Nocturnal flowering plants often release strong scents to attract their pollinators. Among night active flower visitors are cyclocephaline scarab beetles, which have been demonstrated to respond to uncommon volatile organic compounds released in high amounts by their host plants. In Araceae, the molecular structure of several such compounds is yet to be unveiled. We investigated headspace floral scent samples of Philodendron squamiferum, Thaumatophyllum mello-baretoanum, and Xanthosoma hylaeae by a variety of approaches, leading to the identification of novel compounds. Dehydrojasmone, (Z)-4-methylene-5-(pent-2-en-1-yl)cyclopent-2-en-1-one (1), (Z)-3-methylene-2-(pent-2-en-1-yl)cyclopentyl acetate (isojasmyl acetate, 3), and (E)-4,8-dimethylnona-1,3,7-trien-5-yl acetate (4) had not been previously reported, while full analytical data of the recently described (Z)-3-methylene-2-(pent-2-en-1-yl)cyclopentan-1-ol (isojasmol, 2) are presented here. All these compounds are derived from more common precursors, (Z)-jasmone and (E)-4,8-dimethyl-1,3,7-nonatriene, likely through biosynthetic "post-processing".
Collapse
Affiliation(s)
- Artur Campos D Maia
- Programa de Pós-graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, 50670-901, Brazil
| | - Christopher Grimm
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Billrothstraße 11 and Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Florian Etl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Eduardo Gomes Gonçalves
- Curso de Ciências Biológicas, Universidade Católica Dom Bosco, Campo Grande, 70790-100, Brazil
| | | | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| | - Stefan Dötterl
- Department of Biosciences, University of Salzburg, Billrothstraße 11 and Hellbrunnerstraße 34, 5020, Salzburg, Austria.
| |
Collapse
|
18
|
Hoe YC, Gibernau M, Wong SY. Diversity of pollination ecology in the Schismatoglottis Calyptrata Complex Clade (Araceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:563-578. [PMID: 29316090 DOI: 10.1111/plb.12687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined. Anthesis for all species started at dawn and lasted 25-29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata. Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester-3-methyl-3-butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds. A mixed fly-beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of interpistillar staminodes in taxa from Peninsular Malaysia and especially, Ambon, Indonesia, is probably linked to a shift in these taxa to a fly-pollinated system.
Collapse
Affiliation(s)
- Y C Hoe
- Tunku Abdul Rahman University College, Johor Branch Campus, Johor, Malaysia
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - M Gibernau
- Natural Resources Project, Vignola Route des Sanguinaires Ajaccio, CNRS - University of Corsica, Ajaccio, France
| | - S Y Wong
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
- Harvard University Herbaria, Cambridge, MA, USA
| |
Collapse
|
19
|
Moore MR, Cave RD, Branham MA. Annotated catalog and bibliography of the cyclocephaline scarab beetles (Coleoptera, Scarabaeidae, Dynastinae, Cyclocephalini). Zookeys 2018; 745:101-378. [PMID: 29670449 PMCID: PMC5904534 DOI: 10.3897/zookeys.745.23685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/12/2022] Open
Abstract
Cyclocephaline scarab beetles represent the second largest tribe of the subfamily Dynastinae, and the group includes the most speciose genus of dynastines, Cyclocephala. The period following publication of Sebő Endrődi's The Dynastinae of the World has seen a huge increase in research interest on cyclocephalines, and much of this research has not been synthesized. The objective of this catalog and bibliography is to compile an exhaustive list of taxa in Cyclocephalini. This paper provides an updated foundation for understanding the taxonomy and classification of 14 genera and over 500 species in the tribe. It discusses the history of cataloging dynastine species, clarifies issues surrounding the neotype designations in Endrődi's revision of Cyclocephalini, synthesizes all published distribution data for cyclocephaline species, and increases accessibility to the voluminous literature on the group by providing an easily searchable bibliography for each species. We propose the nomen novum Cyclocephala rogerpauli, new replacement name, for C. nigra Dechambre.
Collapse
Affiliation(s)
- Matthew R. Moore
- Department of Entomology and Nematology, University of Florida, Building 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| | - Ronald D. Cave
- Department of Entomology and Nematology, University of Florida, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA
| | - Marc A. Branham
- Department of Entomology and Nematology, University of Florida, Building 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Moore MR, Cave RD, Branham MA. Synopsis of the cyclocephaline scarab beetles (Coleoptera, Scarabaeidae, Dynastinae). Zookeys 2018:1-99. [PMID: 29670448 PMCID: PMC5904508 DOI: 10.3897/zookeys.745.23683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/07/2018] [Indexed: 11/22/2022] Open
Abstract
The cyclocephaline scarabs (Scarabaeidae: Dynastinae: Cyclocephalini) are a speciose tribe of beetles that include species that are ecologically and economically important as pollinators and pests of agriculture and turf. We provide an overview and synopsis of the 14 genera of Cyclocephalini that includes information on: 1) the taxonomic and nomenclatural history of the group; 2) diagnosis and identification of immature life-stages; 3) economic importance in agroecosystems; 4) natural enemies of these beetles; 5) use as food by humans; 6) the importance of adults as pollination mutualists; 7) fossil cyclocephalines and the evolution of the group; 8) generic-level identification of adults. We provide an expanded identification key to genera of world Cyclocephalini and diagnoses for each genus. Character illustrations and generic-level distribution maps are provided along with discussions on the relationships of the tribe’s genera.
Collapse
Affiliation(s)
- Matthew R Moore
- Department of Entomology and Nematology, University of Florida, Building 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| | - Ronald D Cave
- Department of Entomology and Nematology, University of Florida, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA
| | - Marc A Branham
- Department of Entomology and Nematology, University of Florida, Building 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Maia ACD, Santos GKN, Gonçalves EG, Navarro DMDAF, Nuñez-Avellaneda LA. 2-Alkyl-3-methoxypyrazines are potent attractants of florivorous scarabs (Melolonthidae, Cyclocephalini) associated with economically exploitable Neotropical palms (Arecaceae). PEST MANAGEMENT SCIENCE 2018; 74:2053-2058. [PMID: 29479808 DOI: 10.1002/ps.4895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND 2-Alkyl-3-methoxypyrazines (MPs) are naturally occurring aromatic compounds involved in insect chemical communication as both pheromones and allelochemicals. Although rarely characterized in floral scents, they have been identified as major constituents in headspace samples from palm inflorescences and evidence pointed towards their function as attractive cues for scent-oriented pollinators, as well as florivores. In this study, we investigated the occurrence of MPs in economically exploitable palms belonging to Acrocomia and Attalea through headspace floral scent analysis and assessed their role in the selective attraction of flower-feeding cyclocephaline scarabs (Melolonthidae, Cyclocephalini) in field bioassays conducted in Brazil and Colombia. RESULTS Three different MPs were identified among floral headspace samples of Acrocomia aculeata, Acr. intumescens, Attalea butyracea and Att. insignis: 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP) and 2-(sec-butyl)-3-methoxypyrazine (SBMP). Their combined estimated total scent emissions per inflorescence ranged from 246 μg h-1 to 6.2 mg h-1 . Scented traps, individually baited with either IPMP or SBMP, resulted in species-selective and high yield captures of Cyclocephala amazona and C. distincta, known florivores associated with over 20 different species of Neotropical palms. CONCLUSIONS The identification of MPs as potent kairomones could prove instrumental in integrated pest management plans for these insects in emerging oil-yielding crops in South America, including those of the wine palm (Att. butyracea) and macaw palms (Acrocomia spp.). © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Artur Campos Dália Maia
- Programa de Pós-graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | |
Collapse
|
22
|
Pest Management in Stored Products: The Case of the Cigarette Beetle, Lasioderma serricorne (Coleoptera: Anobiidae). SUSTAINABLE AGRICULTURE REVIEWS 27 2018. [DOI: 10.1007/978-3-319-75190-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Cordeiro GD, Pinheiro M, Dötterl S, Alves-Dos-Santos I. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:132-139. [PMID: 27770587 DOI: 10.1111/plb.12520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 05/27/2023]
Abstract
Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
Collapse
Affiliation(s)
- G D Cordeiro
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M Pinheiro
- Universidade Federal da Fronteira Sul, Cerro Largo, Rio Grande do Sul, Brazil
| | - S Dötterl
- Department of Ecology & Evolution, University of Salzburg, Salzburg, Austria
| | - I Alves-Dos-Santos
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Gonçalves-Souza P, Schlindwein C, Dötterl S, Paiva EAS. Unveiling the osmophores of Philodendron adamantinum (Araceae) as a means to understanding interactions with pollinators. ANNALS OF BOTANY 2017; 119:533-543. [PMID: 28065928 PMCID: PMC5458670 DOI: 10.1093/aob/mcw236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/15/2016] [Accepted: 10/06/2016] [Indexed: 05/23/2023]
Abstract
Background and Aims Araceae species pollinated by nocturnal Cyclocephalini beetles attract their pollinators by inflorescence scents. In Philodendron , despite the intense odour, the osmophores exhibit no definite morphological identity, making them difficult to locate. This may explain why structural studies of the scent-releasing tissue are not available so far. Methods Several approaches were employed for locating and understanding the osmophores of Philodendron adamantinum . A sensory test allowed other analyses to be restricted to fertile and sterile stamens as odour production sites. Stamens were studied under light and electron microscopy. Dynamic headspace and gas chromatography-mass spectrometry were used to collect and analyse scents from different zones of the inflorescence. Key Results The epidermal cells of the distal portion of fertile stamens and staminodes are papillose and, similar to the parenchyma cells of this region, have dense cytoplasm and large nuclei. In these cells, the composition of organelles is compatible with secretory activity, especially the great number of mitochondria and plastids. In this portion, lipid droplets that are consumed concomitantly with the release of odour were observed. Quantitative scent analyses revealed that the scent, with a predominance of dihydro-β-ionone, is mainly emitted by the fertile and sterile staminate zones of the spadix. An amorphous substance in the stomata pores indicates that the components are secreted and volatilized outside of the osmophore under thermogenic heat. Conclusions Despite the difficulty in locating osmophores in the absence of morphological identity and inefficiency of neutral red staining, the osmophores of P. adamantinum have some features expected for these structures. The results indicate a functional link between thermogenesis and volatilization of osmophore secretions to produce olfactory signals for attracting specialized beetle pollinators. These first experimental data about the precise location of osmophores in Philodendron will stimulate studies in related species that will allow future comparison and the establishment of patterns of functional morphology.
Collapse
Affiliation(s)
- Patrícia Gonçalves-Souza
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil and
| | - Clemens Schlindwein
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil and
| | - Stefan Dötterl
- Department of Ecology and Evolution, Plant Ecology, University of Salzburg, 5020 Salzburg, Austria
| | - Elder Antônio Sousa Paiva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil and
| |
Collapse
|
25
|
Borges RM, Somanathan H, Kelber A. Patterns and Processes in Nocturnal and Crepuscular Pollination Services. QUARTERLY REVIEW OF BIOLOGY 2016; 91:389-418. [DOI: 10.1086/689481] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Hoe YC, Gibernau M, Maia ACD, Wong SY. Flowering mechanisms, pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp. (Araceae) on Borneo. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:563-576. [PMID: 26780890 DOI: 10.1111/plb.12431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
In this study, the flowering mechanisms and pollination strategies of seven species of the highly diverse genus Homalomena (Araceae) were investigated in native populations of West Sarawak, Borneo. The floral scent compositions were also recorded for six of these species. The selected taxa belong to three out of four complexes of the section Cyrtocladon (Hanneae, Giamensis and Borneensis). The species belonging to the Hanneae complex exhibited longer anthesis (53-62 h) than those of the Giamensis and Borneensis complexes (ca. 30 h). Species belonging to the Hanneae complex underwent two floral scent emission events in consecutive days, during the pistillate and staminate phases of anthesis. In species belonging to the Giamensis and Borneensis complexes, floral scent emission was only evident to the human nose during the pistillate phase. A total of 33 volatile organic compounds (VOCs) were detected in floral scent analyses of species belonging to the Hanneae complex, whereas 26 VOCs were found in samples of those belonging to the Giamensis complex. The floral scent blends contained uncommon compounds in high concentration, which could ensure pollinator discrimination. Our observations indicate that scarab beetles (Parastasia gestroi and P. nigripennis; Scarabaeidae, Rutelinae) are the pollinators of the investigated species of Homalomena, with Chaloenus schawalleri (Chrysomelidae, Galeuricinae) acting as a secondary pollinator. The pollinators utilise the inflorescence for food, mating opportunities and safe mating arena as rewards. Flower-breeding flies (Colocasiomyia nigricauda and C. aff. heterodonta; Diptera, Drosophilidae) and terrestrial hydrophilid beetles (Cycreon sp.; Coleoptera, Hydrophilidae) were also frequently recovered from inflorescences belonging to all studied species (except H. velutipedunculata), but they probably do not act as efficient pollinators. Future studies should investigate the post-mating isolating barriers among syntopically co-flowering Homalomena sharing the same visiting insects.
Collapse
Affiliation(s)
- Y C Hoe
- Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - M Gibernau
- CNRS - University of Corsica, UMR 6134 - SPE, Natural Resources Project, Ajaccio, France
| | - A C D Maia
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - S Y Wong
- Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| |
Collapse
|
27
|
Nocturnal Plant Bugs Use cis-Jasmone to Locate Inflorescences of an Araceae as Feeding and Mating Site. J Chem Ecol 2016; 42:300-4. [PMID: 27074793 PMCID: PMC4867150 DOI: 10.1007/s10886-016-0688-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/22/2016] [Accepted: 03/25/2016] [Indexed: 11/04/2022]
Abstract
Inflorescences of Araceae pollinated by cyclocephaline scarab beetles are visited frequently by a wide array of other arthropods that exploit floral resources without taking part in pollination, including earwigs, flies, and true bugs. To date, nothing is known about the cues these insect visitors use to locate the inflorescences and whether or to what extent floral scents play a role. An aroid visited by large numbers of plant bugs (Miridae) in addition to cyclocephaline scarab beetle pollinators is the Neotropical species Dieffenbachia aurantiaca. We identified the plant bug species and investigated their behavior and arrival time on the inflorescences. To test the importance of olfactory cues in locating their host we conducted experiments with open and gauze-bagged inflorescences as well as natural scent samples of D. aurantiaca. Inflorescence scents were analyzed by gas chromatography linked to mass spectrometry (GC/MS), and the attractive potential of the main scent compound was determined by behavioral assays. Three species of Neella, the most common one being N. floridula, visited the inflorescences at nightfall, shortly after the beginning of scent emission, and showed feeding and copulation activity. Bagged inflorescences as well as natural scent samples attracted similar numbers of plant bugs as the non-bagged inflorescences, showing that olfactory cues are sufficient for them to locate their host. Cis-jasmone was the major component within the inflorescence scent bouquet. In two-choice field bioassays, this compound proved to be highly attractive to Neella, and thus obviously plays a key role in finding host plants.
Collapse
|
28
|
Cáceres LA, Lakshminarayan S, Yeung KKC, McGarvey BD, Hannoufa A, Sumarah MW, Benitez X, Scott IM. Repellent and Attractive Effects of α-, β-, and Dihydro-β- Ionone to Generalist and Specialist Herbivores. J Chem Ecol 2016; 42:107-17. [PMID: 26852133 DOI: 10.1007/s10886-016-0669-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 11/25/2022]
Abstract
In plants, the oxidative cleavage of carotenoid substrates produces volatile apocarotenoids, including α-ionone, β-ionone, and dihydro-β-ionone, compounds that are important in herbivore-plant communication. For example, β-ionone is part of an induced defense in canola, Brassica napus, and is released following wounding by herbivores. The objectives of the research were to evaluate whether these volatile compounds would: 1) be released in higher quantities from plants through the over-expression of the carotenoid cleavage dioxygenase1 (CCD1) gene and 2) cause herbivores to be repelled or attracted to over-expressing plants relative to the wild-type. In vivo dynamic headspace collection of volatiles coupled with gas chromatography-mass spectrometry was used to determine volatile organic compounds (VOC) in the headspace of the Arabidopsis thaliana ecotype Columbia-0 (L.) over-expressing the AtCCD1 gene. The analytical method allowed the detection of β-ionone in the Arabidopsis headspace where emission rates ranged between 2 and 5-fold higher compared to the wild type, thus corroborating the in vivo enhancement of gene expression. A two chamber choice test between wild type and AtCCD1 plants revealed that crucifer flea beetle Phyllotreta cruciferae (Goeze) adults were repelled by the AtCCD1 plants with the highest transcription and β-ionone levels. α-Ionone and dihydro-β-ionone were not found in the headspace analysis, but solutions of the three compounds were tested in the concentration range of β-ionone found in the Arabidopsis headspace (0.05 to 0.5 ng/μl) in order to assess their biological activity with crucifer flea beetle, two spotted spider mite Tetranychus urticae (Koch), and silverleaf whiteflies Bemisia tabaci (Gennadius). Choice bioassays demonstrated that β-ionone has a strong repellent effect toward both the flea beetle and the spider mite, and significant oviposition deterrence to whiteflies. In contrast, dihydro-β-ionone had attractant properties, especially to the crucifer flea beetle, while α-ionone did not show any significant activity. These findings demonstrate how regulating genes of the carotenoid pathway can increase herbivore deterrent volatiles, a novel tool for insect pest management.
Collapse
Affiliation(s)
- L A Cáceres
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - S Lakshminarayan
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - K K-C Yeung
- Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - B D McGarvey
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - A Hannoufa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - M W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - X Benitez
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - I M Scott
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada.
| |
Collapse
|
29
|
Schiestl FP. Ecology and evolution of floral volatile-mediated information transfer in plants. THE NEW PHYTOLOGIST 2015; 206:571-7. [PMID: 25605223 DOI: 10.1111/nph.13243] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/13/2014] [Indexed: 05/24/2023]
Abstract
Floral volatiles are complex, multi-functional signals that are often used by pollinators in combination with other signals, such as color. Floral visitors use floral scent to estimate the amount of reward present in flowers, to facilitate the identification of a specific host flower or as signals that chemically resemble those important for pollinator insects in other ecological contexts. There is good evidence that floral scent evolves under selection imposed by both mutualists and antagonists. Antagonists may often limit the amount of scent emitted by flowers, thus contributing to spatial population variation, and select for phenotypic plasticity after enemy attack. Floral scent is also an important component of pollinator-mediated reproductive isolation, as it often co-varies with color and morphology in sister species with different pollination systems.
Collapse
Affiliation(s)
- Florian P Schiestl
- Institute of Systematic Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| |
Collapse
|
30
|
Evidence for early intracellular accumulation of volatile compounds during spadix development in Arum italicum L. and preliminary data on some tropical Aroids. Naturwissenschaften 2014; 101:623-35. [PMID: 24925357 DOI: 10.1007/s00114-014-1197-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Staining and histochemistry of volatile organic compounds (VOCs) were performed at different inflorescence developmental stages on nine aroid species; one temperate, Arum italicum and eight tropical from the genera Caladium, Dieffenbachia and Philodendron. Moreover, a qualitative and quantitative analysis of VOCs constituting the scent of A. italicum, depending on the stage of development of inflorescences was also conducted. In all nine species, vesicles were observed in the conical cells of either the appendix or the stamens (thecae) and the staminodes. VOCs were localised in intracellular vesicles from the early stages of inflorescence development until their release during receptivity of gynoecium. This localisation was observed by the increase of both number and diameter of the vesicles during 1 week before receptivity. Afterwards, vesicles were fewer and smaller but rarely absent. In A. italicum, staining and gas chromatography analyses confirmed that the vesicles contained terpenes. The quantitatively most important ones were the sesquiterpenes, but monoterpenes were not negligible. Indeed, the quantities of terpenes matched the vesicles' size evolution during 1 week. Furthermore, VOCs from different biosynthetic pathways (sesquiterpenes and alkanes) were at their maximum quantity 2 days before gynoecium receptivity (sesquiterpenes and alkanes) or during receptivity (isobutylamine, monoterpenes, skatole and p-cresol). VOCs seemed to be emitted during gynoecium receptivity and/or during thermogenesis, and FADs are accumulated after thermogenesis in the spadix. These complex dynamics of the different VOCs could indicate specialisation of some VOCs and cell machinery to attract pollinators on the one hand and to repulse/protect against phytophagous organisms and pathogens after pollination on the other hand.
Collapse
|