1
|
Shipley BR, McGuire JL. The environmental conditions of endemism hotspots shape the functional traits of mammalian assemblages. Proc Biol Sci 2024; 291:20232773. [PMID: 38471553 DOI: 10.1098/rspb.2023.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Endemic (small-ranged) species are distributed non-randomly across the globe. Regions of high topography and stable climates have higher endemism than flat, climatically unstable regions. However, it is unclear how these environmental conditions interact with and filter mammalian traits. Here, we characterize the functional traits of highly endemic mammalian assemblages in multiple ways, testing the hypothesis that these assemblages are trait-filtered (less functionally diverse) and dominated by species with traits associated with small range sizes. Compiling trait data for more than 5000 mammal species, we calculated assemblage means and multidimensional functional metrics to evaluate the distribution of traits across each assemblage. We then related these metrics to the endemism of global World Wildlife Fund ecoregions using linear models and phylogenetic fourth-corner regression. Highly endemic mammalian assemblages had small average body masses, low fecundity, short lifespans and specialized habitats. These traits relate to the stable climate and rough topography of endemism hotspots and to mammals' ability to expand their ranges, suggesting that the environmental conditions of endemism hotspots allowed their survival. Furthermore, species living in endemism hotspots clustered near the edges of their communities' functional spaces, indicating that abiotic trait filtering and biotic interactions act in tandem to shape these communities.
Collapse
Affiliation(s)
- Benjamin R Shipley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jenny L McGuire
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
3
|
Taylor LU, Prum RO. SOCIAL CONTEXT AND THE EVOLUTION OF DELAYED REPRODUCTION IN BIRDS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551693. [PMID: 37577720 PMCID: PMC10418290 DOI: 10.1101/2023.08.02.551693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Classic life history theory makes generalized predictions about phenotypic correlations across large clades. Modern comparative tests of these correlations account for the underlying structure of phylogenetic trees. Yet neither life history theory nor phylogenetic comparative methods automatically specify how biological mechanisms generate correlations. This problem is evident in comparative analyses of birds. Birds show a correlation between body size and age at first reproduction, but do not actually grow larger if they delay reproduction. Instead, field studies raise the hypothesis that social contexts-especially cooperative breeding, coloniality, and lekking-generate unique demands for behavioral development, which in turn result in delayed reproduction. Here, we support that hypothesis with a comparative dataset spanning 961 species in 155 avian families. Continuous (Ornstein-Uhlenbeck), discrete (hidden state Markov), and phylogenetic regression models revealed delayed reproduction in colonial birds, a weaker signal in cooperative birds, and the consistent evolution of sexual bimaturism in polygynous, lekking birds. These results show an association between diverse social contexts, sex-specific developmental demands, and life history evolution in birds. Considering this diversity, we discuss how even statistically powerful phylogenetic correlations-whether focused on mass, lifespan, or broad social categories-can ultimately fail to model the history of life history evolution.
Collapse
Affiliation(s)
- Liam U. Taylor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Richard O. Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Culumber ZW. Variation in behavioral traits across a broad latitudinal gradient in a livebearing fish. Evol Ecol 2022. [DOI: 10.1007/s10682-021-10146-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Habitat characteristics and life history explain reproductive seasonality in lagomorphs. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractLagomorphs show extensive seasonal variation in their reproduction. However, the factors causing this large variation have so far mostly been investigated intraspecifically and therefore provide only some exemplary comparisons of lagomorph reproductive seasonality. The present study applies both a categorical description (birth season categories 1–5) and a quantitative measure (birth season length in months) to summarize the degree of birth seasonality in the wild of 69 lagomorph species. Using a comparative approach, I tested the influence of 13 factors, comprising six habitat, five life history and two allometric variables on birth season length in lagomorphs. Leporids mainly show non-seasonal birthing patterns with high intraspecific variation. Their opportunistic breeding strategy with high reproductive output and their large distribution areas across wide latitude and elevation ranges might be the reasons for this finding. Ochotonids reproduce strictly seasonally, likely because they live at northern latitudes, are high-altitude specialists, and occur in limited distribution areas. The most important factors associated with variation in lagomorph birth seasonality are mid-latitude, mean annual temperature and precipitation of a species’ geographical range and life history adaptations including fewer but larger litters in seasonal habitats. Birth seasons become shorter with increasing latitude, colder temperatures, and less precipitation, corresponding to the decreasing length of optimal environmental conditions. Leporid species with shorter breeding seasons force maternal resources into few large litters to maximise reproductive output while circumstances are favourable. Since allometric variables were only weakly associated with reproductive seasonality, life history adaptations and habitat characteristics determine birth seasonality in Lagomorpha.
Collapse
|
6
|
Lundblad CG, Conway CJ. Ashmole's hypothesis and the latitudinal gradient in clutch size. Biol Rev Camb Philos Soc 2021; 96:1349-1366. [PMID: 33754488 DOI: 10.1111/brv.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
One enduring priority for ecologists has been to understand the cause(s) of variation in reproductive effort among species and localities. Avian clutch size generally increases with increasing latitude, both within and across species, but the mechanism(s) driving that pattern continue to generate hypotheses and debate. In 1961, a Ph.D. student at Oxford University, N. Philip Ashmole, proposed the influential hypothesis that clutch size varies in direct proportion to the seasonality of resources available to a population. Ashmole's hypothesis has been widely cited and discussed in the ecological literature. However, misinterpretation and confusion has been common regarding the mechanism that underlies Ashmole's hypothesis and the testable predictions it generates. We review the development of well-known hypotheses to explain clutch size variation with an emphasis on Ashmole's hypothesis. We then discuss and clarify sources of confusion about Ashmole's hypothesis in the literature, summarise existing evidence in support and refutation of the hypothesis, and suggest some under-utilised and novel approaches to test Ashmole's hypothesis and gain an improved understanding of the mechanisms responsible for variation in avian clutch size and fecundity, and life-history evolution in general.
Collapse
Affiliation(s)
- Carl G Lundblad
- Idaho Cooperative Fish and Wildlife Research Unit, Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1141, Moscow, ID, 83844, U.S.A
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, Department of Fish & Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1141, Moscow, ID, 83844, U.S.A
| |
Collapse
|
7
|
Dejene SW, Mpakairi KS, Kanagaraj R, Wato YA, Mengistu S. Modelling continental range shift of the African elephant (Loxodonta africana) under a changing climate and land cover: implications for future conservation of the species. AFRICAN ZOOLOGY 2021. [DOI: 10.1080/15627020.2020.1846617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sintayehu W Dejene
- College of Agriculture and Environmental Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Kudzai S Mpakairi
- Geo-information and Earth Observation Centre, Department of Geography and Environmental Science, University of Zimbabwe, Mount Pleasant, Harare
| | - Rajapandian Kanagaraj
- Helmholtz Centre for Environmental Research (UFZ), Department of Ecological Modelling, Leipzig, Germany
- French Institute of Pondicherry (IFP), Department of Ecology, Puducherry, India
| | | | - Sewnet Mengistu
- School of Biological Sciences, Haramaya University, Dire Dawa, Ethiopia
| |
Collapse
|
8
|
Heldstab SA. Latitude, life history and sexual size dimorphism correlate with reproductive seasonality in rodents. Mamm Rev 2021. [DOI: 10.1111/mam.12231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra A. Heldstab
- Department of Anthropology University of Zurich Winterthurerstrasse 190 Zurich8057Switzerland
- Clinic for Zoo Animals, Exotic Pets and Wildlife Vetsuisse Faculty University of Zurich Winterthurerstrasse 260 Zurich8057Switzerland
| |
Collapse
|
9
|
Clauss M, Zerbe P, Bingaman Lackey L, Codron D, Müller DWH. Basic considerations on seasonal breeding in mammals including their testing by comparing natural habitats and zoos. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00078-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractSeasonal reproduction is common in mammals. Whereas specific conditions triggering a seasonal response can only be identified in controlled experiments, large-scale comparisons of reproduction in natural habitats and zoos can advance knowledge for taxa unavailable for experimentation. We outline how such a comparison can identify species whose seasonal physiology is linked to photoperiodic triggers, and those whose perceived seasonality in the wild is the consequence of fluctuating resources without a photoperiodic trigger. This concept groups species into those that do not change their aseasonal pattern between natural habitats and zoos because they are not constrained by resources in the wild, those that do not change a seasonal pattern between natural habitats and zoos because they are triggered by photoperiod irrespective of resources, and those that change from a more seasonal pattern in the natural habitat to an aseasonal pattern in zoos because the zoo environment alleviates resource limitations experienced in the wild. We explain how detailed comparisons of mating season timing in both environments can provide clues whether a specific daylength or a specific number of days after an equinox or solstice is the likely phototrigger for a taxon. We outline relationships between life history strategies and seasonality, with special focus on relative shortening of gestation periods in more seasonal mammals. Irrespective of whether such shortening results from the adaptive value of fitting a reproductive cycle within one seasonal cycle (minimizing ‘lost opportunity’), or from benefits deriving from separating birth and mating (to optimize resource use, or to reduce infanticide), reproductive seasonality may emerge as a relevant driver of life history acceleration. Comparisons of data from natural habitats and zoos will facilitate testing some of the resulting hypotheses.
Collapse
|
10
|
Heldstab SA, van Schaik CP, Müller DWH, Rensch E, Lackey LB, Zerbe P, Hatt JM, Clauss M, Matsuda I. Reproductive seasonality in primates: patterns, concepts and unsolved questions. Biol Rev Camb Philos Soc 2020; 96:66-88. [PMID: 32964610 DOI: 10.1111/brv.12646] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023]
Abstract
Primates, like other mammals, exhibit an annual reproductive pattern that ranges from strictly seasonal breeding to giving birth in all months of the year, but factors mediating this variation are not fully understood. We applied both a categorical description and quantitative measures of the birth peak breadth based on daily observations in zoos to characterise reproductive seasonality in 141 primate species with an average of 941 birth events per species. Absolute day length at the beginning of the mating season in seasonally reproducing species was not correlated between populations from natural habitats and zoos. The mid-point of latitudinal range was a major factor associated with reproductive seasonality, indicating a correlation with photoperiod. Gestation length, annual mean temperature, natural diet and Malagasy origin were other important factors associated with reproductive seasonality. Birth seasons were shorter with increasing latitude of geographical origin, corresponding to the decreasing length of the favourable season. Species with longer gestation periods were less seasonal than species with shorter ones, possibly because shorter gestation periods more easily facilitate the synchronisation of reproductive activity with annual cycles. Habitat conditions with higher mean annual temperature were also linked to less-seasonal reproduction, independently of the latitude effect. Species with a high percentage of leaves in their natural diet were generally non-seasonal, potentially because the availability of mature leaves is comparatively independent of seasons. Malagasy primates were more seasonal in their births than species from other regions. This might be due to the low resting metabolism of Malagasy primates, the comparatively high degree of temporal predictability of Malagasy ecosystems, or historical constraints peculiar to Malagasy primates. Latitudinal range showed a weaker but also significant association with reproductive seasonality. Amongst species with seasonal reproduction in their natural habitats, smaller primate species were more likely than larger species to shift to non-seasonal breeding in captivity. The percentage of species that changed their breeding pattern in zoos was higher in primates (30%) than in previous studies on Carnivora and Ruminantia (13 and 10%, respectively), reflecting a higher concentration of primate species in the tropics. When comparing only species that showed seasonal reproduction in natural habitats at absolute latitudes ≤11.75°, primates did not differ significantly from these two other taxa in the proportion of species that changed to a less-seasonal pattern in zoos. However, in this latitude range, natural populations of primates and Carnivora had a significantly higher proportion of seasonally reproducing species than Ruminantia, suggesting that in spite of their generally more flexible diets, both primates and Carnivora are more exposed to resource fluctuation than ruminants.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland.,Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Carel P van Schaik
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Dennis W H Müller
- Zoological Garden Halle (Saale), Fasanenstrasse 5a, 06114, Halle (Saale), Germany
| | - Eberhard Rensch
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Laurie Bingaman Lackey
- World Association of Zoos and Aquariums (WAZA), Carrer de Roger de Llúria, 2, 2-2, Barcelona, Spain
| | - Philipp Zerbe
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Ikki Matsuda
- Chubu University Academy of Emerging Sciences, 1200, Matsumoto-cho, Kasugai-shi, Aichi, 487-8501, Japan.,Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.,Japan Monkey Centre, Inuyama, Aichi, 484-0081, Japan.,Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
11
|
Lukas D, Clutton-Brock T. Monotocy and the evolution of plural breeding in mammals. Behav Ecol 2020; 31:943-949. [PMID: 32760176 PMCID: PMC7390990 DOI: 10.1093/beheco/araa039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/06/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022] Open
Abstract
In many mammals, breeding females are intolerant of each other and seldom associate closely but, in some, they aggregate in groups that vary in size, stability, and kinship structure. Aggregation frequently increases competition for food, and interspecific differences in female sociality among mammals are commonly attributed to contrasts in ecological parameters, including variation in activity timing, the distribution of resources, as well as the risk of predation. However, there is increasing indication that differences in female sociality are also associated with phylogenetic relationships and with contrasts in life-history parameters. We show here that evolutionary transitions from systems where breeding females usually occupy separate ranges ("singular breeding") to systems where breeding females usually aggregate ("plural breeding") have occurred more frequently in monotocous lineages where females produce single young than in polytocous ones where they produce litters. A likely explanation of this association is that competition between breeding females for resources is reduced where they produce single young and is more intense where they produce litters. Our findings reinforce evidence that variation in life-history parameters plays an important role in shaping the evolution of social behavior.
Collapse
Affiliation(s)
- Dieter Lukas
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | |
Collapse
|
12
|
Gao J, Santi F, Zhou L, Wang X, Riesch R, Plath M. Geographical and temporal variation of multiple paternity in invasive mosquitofish (Gambusia holbrooki, Gambusia affinis). Mol Ecol 2019; 28:5315-5329. [PMID: 31677202 DOI: 10.1111/mec.15294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023]
Abstract
Multiple paternity (MP) increases offspring's genetic variability, which could be linked to invasive species' evolvability in novel distribution ranges. Shifts in MP can be adaptive, with greater MP in harsher/colder environments or towards the end of the reproductive season, but climate could also affect MP indirectly via its effect on reproductive life histories. We tested these hypotheses by genotyping N = 2,903 offspring from N = 306 broods of two closely related livebearing fishes, Gambusia holbrooki and Gambusia affinis. We sampled pregnant females across latitudinal gradients in their invasive ranges in Europe and China, and found more sires per brood and a greater reproductive skew towards northern sampling sites. Moreover, examining monthly sampling from two G. affinis populations, we found MP rates to vary across the reproductive season in a northern Chinese, but not in a southern Chinese population. While our results confirm an increase of MP in harsher/more unpredictable environments, path analysis indicated that, in both cases, the effects of climate are likely to be indirect, mediated by altered life histories. In both species, which rank amongst the 100 most invasive species worldwide, higher MP at the northern edge of their distribution probably increases their invasive potential and favours range expansions, especially in light of the predicted temperature increases due to global climate changes.
Collapse
|
13
|
McLean BS, Barve N, Flenniken J, Guralnick RP. Evolution of litter size in North America’s most common small mammal: an informatics-based approach. J Mammal 2019. [DOI: 10.1093/jmammal/gyz057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bryan S McLean
- University of Florida, Florida Museum of Natural History, Gainesville, FL, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Narayani Barve
- University of Florida, Florida Museum of Natural History, Gainesville, FL, USA
| | - Jeffry Flenniken
- University of Florida, Florida Museum of Natural History, Gainesville, FL, USA
| | - Robert P Guralnick
- University of Florida, Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
14
|
Battistella T, Cerezer F, Bubadué J, Melo G, Graipel M, Cáceres N. Litter size variation in didelphid marsupials: evidence of phylogenetic constraints and adaptation. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Thaís Battistella
- Programa de Pós-Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Felipe Cerezer
- Programa de Pós-Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jamile Bubadué
- Programa de Pós-Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Geruza Melo
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, MT, Brazil
| | - Maurício Graipel
- Departamento de Ecologia e Zoologia, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Nilton Cáceres
- Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
15
|
Bergqvist G, Paulson S, Elmhagen B. Effects of female body mass and climate on reproduction in northern wild boar. WILDLIFE BIOLOGY 2018. [DOI: 10.2981/wlb.00421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Göran Bergqvist
- G. Bergqvist , Swedish Association for Hunting and Wildlife Mana
| | | | - Bodil Elmhagen
- B. Elmhagen, Dept of Zoology, Stockholm Univ., Stockholm, Sweden
| |
Collapse
|
16
|
Reproductive parameters of the fisher (Pekania pennanti) in the southern Sierra Nevada, California. J Mammal 2018. [DOI: 10.1093/jmammal/gyy040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Tarwater CE, Arcese P. Individual fitness and the effects of a changing climate on the cessation and length of the breeding period using a 34-year study of a temperate songbird. GLOBAL CHANGE BIOLOGY 2018; 24:1212-1223. [PMID: 28869682 DOI: 10.1111/gcb.13889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Studies of the phenological responses of animals to climate change typically emphasize the initiation of breeding although climatic effects on the cessation and length of the breeding period may be as or more influential of fitness. We quantified links between climate, the cessation and length of the breeding period, and individual survival and reproduction using a 34-year study of a resident song sparrow (Melospiza melodia) population subject to dramatic variation in climate. We show that the cessation and length of the breeding period varied strongly across years, and predicted female annual fecundity but not survival. Breeding period length was more influential of fecundity than initiation or cessation of breeding alone. Warmer annual temperature and drier winters and summers predicted an earlier cessation of breeding. Population density, the date breeding was initiated, a female's history of breeding success, and the number of breeding attempts initiated previously also predicted the cessation of breeding annually, indicating that climatic, population, and individual factors may interact to affect breeding phenology. Linking climate projections to our model results suggests that females will both initiate and cease breeding earlier in the future; this will have opposite effects on individual reproductive rate because breeding earlier is expected to increase fecundity, whereas ceasing breeding earlier should reduce it. Identifying factors affecting the cessation and length of the breeding period in multiparous species may be essential to predicting individual fitness and population demography. Given a rich history of studies on the initiation of breeding in free-living species, re-visiting those data to estimate climatic effects on the cessation and length of breeding should improve our ability to predict the impacts of climate change on multiparous species.
Collapse
Affiliation(s)
- Corey E Tarwater
- Department of Forest and Conservation Sciences, University of British Columbia Vancouver, Vancouver, British Columbia, Canada
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia Vancouver, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Lukas D, Clutton-Brock T. Climate and the distribution of cooperative breeding in mammals. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160897. [PMID: 28280589 PMCID: PMC5319355 DOI: 10.1098/rsos.160897] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/12/2016] [Indexed: 05/15/2023]
Abstract
Cooperative breeding systems, in which non-breeding individuals provide care for the offspring of dominant group members, occur in less than 1% of mammals and are associated with social monogamy and the production of multiple offspring per birth (polytocy). Here, we show that the distribution of alloparental care by non-breeding subordinates is associated with habitats where annual rainfall is low. A possible reason for this association is that the females of species found in arid environments are usually polytocous and this may have facilitated the evolution of alloparental care.
Collapse
|
19
|
Turbill C, Prior S. Thermal climate‐linked variation in annual survival rate of hibernating rodents: shorter winter dormancy and lower survival in warmer climates. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12620] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christopher Turbill
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith 2751 New South WalesAustralia
| | - Samantha Prior
- Hawkesbury Institute for the Environment Western Sydney University Locked Bag 1797 Penrith 2751 New South WalesAustralia
| |
Collapse
|
20
|
Ocelot Population Status in Protected Brazilian Atlantic Forest. PLoS One 2015; 10:e0141333. [PMID: 26560347 PMCID: PMC4641647 DOI: 10.1371/journal.pone.0141333] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/07/2015] [Indexed: 12/04/2022] Open
Abstract
Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators.
Collapse
|
21
|
Wills BD, Moreau CS, Wray BD, Hoffmann BD, Suarez AV. Body size variation and caste ratios in geographically distinct populations of the invasive big-headed ant,Pheidole megacephala(Hymenoptera: Formicidae). Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bill D. Wills
- Department of Animal Biology; University of Illinois; 515 Morrill Hall, 505 S. Goodwin Ave. Urbana IL 61801 USA
| | - Corrie S. Moreau
- Department of Science and Education; Center for Integrative Research; Field Museum of Natural History; 1400 South Lake Shore Drive Chicago IL 60605 USA
| | - Brian D. Wray
- Department of Science and Education; Center for Integrative Research; Field Museum of Natural History; 1400 South Lake Shore Drive Chicago IL 60605 USA
| | - Benjamin D. Hoffmann
- CSIRO Land and Water Flagship, Tropical Ecosystems Research Centre; PMB 44 Winnellie NT 0822 Australia
| | - Andrew V. Suarez
- Department of Animal Biology; University of Illinois; 515 Morrill Hall, 505 S. Goodwin Ave. Urbana IL 61801 USA
- Program in Ecology, Evolution and Conservation Biology; Department of Entomology; University of Illinois; 320 Morrill Hall, 505 S. Goodwin Ave. Urbana IL 61801 USA
| |
Collapse
|