1
|
Li SH, Cheng CY. Risks of glaucoma among individuals with psoriasis: a population-based cohort study. Clin Exp Dermatol 2024; 49:1007-1015. [PMID: 38469696 DOI: 10.1093/ced/llae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/04/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Psoriasis is a chronic systemic disorder with ocular involvement. OBJECTIVES To evaluate the risk of glaucoma among patients with psoriasis. METHODS Participants in this cohort study were selected based on Chang Gung Research Database from 1 January 2003 to 31 December 2012. Follow-up ended on 31 December 2017. The participants in the control group were matched with the psoriasis group by sex, age and index date with a 4 : 1 ratio. The hazard ratios of glaucoma were estimated using Cox regression analysis. We also evaluated the relationship between the risk of glaucoma and systemic therapies as well as phototherapy and topical corticosteroid in patients with psoriasis. RESULTS In total, 6682 patients with psoriasis and 26 728 matched controls were enrolled. The study population was composed mainly of males accounting for 64.2% (21 445/33 410) of the study population. The psoriasis group had higher incidence rates than the control group for glaucoma (adjusted hazard ratio 1.405, 95% confidence interval, 1.051-1.879). Patients with psoriasis receiving psoralen-ultraviolet A (PUVA) therapy for > 200 sessions had an increased risk of glaucoma. CONCLUSIONS Patients with psoriasis had an increased risk of glaucoma. Long-term PUVA therapy raised the risk of glaucoma in people with psoriasis.
Collapse
Affiliation(s)
- Shu-Hao Li
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yu Cheng
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center of Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
2
|
Kiełbowski K, Stańska W, Bakinowska E, Rusiński M, Pawlik A. The Role of Alarmins in the Pathogenesis of Rheumatoid Arthritis, Osteoarthritis, and Psoriasis. Curr Issues Mol Biol 2024; 46:3640-3675. [PMID: 38666958 PMCID: PMC11049642 DOI: 10.3390/cimb46040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Alarmins are immune-activating factors released after cellular injury or death. By secreting alarmins, cells can interact with immune cells and induce a variety of inflammatory responses. The broad family of alarmins involves several members, such as high-mobility group box 1, S100 proteins, interleukin-33, and heat shock proteins, among others. Studies have found that the concentrations and expression profiles of alarmins are altered in immune-mediated diseases. Furthermore, they are involved in the pathogenesis of inflammatory conditions. The aim of this narrative review is to present the current evidence on the role of alarmins in rheumatoid arthritis, osteoarthritis, and psoriasis. We discuss their potential involvement in mechanisms underlying the progression of these diseases and whether they could become therapeutic targets. Moreover, we summarize the impact of pharmacological agents used in the treatment of these diseases on the expression of alarmins.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| |
Collapse
|
3
|
Xie Y, Zhou Y, Wang J, Du L, Ren Y, Liu F. Ferroptosis, autophagy, tumor and immunity. Heliyon 2023; 9:e19799. [PMID: 37810047 PMCID: PMC10559173 DOI: 10.1016/j.heliyon.2023.e19799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Ferroptosis was first proposed in 2012, a new form of cell death. Autophagy plays a crucial role in cell clearance and maintaining homeostasis. Autophagy is involved in the initial step of ferroptosis under the action of histone elements such as NCOA4, RAB7A, and BECN1. Ferroptosis and autophagy are involved in tumor progression, treatment, and drug resistance in the tumor microenvironment. In this review, we described the mechanisms of ferroptosis, autophagy, and tumor and immunotherapy, respectively, and emphasized the relationship between autophagy-related ferroptosis and tumor.
Collapse
Affiliation(s)
| | | | - Jiale Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lijuan Du
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuanyuan Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
4
|
Shi L, Du X, Li J, Zhang G. Bioinformatics and Systems Biology Approach to Identify the Pathogenetic Link Between Psoriasis and Cardiovascular Disease. Clin Cosmet Investig Dermatol 2023; 16:2283-2295. [PMID: 37635735 PMCID: PMC10460209 DOI: 10.2147/ccid.s421193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Objective This study aimed to identify hub genes and common pathways shared between psoriasis and cardiovascular disease (CVD) using bioinformatics analysis and predict the transcription factors (TFs) of hub genes. Methods GSE133555 data from the Gene Expression Omnibus (GEO) database were used to identify differentially expressed genes (DEGs) between involved and uninvolved skin lesions in psoriasis, employing the limma package in R. Additionally, CVD-related genes were obtained from the GeneCards database. The intersection of DEGs and CVD-related genes yielded CVD-DEGs. Gene Ontology and signaling pathway analyses were performed using the clusterProfiler package in R. Hub genes were identified by intersecting six algorithms in the CytoHubba plugin of Cytoscape. To identify potential biomarkers, the GSE14905 dataset was subjected to receiver operating characteristic analysis, resulting in the identification of eight central hub genes. Finally, the NetworkAnalyst web tool was used to identify the TFs of the eight hub genes. Results We identified 92 significant DEGs out of 1825 CVD-related genes in psoriasis obtained from the GSE13355 and GeneCard data. Functional enrichment analysis revealed the involvement of these genes in various signaling pathways, including the interleukin-17 signaling, tumor necrosis factor signaling, lipid and atherosclerosis, chemokine signaling, and cytokine signaling pathways in the immune system. The eight hub genes identified included interleukin-1 beta, C-X-C motif chemokine ligand 8, signal transducer and activator of transcription 3, C-C motif chemokine ligand 2, arginase 1, C-X-C motif chemokine receptor 4, cyclin D1, and matrix metallopeptidase 9, with forkhead box C1 also identified as an associated TF of these genes. These hub genes and TF may act as key regulators in the context of CVD. Conclusion This study identified several hub genes and signaling pathways associated with both CVD and psoriasis. These findings lay the groundwork for potential therapeutic interventions for patients with psoriasis affected by CVD.
Collapse
Affiliation(s)
- Liping Shi
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, People’s Republic of China
| | - Xiaoqing Du
- Department of Dermatology, Bethune International Peace Hospital, Shijiazhuang, People’s Republic of China
| | - Jing Li
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, People’s Republic of China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, People’s Republic of China
| |
Collapse
|
5
|
Nguyen HD, Kim MS. The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships : The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships. Biol Trace Elem Res 2023; 201:2200-2221. [PMID: 35798913 DOI: 10.1007/s12011-022-03343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Converging evidence indicates heavy metal-induced genes, transcription factors (TFs), and microRNAs (miRNAs) are critical pathological components of metabolic syndrome (MetS) and cognitive impairment. Thus, our goals are to identify the interaction of mixed heavy metals (cadmium + lead + mercury) with genes, TFs, and miRNAs involved in MetS and its components, as well as cognitive impairment development. The most commonly retrieved genes for each disease were different, but essential biological pathways such as oxidative stress, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, apoptosis, the IL-6 signaling pathway, and Alzheimer's disease were highlighted. The genes CASP3, BAX, BCL2, IL6, TNF, APOE, HMOX1, and IGF were found to be mutually affected by the heavy metal mixture studied, suggesting the importance of apoptosis, inflammation, lipid, heme, and glucose metabolism in MetS and cognitive impairment, as well as the potentiality of targeting these genes in prospective therapeutic intervention for these diseases. EGR2, ATF3, and NFE2L2 were noted as the most key TFs implicated in the etiology of MetS and its components, as well as cognitive impairment. We also found six miRNAs induced by studied heavy metals were the mutual miRNAs linked to MetS, its components, and cognitive impairment. In particular, we used miRNAsong to construct and verify a miRNA sponge sequence for these miRNAs. These sponges are promising molecules for the treatment of MetS and its components, as well as cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
6
|
Conundrum for Psoriasis and Thyroid Involvement. Int J Mol Sci 2023; 24:ijms24054894. [PMID: 36902323 PMCID: PMC10003398 DOI: 10.3390/ijms24054894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Strategies concerning thyroid anomalies in patients confirmed with psoriasis, either on clinical level or molecular levels, and their genetic findings remain an open issue. Identification of the exact subgroup of individuals that are candidates to endocrine assessments is also controversial. Our purpose in this work was to overview clinical and pathogenic data concerning psoriasis and thyroid comorbidities from a dual perspective (dermatologic and endocrine). This was a narrative review of English literature between January 2016 and January 2023. We included clinically relevant, original articles with different levels of statistical evidence published on PubMed. We followed four clusters of conditions: thyroid dysfunction, autoimmunity, thyroid cancer, and subacute thyroiditis. A new piece of information in this field was the fact that psoriasis and autoimmune thyroid diseases (ATD) have been shown to be related to the immune-based side effects of modern anticancer drugs-namely, immune checkpoint inhibitors (ICP). Overall, we identified 16 confirmatory studies, but with heterogeneous data. Psoriatic arthritis had a higher risk of positive antithyroperoxidase antibodies (TPOAb) (25%) compared to cutaneous psoriasis or control. There was an increased risk of thyroid dysfunction versus control, and hypothyroidism was the most frequent type of dysfunction (subclinical rather than clinical), among thyroid anomalies correlated with >2-year disease duration, peripheral > axial and polyarticular involvement. With a few exceptions, there was a female predominance. Hormonal imbalance included, most frequently, low thyroxine (T4) and/or triiodothyronine (T3) with normal thyroid stimulating hormone (TSH), followed by high TSH (only one study had higher total T3). The highest ratio of thyroid involvement concerning dermatologic subtypes was 59% for erythrodermic psoriasis. Most studies found no correlation between thyroid anomalies and psoriasis severity. Statistically significant odds ratios were as follows: hypothyroidism: 1.34-1.38; hyperthyroidism: 1.17-1.32 (fewer studies than hypo); ATD: 1.42-2.05; Hashimoto's thyroiditis (HT): 1.47-2.09; Graves' disease: 1.26-1.38 (fewer studies than HT). A total of 8 studies had inconsistent or no correlations, while the lowest rate of thyroid involvement was 8% (uncontrolled studies). Other data included 3 studies on patients with ATD looking for psoriasis, as well as 1 study on psoriasis and thyroid cancer. ICP was shown to potentially exacerbate prior ATD and psoriasis or to induce them both de novo (5 studies). At the case report level, data showed subacute thyroiditis due to biological medication (ustekinumab, adalimumab, infliximab). Thyroid involvement in patients with psoriasis thus remained puzzling. We observed significant data that confirmed a higher risk of identifying positive antibodies and/or thyroid dysfunction, especially hypothyroidism, in these subjects. Awareness will be necessary to improve overall outcomes. The exact profile of individuals diagnosed with psoriasis who should be screened by the endocrinology team is still a matter of debate, in terms of dermatological subtype, disease duration, activity, and other synchronous (especially autoimmune) conditions.
Collapse
|
7
|
Chen Y, Wang YF, Song SS, Zhu J, Wu LL, Li XY. Potential shared therapeutic and hepatotoxic mechanisms of Tripterygium wilfordii polyglycosides treating three kinds of autoimmune skin diseases by regulating IL-17 signaling pathway and Th17 cell differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115496. [PMID: 35750104 DOI: 10.1016/j.jep.2022.115496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii polyglycosides (TWP) are extracted from Tripterygium wilfordii Hook. f., which has the significant effects of anti-inflammation and immunosuppression and has been widely used to treat autoimmune diseases in traditional Chinese medicine. AIM OF STUDY In Chinese clinical dermatology, TWP was generally used for the treatment of autoimmune skin diseases including psoriasis (PSO), systemic lupus erythematosus (SLE) and pemphigus (PEM). However, the potential hepatotoxicity (HPT) induced by TWP was also existing with the long-term use of TWP. This study aims to explore the potential shared therapeutic mechanism of TWP treating PSO, SLE, PEM and the possible hepatotoxic mechanism induced by TWP. MATERIALS AND METHODS Network pharmacology was used to predict the potential targets and pathways in this study. The main bioactive compounds in TWP was screened according to TCMSP, PubChem, ChEMBL databases and Lipinski's Rule of Five. The potential targets of these chemical constituents were obtained from PharmMapper, SEA and SIB databases. The related targets of PSO, SLE, PEM and HPT were collected from GeneCards, DrugBank, DisGeNET and CTD databases. The target network construction was performed through STRING database and Cytoscape. GO enrichment, KEGG enrichment and molecular docking were then performed, respectively. In particular, imiquimod (IMQ)-induced PSO model was selected as the representative for the experimental verification of effects and shared therapeutic mechanisms of TWP. RESULTS 41 targets were considered as the potential shared targets of TWP treating PSO, SLE and PEM. KEGG enrichment indicated that IL-17 signaling pathway and Th17 cell differentiation were significant in the potential shared therapeutic mechanism of TWP. The animal experimental verification demonstrated that TWP could notably ameliorate skin lesions (P˂0.001), decrease inflammatory response (P˂0.05, P˂0.01, P˂0.001) and inhibit the differentiation of Th1/Th17 cells (P˂0.05, P˂0.01) compared to PSO model group. The molecular docking and qPCR validation then showed that TWP could effectively act on MAPK14, IL-2, IL-6 and suppress Th17 cell differentiation and IL-17 signaling pathway. The possible hepatotoxic mechanism of TWP indicated that there were 145 hepatotoxic targets and it was also associated with IL-17 signaling pathway and Th17 cell differentiation, especially for the key role of ALB, CASP3 and HSP90AA1. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP showed that 28 targets were shared by therapeutic and hepatotoxic mechanisms such as IL-6, IL-2, MAPK14, MMP9, ALB, CASP3 and HSP90AA1. These significant relevant targets were also involved in IL-17 signaling pathway and Th17 cell differentiation. CONCLUSIONS There were shared disease targets in PSO, SLE and PEM, and TWP could treat them by potential shared therapeutic mechanisms of suppressing IL-17 signaling pathway and Th17 cell differentiation. The possible hepatotoxicity induced by TWP was also significantly associated with the regulation of IL-17 signaling pathway and Th17 cell differentiation. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP also mainly focused on IL-17 signaling pathway and Th17 cell differentiation, which provided a potential direction for the study of the mechanism of "You Gu Wu Yun" theory of TWP treating autoimmune skin diseases in the future.
Collapse
Affiliation(s)
- Yi Chen
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yong-Fang Wang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Sha-Sha Song
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jia Zhu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Li-Li Wu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xin-Yu Li
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
8
|
Bu J, Ding R, Zhou L, Chen X, Shen E. Epidemiology of Psoriasis and Comorbid Diseases: A Narrative Review. Front Immunol 2022; 13:880201. [PMID: 35757712 PMCID: PMC9226890 DOI: 10.3389/fimmu.2022.880201] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory disease that remains active for a long period, even for life in most patients. The impact of psoriasis on health is not only limited to the skin, but also influences multiple systems of the body, even mental health. With the increasing of literature on the association between psoriasis and extracutaneous systems, a better understanding of psoriasis as an autoimmune disease with systemic inflammation is created. Except for cardiometabolic diseases, gastrointestinal diseases, chronic kidney diseases, malignancy, and infections that have received much attention, the association between psoriasis and more systemic diseases, including the skin system, reproductive system, and oral and ocular systems has also been revealed, and mental health diseases draw more attention not just because of the negative mental and mood influence caused by skin lesions, but a common immune-inflammatory mechanism identified of the two systemic diseases. This review summarizes the epidemiological evidence supporting the association between psoriasis and important and/or newly reported systemic diseases in the past 5 years, and may help to comprehensively recognize the comorbidity burden related to psoriasis, further to improve the management of people with psoriasis.
Collapse
Affiliation(s)
- Jin Bu
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ruilian Ding
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liangjia Zhou
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Protective effect of Yangxue Jiedu Soup against psoriasis-like lesions by regulating TLR4/NF-κB signaling pathway mediated by secretion of exosome HSP70. Biomed Pharmacother 2022; 147:112604. [PMID: 34998030 DOI: 10.1016/j.biopha.2021.112604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 11/22/2022] Open
Abstract
Psoriasis is a common chronic inflammatory hypertrophic skin disease characterized by abnormal proliferation and differentiation of keratinocyte and immune T cell. The pathogenesis of psoriasis has not been fully elucidated and there is no effective therapy in clinic. As a traditional Chinese medicine formula, Yangxue Jiedu Soup (YJS) has been used to treat inflammatory diseases caused by Yin Deficiency and Blood Dryness. The purpose of present study was to investigate the therapeutic effect and molecular mechanism of YJS on psoriasis model mice. Results showed that YJS effectively inhibited the hypertrophy, erythema and scales of psoriasis-like lesions to alleviate the pathological changes of skin lesions, and further decreased the production of TNF-α, IL-6, IL-1β, IFN-γ, IL-17 and IL-23. Meanwhile, YJS also significantly reduced keratinocyte proliferation and maintained immune system balance by inhibiting the expression of PCNA, Ki-67, CD4 + and CD8 + in psoriasis mice. Moreover, the results further indicated that YJS could inhibit TLR4 activation and NF-κB p65 nuclear transfer by suppressing HSP70 secretion to attenuate the inflammatory response in IMQ-induced mice, which provided a theoretical basis for the clinical use of YJS in the treatment of psoriasis.
Collapse
|
10
|
Choudhary S, Anand R, Pradhan D, Bastia B, Kumar SN, Singh H, Puri P, Thomas G, Jain AK. Transcriptomic landscaping of core genes and pathways of mild and severe psoriasis vulgaris. Int J Mol Med 2021; 47:219-231. [PMID: 33416099 PMCID: PMC7723513 DOI: 10.3892/ijmm.2020.4771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/31/2020] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease affecting >125 million individuals worldwide. The therapeutic course for the disease is generally designed upon the severity of the disease. In the present study, the gene expression profile GSE78097, was retrieved from the National Centre of Biotechnology (NCBI)‑Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) in mild and severe psoriasis using the Affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways of the DEGs were analysed using clusterProfiler, Bioconductor, version 3.8. In addition, the STRING database was used to develop DEG‑encoded proteins and a protein‑protein interaction network (PPI). Cytoscape software, version 3.7.1 was utilized to construct a protein interaction association network and analyse the interaction of the candidate DEGs encoding proteins in psoriasis. The top 2 hub genes in Cytohubba plugin parameters were validated using immunohistochemical analysis in psoriasis tissues. A total of 382 and 3,001 dysregulated mild and severe psoriasis DEGs were reported, respectively. The dysregulated mild psoriasis genes were enriched in pathways involving cytokine‑cytokine receptor interaction and rheumatoid arthritis, whereas cytokine‑cytokine receptor interaction, cell cycle and cell adhesion molecules were the most enriched pathways in severe psoriasis group. PL1N1, TLR4, ADIPOQ, CXCL8, PDK4, CXCL1, CXCL5, LPL, AGT, LEP were hub genes in mild psoriasis, whereas BUB1, CCNB1, CCNA2, CDK1, CDH1, VEGFA, PLK1, CDC42, CCND1 and CXCL8 were reported hub genes in severe psoriasis. Among these, CDC42, for the first time (to the best of our knowledge), has been reported in the psoriasis transcriptome, with its involvement in the adaptive immune pathway. Furthermore, the immunoexpression of CDK1 and CDH1 proteins in psoriasis skin lesions were demonstrated using immunohistochemical analysis. On the whole, the findings of the present integrated bioinformatics and immunohistochemical study, may enhance our understanding of the molecular events occurring in psoriasis, and these candidate genes and pathways together may prove to be therapeutic targets for psoriasis vulgaris.
Collapse
Affiliation(s)
- Saumya Choudhary
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), Uttar Pradesh 211007
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi 110029
| | - Rishika Anand
- Amity Institute of Biotechnology, Amity University, Noida Uttar Pradesh 201313
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre (ISRM) Division, Indian Council of Medical Research
| | - Banajit Bastia
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi 110029
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi 110029
| | - Shashi Nandar Kumar
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi 110029
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre (ISRM) Division, Indian Council of Medical Research
| | - Poonam Puri
- Department of Dermatology and STD, Vardhman Mahavir Medical College, Safdarjung Hospital, New Delhi 110029, India
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (Allahabad), Uttar Pradesh 211007
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi 110029
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi 110029
| |
Collapse
|
11
|
Liu T, Zhang X, Wang Y. miR-183-3p suppresses proliferation and migration of keratinocyte in psoriasis by inhibiting GAB1. Hereditas 2020; 157:28. [PMID: 32650835 PMCID: PMC7353791 DOI: 10.1186/s41065-020-00138-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNAs (miRNAs) target genes involved in the hyperproliferation of keratinocytes or immune dysfunction of psoriasis. This study prospectively determined the involvement of miR-183-3p in the pathogenesis of psoriasis. Methods Differentially expressed miR-183-3p between psoriatic lesional and non-lesional skin were determined by quantitative RT-PCR and in situ hybridization (ISH). CCK8 and wound healing assays were performed to assess cell viability and migration of human keratinocyte cell line (HaCaT). The target of miR-183-3p was validated by luciferase activity assay. Results Lower miR-183-3p expression was observed in psoriatic lesional skin compared to psoriatic non-lesional skin. MiR-183-3p over-expression inhibited the viability and migration of HaCaT cells, while inhibition of miR-183-3p promoted the viability and migration of HaCaT cells. Moreover, miR-183-3p could bind to the 3′ UTR of GAB1 (growth factor receptor binding 2-associated binding protein 1) and decrease the mRNA and protein expression of GAB1 in HaCaT cells. In addition, higher GAB1 expression was observed in psoriatic lesional skin than psoriatic non-lesional skin. Conclusion MiR-183-3p exhibited inhibition property in the proliferation and migration of HaCaT cells via down-regulation of GAB1, suggesting the potential therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Nanchong City, 637000, Sichuan Province, China.
| | - Xiaoyan Zhang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Nanchong City, 637000, Sichuan Province, China
| | - Yujuan Wang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Nanchong City, 637000, Sichuan Province, China
| |
Collapse
|
12
|
Henri P, Prevel C, Pellerano M, Lacotte J, Stoebner PE, Morris MC, Meunier L. Psoriatic epidermis is associated with upregulation of CDK2 and inhibition of CDK4 activity. Br J Dermatol 2019; 182:678-689. [PMID: 31145809 DOI: 10.1111/bjd.18178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The cyclin-dependent kinases (CDKs) CDK2 and CDK4 are involved in regulation of cell-cycle progression, and psoriasis is characterized by hyperproliferation of basal epidermal cells. CDK inhibitory proteins (CKIs) such as p16INK 4A (p16) bind CDK4/6 kinases and prevent their interaction with D-type cyclins. CKIs such as p21Cip1 (p21) and p27Kip1 (p27) associate with CDK-cyclin complexes and prevent their activation. OBJECTIVES To gain insight into the molecular implication of CDK2 and CDK4 kinases in psoriasis, we sought to characterize expression of these kinases and associated cyclins, as well as of CKIs, and addressed the status of CDK2 and CDK4 activity in human psoriatic epidermis. METHODS A cohort of 24 patients with psoriasis participated in the study. Biopsies were removed from a chronic plaque and from nonlesional skin. CDK2, CDK4, cyclin D1, cyclin E and CKI protein expression was assessed by immunoblotting, immunohistochemistry and immunofluorescence. CDK4 and CDK2 mRNA expression was determined by real-time polymerase chain reaction. Specific kinase activities of CDK2 and CDK4 were evaluated using fluorescent peptide biosensors. RESULTS CDK2-cyclin E expression and activity were significantly increased in psoriatic epidermis compared with uninvolved adjacent skin. In contrast, CDK4-cyclin D1 activity was inhibited, although its expression was increased in psoriatic epidermis and its transcription slightly inhibited. p27 expression was reduced, while p16 and p21 expression was induced in psoriatic epidermis. CONCLUSIONS Epidermal CDK2 activity is increased in psoriatic epidermis while CDK4 activity is completely inhibited. These alterations are not associated with changes in CDK transcription and instead involve post-translational control mediated by decreased expression of p27 and p16 overexpression, respectively. What's already known about this topic? Cyclin-dependent kinases (CDKs) are involved in cell-cycle progression. The levels of cyclin partners and CDK inhibitors regulate their activity. Psoriasis is a chronic T-cell-driven inflammatory skin disease characterized by hyperproliferation of basal epidermal cells. What does this study add? Thanks to fluorescent peptide biosensors, this study demonstrates that epidermal CDK2 activity is increased in psoriatic epidermis while CDK4 activity is completely inhibited. These alterations involve post-translational control mediated by decreased expression of p27, and p16 overexpression, respectively. What is the translational message? CDK2 and CDK4 are involved in regulation of cell-cycle progression, and psoriasis is characterized by hyperproliferation of basal epidermal cells. Epidermal CDK2 activity is increased in psoriatic epidermis while CDK4 activity is completely inhibited. These alterations are not associated with changes in CDK transcription and instead involve post-translational control mediated by decreased expression of p27 and p16 overexpression, respectively. Pharmacological modulation of CDK2 and CDK4 may constitute a promising therapeutic strategy.
Collapse
Affiliation(s)
- P Henri
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - C Prevel
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - M Pellerano
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - J Lacotte
- Department of Dermatology, Caremeau University Hospital, Nîmes, France
| | - P E Stoebner
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France.,Department of Dermatology, Caremeau University Hospital, Nîmes, France
| | - M C Morris
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France
| | - L Meunier
- Institute of Biomolecules Max Mousseron (IBMM), University of Montpellier, UMR CNRS 5247, Montpellier, France.,Department of Dermatology, Caremeau University Hospital, Nîmes, France
| |
Collapse
|
13
|
Ding W, Cao Y, Xing F, Tao M, Fu H, Luo H, Yang X. A Preliminary Study of the Effect of Semaphorin 3A and Acitretin on the Proliferation, Migration, and Apoptosis of HaCaT Cells. Indian J Dermatol 2019; 64:250. [PMID: 31148871 PMCID: PMC6537688 DOI: 10.4103/ijd.ijd_179_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) is significantly elevated in psoriatic patients and is associated with the severity of the psoriasis. Due to the effect of inhibiting production of VEGF, acitretin can effectively treat psoriasis. Semaphorin 3A (Sema3A) restrain tumor growth and angiogenesis by partially reversing VEGF effects on tumor. However, the role of Sema3A in the pathogenesis of psoriasis is unclear. Aims and Objectives: This study aimed to investigate the effect of VEGF, Sema3A, and acitretin on HaCaT cells, to see whether Sema3A could be a beneficial factor in psoriasis, as well as acitretin. Materials and Methods: Functional analysis of VEGF, Sema3A, and acitretin was carried out using HaCaT cells cultured under different treatments. Cell counting kit-8 method, colony formation assay, flow cytometry, transwell migration, reverse transcription-polymerase chain reaction, and Western blot test were performed to measure proliferation, colony formation, migration, apoptosis, and the expression of Bcl2, Bax, Caspase 3, and Caspase 9 of HaCaT cells. Results: Sema3A and acitretin inhibited the proliferation, colony formation, and migration of HaCaT cells, while induced the apoptosis of HaCaT cells by inhibiting the expression of Bcl2, and promoting the expression of Bax, Caspase 3, and Caspase 9, which were opposite to VEGF. Sema3A and acitretin partially reversed the function of VEGF. Conclusions: Like acitretin, exogenous supplement of Sema3A may correct the abnormal proliferation and apoptosis procedure of HaCaT cells, and partially reverse the function of VEGF.
Collapse
Affiliation(s)
- Wei Ding
- Department of Dermatology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengling Xing
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maocan Tao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongbin Luo
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohong Yang
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Friis NU, Hoffmann N, Gyldenløve M, Skov L, Vilsbøll T, Knop FK, Storgaard H. Glucose metabolism in patients with psoriasis. Br J Dermatol 2018; 180:264-271. [PMID: 30376181 DOI: 10.1111/bjd.17349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Epidemiological studies strongly suggest that psoriasis predisposes to type 2 diabetes. Several theories have been proposed to explain how these disease entities might be pathophysiologically connected. OBJECTIVES Our primary objective was to elucidate whether clinical data support the notion of common pathophysiological denominators in patients with psoriasis and type 2 diabetes, and thus to delineate the association between the two conditions that has arisen on the basis of epidemiological studies. METHODS We reviewed clinical studies investigating parameters of glucose metabolism in patients with psoriasis. The PubMed and Embase databases were searched for studies investigating glucose metabolism in adult patients with psoriasis as a primary or secondary end point. Studies had to include a relevant control group. RESULTS Twenty-six clinical studies reporting on insulin resistance, glucose tolerance or insulin secretion were eligible for review. The results were widely conflicting, with less than half of the studies showing results suggestive of defective glucose metabolism in patients with psoriasis. In general, the studies suffered from a lack of information regarding possible confounders and patient characteristics. Furthermore, the research methods varied, and in all but one study they might not have been appropriate to detect early and subtle defects in glucose metabolism. CONCLUSIONS The available literature does not unequivocally support common pathophysiological denominators in psoriasis and type 2 diabetes. Well-designed clinical studies are needed to expose potential diabetogenic defects in the glucose metabolism in patients with psoriasis.
Collapse
Affiliation(s)
- N U Friis
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - N Hoffmann
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| | - M Gyldenløve
- Department of Dermatology and Allergology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - L Skov
- Department of Dermatology and Allergology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - T Vilsbøll
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Storgaard
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Kildegårdsvej 28, DK-2900, Hellerup, Denmark
| |
Collapse
|
15
|
Fu Y, Li X, Chen Y, Liu R, Wang R, Bai N. Association of ERAP1 gene polymorphisms with the susceptibility to psoriasis vulgaris: A case-control study. Medicine (Baltimore) 2018; 97:e12828. [PMID: 30313118 PMCID: PMC6203476 DOI: 10.1097/md.0000000000012828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Psoriasis vulgaris (PsV), also known as plaque psoriasis, is a life-threatening autoimmune skin disease. Inflammatory factors may contribute to the development of PsV. Present study aimed to explore the association of endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms (rs26653 and rs27524) with PsV susceptibility in a Chinese Han population. Subgroup analysis was also performed based on the onset of PsV.Present case-control study included 143 patients with PsV and 149 healthy controls. Direct sequencing method was used for genotyping ERAP1 polymorphisms. Chi-squared test was used to estimate the association between ERAP1 polymorphisms and PsV susceptibility. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess association strength.The polymorphism rs26653 was positively correlated with PsV susceptibility (CC vs GG, P = .047, OR = 1.964, 95% CI = 1.006-3.834; C vs G, P = .042, OR = 1.403, 95% CI = 1.011-1.946). Meanwhile, its CC genotype and C allele were positively associated with the early onset of PsV (P = .036, OR = 2.080, 95% CI = 1.044-4.145; P = .034, OR = 1.443, 95% CI = 1.028-2.024) and increased PsV risk in the subgroup with family history (P = .029, OR = 2.149, 95% CI = 1.075-4.296; P = .027, OR = 1.466, 95% CI = 1.044-2.059).ERAP1 gene rs26653 polymorphism may increase the risk of PsV in Chinese Han population.
Collapse
Affiliation(s)
- Yanjie Fu
- Department of Burn and Plastic Surgery, Linyi People's Hospital, Linyi City
| | - Xiuyan Li
- Department of Surgery, Tancheng People's Hospital, Tancheng City
| | - Yuanzheng Chen
- Department of Burn and Plastic Surgery, Linyi People's Hospital, Linyi City
| | - Rongpeng Liu
- Department of Burn and Plastic Surgery, Linyi People's Hospital, Linyi City
| | - Renheng Wang
- Department of Burn and Plastic Surgery, Linyi People's Hospital, Linyi City
| | - Nan Bai
- Department of Plastic and Cosmetic Surgery, Linyi People's Hospital, Linyi City, Shandong Province, China
| |
Collapse
|
16
|
Li R, Qiao M, Zhao X, Yan J, Wang X, Sun Q. MiR-20a-3p regulates TGF-β1/Survivin pathway to affect keratinocytes proliferation and apoptosis by targeting SFMBT1 in vitro. Cell Signal 2018; 49:95-104. [PMID: 29886071 DOI: 10.1016/j.cellsig.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
Psoriasis is a common immune-mediated chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation, differentiation and apoptosis. However, the exact etiology and pathogenesis are still unclear. Evidence is rapidly accumulating for the role of microRNAs in psoriasis. It has been demonstrated that Interleukin-22 (IL-22) plays vital role in T cell-mediated immune response by interacting with keratinocytes in the pathogenesis of psoriasis. The aim of our study was to explore the possible functional role of miR-20a-3p in psoriasis and in IL-22 induced keratinocyte proliferation. Here, we found that miR-20a-3p was down-regulated in psoriatic lesions and in HaCaT cells (human keratinocyte cell line) treated by IL-22 stimulation. Functional experiments showed that overexpression of miR-20a-3p in HaCaT cells suppressed proliferation and induced apoptosis while its knockdown promoted cell proliferation and reduces cell apoptosis. Mechanistically, SFMBT1 was identified as the direct target of miR-20a-3p by dual luciferase reporter assay. SFMBT1 knockdown was demonstrated to inhibit cell growth and induced apoptosis, which was consistent with the function of miR-20a-3p upregulation in HaCaT cells. In addition, results of western blot analysis showed that miR-20a-3p upregulation or SFMBT1 knockdown changed the protein expression levels of TGF-β1 and survivin. Our findings suggest that miR-20a-3p play roles through targeting SFMBT1 and TGF-β1/Survivin pathway in HaCaT cells, and loss of miR-20a-3p in psoriasis may contribute to hyperproliferation and aberrant apoptosis of keratinocytes.
Collapse
Affiliation(s)
- Ronghua Li
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Meng Qiao
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Xintong Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Xiaoyan Wang
- Department of Dermatology, Qingdao Municipal Hospital (Group), No. 1, Jiaozhou Road, Qingdao, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China.
| |
Collapse
|
17
|
Stefanadi EC, Dimitrakakis G, Antoniou CK, Challoumas D, Punjabi N, Dimitrakaki IA, Punjabi S, Stefanadis CI. Metabolic syndrome and the skin: a more than superficial association. Reviewing the association between skin diseases and metabolic syndrome and a clinical decision algorithm for high risk patients. Diabetol Metab Syndr 2018; 10:9. [PMID: 29483947 PMCID: PMC5822485 DOI: 10.1186/s13098-018-0311-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/12/2018] [Indexed: 02/08/2023] Open
Abstract
There is ongoing scientific interest regarding comorbidities associated with the metabolic syndrome (MeTS). MeTS comprises a combination of parameters that predispose individuals to the development of type 2 diabetes and cardiovascular disease (CVD). Three or more of the following criteria are necessary: fasting glucose > 110 mg/dl (5.6 mmol/l), hypertriglyceridemia > 150 mg/dl (1.7 mmol/l), HDL levels < 40 mg/dl (men)/< 50 mg/dl (women), blood pressure > 130/85 mmHg, waist circumference (values for Mediterranean populations > 94 cm (men)/> 89 cm (women). In this review we attempted to summarize relevant data by searching dermatological literature regarding associations between various skin conditions and MeTS. A multitude of studies was retrieved and a further goal of the present article is to present plausible mechanistic connections. The severity of skin conditions like psoriasis has been linked with MeTS. Parameters of MeTS like insulin resistance are present in patients with early onset androgenic alopecia, hidradenitis suppurativa acne and rosacea. Since MeTS can lead to CVD and type 2 diabetes early detection of patients would be very important. Also therapeutic intervention on MeTS could lead to improvement on the severity of skin conditions. This reciprocal relationship between skin diseases and MeTS in our opinion holds great interest for further investigation.
Collapse
Affiliation(s)
- Ellie C. Stefanadi
- Dermatology Department, Athens Medical Centre, Athens, Greece
- National and Kapodistrian University of Athens and Athens Medical Center, Papadiamantopoulou 20, Ilisia, Athens, Greece
| | | | | | | | | | | | - Sangeeta Punjabi
- Dermatology Department, Northwick Park and Middlesex Hospitals, London, UK
| | | |
Collapse
|