1
|
Zheng S, Deng R, Xie S, Huang G, Ou Z, Shen Z. Typha pollen extract inhibit melanogenesis via α-MSH/MC1R signaling pathway in B16 and melasma mouse model. Arch Dermatol Res 2025; 317:321. [PMID: 39890718 DOI: 10.1007/s00403-024-03752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
The aim of this study was to investigate the effects of Typha Pollen extract on melanogenesis in B16 and melasma mouse model. The effects of TP extract on B16 viability, melanin content of B16, MC1R content and TYR activity were studied by MTT assay, NaOH method, ELISA assay and dopa oxidation assay, respectively. In melasma mouse model, the effects of TP extract on MC1R content, MITF content and TYR activity were studied by ELISA assay, immunofluorescence staining and dopa oxidation assay, respectively. The results showed that the appropriate concentration of TP extract does not affect cell viability, and that TP extract inhibit B16 melanin, MC1R content and TYR activity. The results showed that TP extract inhibit skin MC1R content, MITF content and TYR activity. TP extract inhibit B16 melanin, inhibit proteins of α-MSH/MC1R signaling pathway such as MC1R, MITF and TYR. So TP extract is a natural and effective potential whitening agent.
Collapse
Affiliation(s)
- Shiqian Zheng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Rongrong Deng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Shengjun Xie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gengjiu Huang
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhiwen Ou
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhibin Shen
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
2
|
Bertolesi GE, Debnath N, Heshami N, Bui R, Zadeh‐Haghighi H, Simon C, McFarlane S. Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation. Pigment Cell Melanoma Res 2025; 38:e13220. [PMID: 39825699 PMCID: PMC11742648 DOI: 10.1111/pcmr.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/20/2025]
Abstract
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells. We studied light/dark cycles and melatonin coordination in melanin synthesis and cell proliferation of Xenopus laevis melanophores. In vivo, tadpole pigmentation shows robust circadian regulation mainly hormone-driven, in that isolated melanophores respond strongly to melatonin but only slightly to light. Melanophore proliferation is faster in the dark and slower with melatonin as compared to a 12/12 light/dark cycle. Expression of circadian core genes (clock, bmal1, per1, per2, per3, cry1, cry2, and cry4) in melatonin-treated cells during the light phase mimics dark phase expression. Overexpression of individual Crys did not affect melanization or cell proliferation, likely due to their cooperative actions. Melanin synthesis was inhibited by circadian cycle deregulation through (a) pharmacological inhibition of Cry1 and Cry2 degradation with KL001, (b) continuous light or dark conditions, and (c) melatonin treatment. Our findings suggest that circadian cycle regulation, rather than proliferative capacity, alters melanization of melanophores.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Nilakshi Debnath
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Neda Heshami
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryan Bui
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Hadi Zadeh‐Haghighi
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Christoph Simon
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
3
|
Guarnieri T. Light Sensing beyond Vision: Focusing on a Possible Role for the FICZ/AhR Complex in Skin Optotransduction. Cells 2024; 13:1082. [PMID: 38994936 PMCID: PMC11240502 DOI: 10.3390/cells13131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.
Collapse
Affiliation(s)
- Tiziana Guarnieri
- Cell Physiology Laboratory, Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy;
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, Via dei Taurini 19, 00185 Roma, Italy
| |
Collapse
|
4
|
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 2024; 6:1000-1007. [PMID: 38831000 DOI: 10.1038/s42255-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.
Collapse
Affiliation(s)
- Feng Rao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Huo L, Zhang X, Pang Y, Qi Y, Ren S, Wu F, Shang Y, Xi J. Expression and Mutation of SLC45A2 Affects Iris Color in Quail. J Poult Sci 2024; 61:2024015. [PMID: 38818526 PMCID: PMC11130394 DOI: 10.2141/jpsa.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Iris color is a prominent phenotypic feature of quail. To understand the mechanism of melanin deposition related to quail iris color, iris tissues were selected from Beijing white and Chinese yellow quail for transcriptome analysis. Differentially expressed genes (DEGs) associated with pigmentation were identified using RNA sequencing and validated by quantitative real-time polymerase chain reaction (RT-qPCR). The identified single nucleotide polymorphisms were studied using bioinformatics and iris color correlation analyses. A total of 485 DEGs were obtained, with 223 upregulated and 262 downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Thirty-two genes were annotated using the GO database. Three important pigment synthesis pathways (Notch signaling, melanogenesis, and tyrosine metabolism) were identified in quail iris tissue (P < 0.05). The expression levels of solute carrier family 45 member 2 (SLC45A2), tyrosinase-related protein 1, vitamin D receptor, opsin 5, and docking protein 5 were significantly different between Beijing white and Chinese yellow quail, as verified by RT-qPCR. The c.1061C>T mutation in SLC45A2, which caused a single amino acid change at position 354 (threonine to methionine), was significantly associated with iris color in Beijing white and Chinese yellow quail, and might be the main reason for the different iris colors between these two quail species.
Collapse
Affiliation(s)
- Linke Huo
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Youzhi Pang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Yanxia Qi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Shiwei Ren
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Fanghu Wu
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Yuanyuan Shang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Jinquan Xi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| |
Collapse
|
6
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
7
|
Zhang Z, Shi C, Han J, Ge X, Li N, Liu Y, Huang J, Chen S. Nonvisual system-mediated body color change in fish reveals nonvisual function of Opsin 3 in skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112861. [PMID: 38335869 DOI: 10.1016/j.jphotobiol.2024.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Body-color changes in many poikilothermic animals can occur quickly. This color change is generally initiated by visual system, followed by neuromuscular or neuroendocrine control. We have previously showed that the ventral skin color of the large yellow croaker (Larimichthys crocea) presents golden yellow in dark environment and quickly changes to silvery white in light environment. In the present study, we found that the light-induced whitening of ventral skin color was independent of visual input. Using light-emitting diode sources of different wavelength with same luminance (150 lx) but different absolute irradiance (0.039-0.333 mW/cm2), we further found that the blue light (λmax = 480 nm, 0.107 mW/cm2) is more effectively in induction of whitening of ventral skin color in compare with other light sources. Interestingly, the result of RT-PCR showed opsin 3 transcripts expressed in xanthophores. Recombinant protein of Opsin 3 with 11-cis retinal formed functional blue-sensitive pigment, with an absorption maximum at 468 nm. The HEK293T cells transfected with Opsin 3 showed a blue light-evoked Ca2+ response. Knock-down of Opsin 3 expression blocked the light-induced xanthosomes aggregation in vitro. Moreover, the light-induced xanthosomes aggregation was mediated via Ca2+-PKC and Ca2+-CaMKII pathways, and relied on microtubules and dynein. Decrease of cAMP levels was a prerequisite for xanthosomes aggregation. Our results provide a unique organism model exhibiting light-induced quick body color change, which was independent of visual input but rather rely on non-visual function of Opsin 3 within xanthophore.
Collapse
Affiliation(s)
- Zihao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Key laboratory of fish applied biology and aquaculture in North China, College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xiaoyu Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Na Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shixi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
8
|
Sato K, Ohuchi H. Molecular Property, Manipulation, and Potential Use of Opn5 and Its Homologs. J Mol Biol 2024; 436:168319. [PMID: 37865286 DOI: 10.1016/j.jmb.2023.168319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Animal opsin is a G-protein coupled receptor (GPCR) and binds retinal as a chromophore to form a photopigment. The Opsin 5 (Opn5) group within the animal opsin family comprises a diverse array of related proteins, such as Opn5m, a protein conserved across all vertebrate lineages including mammals, and other members like Opn5L1 and Opn5L2 found in non-mammalian vertebrate genomes, and Opn6 found in non-therian vertebrate genomes, along with Opn5 homologs present in invertebrates. Although these proteins collectively constitute a single clade within the molecular phylogenetic tree of animal opsins, they exhibit markedly distinct molecular characteristics in areas such as retinal binding properties, photoreaction, and G-protein coupling specificity. Based on their molecular features, they are believed to play a significant role in physiological functions. However, our understanding of their precise physiological functions and molecular characteristics is still developing and only partially realized. Furthermore, their unique molecular characteristics of Opn5-related proteins suggest a high potential for their use as optogenetic tools through more specialized manipulations. This review intends to encapsulate our current understanding of Opn5, discuss potential manipulations of its molecular attributes, and delve into its prospective utility in the burgeoning field of animal opsin optogenetics.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan.
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Jin S, Zhang W, Zeng W, Zhang Y, Feng J, Wang Y, Luo H, Liu T, Lu H. In vitro differentiation of human amniotic epithelial stem cells into keratinocytes regulated by OPN3. Exp Dermatol 2024; 33:e15007. [PMID: 38284195 DOI: 10.1111/exd.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Human amniotic epithelial stem cells (hAESCs) are regarded as potential alternatives to keratinocytes (KCs) used for skin wound healing. Light is an alternative approach for inducing stem cell differentiation. Opsins (OPNs), a family of light-sensitive, G protein-coupled receptors, play a multitude of light-dependent and light-independent functions in extraocular tissues. However, it remains unclear whether the light sensitivity and function of OPNs are involved in light-induced differentiation of hAESCs to KCs. Herein, we determine the role of OPNs in differentiation of hAESCs into KCs through cell and molecular biology approaches in vitro. It is shown that mRNA expression of OPN3 in the amniotic membrane and hAESCs was higher than the other four primary OPNs by RT-qPCR analysis. Changes in OPN3 gene expression had a significant impact on cell proliferation, stemness and differentiation capability of hAESCs. Furthermore, we found a significant upregulation of OPN3, KRT5 and KRT14 with hAESCs treated at 3 × 33 J/cm2 irradiation from blue-light LED. Taken together, these results suggest that OPN3 acts as a positive regulator of differentiation of hAESCs into KCs. This study provides a novel insight into photosensitive OPNs associated with photobiomodulation(PBM)-induced differentiation in stem cells.
Collapse
Affiliation(s)
- Shuqi Jin
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yulei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianglong Feng
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huanhuan Luo
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Liu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Andrabi M, Upton BA, Lang RA, Vemaraju S. An Expanding Role for Nonvisual Opsins in Extraocular Light Sensing Physiology. Annu Rev Vis Sci 2023; 9:245-267. [PMID: 37196422 DOI: 10.1146/annurev-vision-100820-094018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.
Collapse
Affiliation(s)
- Mutahar Andrabi
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Oh MC, Fernando PDSM, Piao MJ, Kang KA, Herath HMUL, Hyun JW. Baicalein Inhibits α-Melanocyte-stimulating Hormone-stimulated Melanogenesis via p38 Mitogen-activated Protein Kinase Pathway in B16F10 Mouse Melanoma Cells. J Cancer Prev 2023; 28:40-46. [PMID: 37434796 PMCID: PMC10331030 DOI: 10.15430/jcp.2023.28.2.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Excessive UVB exposure causes development of both malignant and non-malignant melanoma via the secretion of α-melanocyte-stimulating hormone (α-MSH). We investigated whether baicalein (5,6,7-trihydroxyflavone) could inhibit α-MSH-stimulated melanogenesis. Baicalein prevented UVB- and α-MSH-induced melanin production and attenuated α-MSH-stimulated tyrosinase (monophenol monooxygenase) activity, and expression of tyrosinase and tyrosine-related protein-2. In addition, baicalein prevented melanogenesis and pigmentation via the p38 mitogen-activated protein kinases signaling pathway. These findings suggest that baicalein represents a natural compound for attenuating melanogenesis.
Collapse
Affiliation(s)
- Min Chang Oh
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
| | | | - Mei Jing Piao
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Korea
| | | | - Jin Won Hyun
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|
12
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
13
|
Lan Y, Zeng W, Wang Y, Dong X, Shen X, Gu Y, Zhang W, Lu H. Opsin 3 mediates UVA-induced keratinocyte supranuclear melanin cap formation. Commun Biol 2023; 6:238. [PMID: 36869204 PMCID: PMC9984416 DOI: 10.1038/s42003-023-04621-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Solar ultraviolet (UV) radiation-induced DNA damage is a major risk factor for skin cancer development. UV-induced redistribution of melanin near keratinocyte nuclei leads to the formation of a supranuclear cap, which acts as a natural sunscreen and protects DNA by absorbing and scattering UV radiation. However, the mechanism underlying the intracellular movement of melanin in nuclear capping is poorly understood. In this study, we found that OPN3 is an important photoreceptor in human epidermal keratinocytes and is critical for UVA-mediated supranuclear cap formation. OPN3 mediates supranuclear cap formation via the calcium-dependent G protein-coupled receptor signaling pathway and ultimately upregulates Dync1i1 and DCTN1 expression in human epidermal keratinocytes via activating calcium/CaMKII, CREB, and Akt signal transduction. Together, these results clarify the role of OPN3 in regulating melanin cap formation in human epidermal keratinocytes, greatly expanding our understanding of the phototransduction mechanisms involved in physiological function in skin keratinocytes.
Collapse
Affiliation(s)
- Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xian Dong
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xiaoping Shen
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yangguang Gu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China.
| |
Collapse
|
14
|
Sua-Cespedes C, Lacerda JT, Zanetti G, David DD, Moraes MN, de Assis LVM, Castrucci AML. Melanopsin (OPN4) is a novel player in skin homeostasis and attenuates UVA-induced effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 242:112702. [PMID: 37018912 DOI: 10.1016/j.jphotobiol.2023.112702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The presence of melanopsin (OPN4) has been shown in cultured murine melanocytes and was associated with ultraviolet A radiation (UVA) reception. Here we demonstrated the protective role of OPN4 in skin physiology and the increased UVA-induced damage in its absence. Histological analysis showed a thicker dermis and thinner hypodermal white adipose tissue layer in Opn4-/- (KO) mice than in wild-type (WT) animals. Proteomics analyses revealed molecular signatures associated with proteolysis, remodeling chromatin, DNA damage response (DDR), immune response, and oxidative stress coupled with antioxidant responses in the skin of Opn4 KO mice compared to WT. Skin protein variants were found in Opn4 KO mice and Opn2, Opn3, and Opn5 gene expressions were increased in the genotype. We investigated each genotype response to UVA stimulus (100 kJ/m2). We found an increase of Opn4 gene expression following stimulus on the skin of WT mice suggesting melanopsin as a UVA sensor. Proteomics findings suggest that UVA decreases DDR pathways associated with ROS accumulation and lipid peroxidation in the skin of Opn4 KO mice. Relative changes in methylation (H3-K79) and acetylation sites of histone between genotypes and differentially modulated by UVA stimulus were also observed. We also identified alterations of molecular traits of the central hypothalamus-pituitary- adrenal (HPA) and the skin HPA-like axes in the absence of OPN4. Higher skin corticosterone levels were detected in UVA-stimulated Opn4 KO compared to irradiated WT mice. Taken altogether, functional proteomics associated with gene expression experiments allowed a high-throughput evaluation that suggests an important protective role of OPN4 in regulating skin physiology in the presence and absence of UVA radiation.
Collapse
Affiliation(s)
- Cristhian Sua-Cespedes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Dantas David
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria L Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.
| |
Collapse
|
15
|
Uzunbajakava NE, Tobin DJ, Botchkareva NV, Dierickx C, Bjerring P, Town G. Highlighting nuances of blue light phototherapy: Mechanisms and safety considerations. JOURNAL OF BIOPHOTONICS 2023; 16:e202200257. [PMID: 36151769 DOI: 10.1002/jbio.202200257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The efficacy of blue light therapy in dermatology relies on numerous clinical studies. The safety remains a topic of controversy, where potentially deleterious effects were derived from in vitro rather than in vivo experiments. The objectives of this work were (1) to highlight the nuances behind "colors" of blue light, light propagation in tissue and the plurality of modes of action; and (2) to rigorously analyze studies on humans reporting both clinical and histological data from skin biopsies with focus on DNA damage, proliferation, apoptosis, oxidative stress, impact on collagen, elastin, immune cells, and pigmentation. We conclude that blue light therapy is safe for human skin. It induces intriguing skin pigmentation, in part mediated by photoreceptor Opsin-3, which might have a photoprotective effect against ultraviolet irradiation. Future research needs to unravel photochemical reactions and the most effective and safe parameters of blue light in dermatology.
Collapse
Affiliation(s)
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christine Dierickx
- Skinperium Laser and Cosmetic Dermatology Clinic, Skinperium, Luxembourg City, Luxembourg
| | - Peter Bjerring
- Dermatology Department, Aalborg University Hospital, Aalborg, Denmark
| | - Godfrey Town
- Dermatology Department, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
16
|
Chan WH, Hsu YJ, Cheng CP, Chou KN, Chen CL, Huang SM, Kan WC, Chiu YL. Assessing the Global Impact on the Mouse Kidney After Traumatic Brain Injury: A Transcriptomic Study. J Inflamm Res 2022; 15:4833-4851. [PMID: 36042866 PMCID: PMC9420446 DOI: 10.2147/jir.s375088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose In this study, we use animal models combined with bioinformatics strategies to investigate the potential changes in overall renal transcriptional expression after traumatic brain injury. Methods Microarray analysis was performed after kidney acquisition using unilateral controlled cortical impact as the primary mouse TBI model. Multi-oriented gene set enrichment analysis was performed for differentially expressed genes. Results The results showed that TBI affected the gene set associated with mitochondria function in kidney cells, and a negative enrichment of gene sets associated with immune cell migration and epidermal development was also observed. Analysis of the disease phenotype gene set revealed that differential expression of mitochondria-related genes was associated with lactate metabolism. Alternatively, activation and adhesion of immune cells associated with the complement system may promote autoinflammation in kidney tissue. The simulated immune cell infiltration analysis showed an increase in the proportion of activated memory CD4 T cells and a decrease in the proportion of resting memory CD4 T cells, suggesting that activated memory CD4 T cell infiltration may be involved in the inflammation of renal tissue and cause damage to renal cells, such as principal cells, mesangial cells and loops of Henle cells. Conclusion This study is the first to reveal the effects of brain trauma on the kidney. TBI may affect the expression of mitochondria function-related gene sets in renal cells by increasing lactate. It may also affect renal mesangial cells by inducing increased infiltration of immune cells through mechanisms related to complement system activation or autoimmune antibodies.
Collapse
Affiliation(s)
- Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Chiao-Pei Cheng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Kuan-Nien Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan, Republic of China.,Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Wei-Chih Kan
- Department of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan City, Taiwan, Republic of China.,Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan City, Taiwan, Republic of China
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| |
Collapse
|
17
|
Vitamin A in Skin and Hair: An Update. Nutrients 2022; 14:nu14142952. [PMID: 35889909 PMCID: PMC9324272 DOI: 10.3390/nu14142952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin A is a fat-soluble micronutrient necessary for the growth of healthy skin and hair. However, both too little and too much vitamin A has deleterious effects. Retinoic acid and retinal are the main active metabolites of vitamin A. Retinoic acid dose-dependently regulates hair follicle stem cells, influencing the functioning of the hair cycle, wound healing, and melanocyte stem cells. Retinoic acid also influences melanocyte differentiation and proliferation in a dose-dependent and temporal manner. Levels of retinoids decline when exposed to ultraviolet irradiation in the skin. Retinal is necessary for the phototransduction cascade that initiates melanogenesis but the source of that retinal is currently unknown. This review discusses new research on retinoids and their effects on the skin and hair.
Collapse
|
18
|
Zhang W, Zeng W, Feng J, Li P, Wang Y, Lu H. Identification and functional assays of single-nucleotide variants of opsins genes in melanocytic tumors. Pigment Cell Melanoma Res 2022; 35:436-449. [PMID: 35527357 DOI: 10.1111/pcmr.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/17/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Epidermal melanocytes sense solar light via the opsin-coupled signaling pathway which is involved in a range of biological functions, including regulating pigmentation, proliferation, apoptosis, and tumorigenesis. However, it remains unclear whether there are genetic variants within these opsins that affect opsin protein structure and function, and further melanocyte biological behaviors. Here, we examined single-nucleotide variants (SNVs) of five opsin (RGR, OPN1SW, OPN2, OPN4, and OPN5) genes in MM (malignant melanoma; n = 76) and MN (melanocytic nevi; n = 157), using next-generation sequencing. The effects of these pathogenic single-nucleotide variants (SNVs) on opsin structure and function were further investigated using molecular dynamics (MD) simulations, dynamic cross-correlation (DCC), and site-directed mutagenesis. In total, 107 SNV variants were identified. Of these variants, 14 nonsynonymous SNVs (nsSNVs) of opsin genes were detected, including three mutations in the RGR gene, three mutations in the OPN1SW gene, two mutations in the OPN2 gene, and six mutations in the OPN4 gene. The effect of these missense mutations on opsin function was then assessed using eight prediction tools to estimate the potential impact of an amino acid substitution. The impact of each nsSNV was investigated using MD simulations and DCC analysis. Furthermore, we performed in vitro fluorescence calcium imaging to assess the functional properties of nsSNV proteins using a site-directed mutagenesis method. Taken together, these results revealed that p.A103V (RGR), p.T167I (RGR), p.G141S (OPN1SW), p.R144C (OPN1SW), and p.S231F (OPN4) had more deleterious effects on protein structure and function among the 14 nsSNVs. Opsin gene alterations showed the low frequency of missense mutations in melanocytic tumors, and although rare, some mutations in these opsin genes disrupt the canonical function of opsin. Our findings provide new insight into the role of opsin variants in the loss of function.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianglong Feng
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Pinhao Li
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
19
|
Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:cells11132082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin’s well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body’s basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes “see” light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the “secret identity” of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
|
20
|
Dong X, Zeng W, Zhang W, Lan Y, Wang Y, Feng J, Gu L, Lu H. Opsin 3 Regulates Melanogenesis in Human Congenital Melanocytic Nevus Cells via Functional Interaction with BRAFV600E. J Invest Dermatol 2022; 142:3020-3029.e5. [DOI: 10.1016/j.jid.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 10/31/2022]
|
21
|
Gu Y, Wang Y, Lan Y, Feng J, Zeng W, Zhang W, Lu H. Expression of Retinal G Protein-Coupled Receptor, a Member of the Opsin Family, in Human Skin Cells and Its Mediation of the Cellular Functions of Keratinocytes. Front Cell Dev Biol 2022; 10:787730. [PMID: 35445026 PMCID: PMC9014095 DOI: 10.3389/fcell.2022.787730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Photoreceptive proteins play critical physiological roles in human skin cells. The retinal G protein-coupled receptor (RGR) is a photoisomerase in the human retina, but its expression and cellular functions in human skin cells have not been reported. Objectives: We aimed to detect RGR expression in various skin cells and evaluate its regulation of the cellular functions of keratinocytes. Methods: The expression, distribution, and subcellular location of the RGR in normal human epidermal keratinocytes and cells with pathological conditions including psoriasis, seborrheic keratosis, and squamous cell carcinoma were determined using microscopic tools (immunohistochemical staining, immunofluorescence staining, and immunoelectron microscopy) and Western blotting (WB). The protein levels of the RGR in primary human melanocytes, keratinocytes, and fibroblasts isolated from the neonatal foreskin were measured by WB. The expression and subcellular localization of the RGR in these cells were detected by immunofluorescence staining under a fluorescence microscope and laser scanning confocal microscope. Additionally, the levels of RGR expression in normal keratinocytes exposed to ultraviolet (UV)-A or total ultraviolet radiation (UVR) in the presence or absence of all-trans-retinal were measured by WB. Furthermore, the effects of the RGR on human keratinocyte functions including proliferation, migration, and apoptosis were evaluated using the Cell Counting Kit 8, wound healing, and Transwell assays after reducing the RGR mRNA level in keratinocytes using small interfering RNA technology. Results: The RGR was primarily located in the epidermal basal and spinous layers and skin appendages. Its expression increased in psoriatic lesions, seborrheic keratosis, and squamous cell carcinoma. Confocal microscopy showed that the RGR was located in the cell membrane and nucleus of keratinocytes, melanocytes, and fibroblasts. Keratinocytes had a higher expression of the RGR than melanocytes and fibroblasts, as well as nuclear expression, according to nuclear/cytoplasmic fractionation. Colloidal gold immunoelectron microscopy technology further confirmed that the RGR is mainly located in the nucleoplasm and mitochondria and is scattered in the cytoplasm and other organelles in the epidermal keratinocytes. Notably, RGR knockdown in keratinocytes led to the inhibition of cell proliferation and migration, augmenting cell apoptosis. Conclusions: This study is the first to demonstrate the presence of RGR in the human skin. Our findings indicate that the RGR may play a critical role in the physiological function of epidermal keratinocytes.
Collapse
Affiliation(s)
- Yangguang Gu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Dermatology and Venereology, Clinical College of Medicine, Guizhou Medical University, Guiyang, China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Dermatology and Venereology, Clinical College of Medicine, Guizhou Medical University, Guiyang, China
| | - Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Dermatology and Venereology, Clinical College of Medicine, Guizhou Medical University, Guiyang, China
| | - Jianglong Feng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Dermatology and Venereology, Clinical College of Medicine, Guizhou Medical University, Guiyang, China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Dermatology and Venereology, Clinical College of Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Dermatology and Venereology, Clinical College of Medicine, Guizhou Medical University, Guiyang, China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Dermatology and Venereology, Clinical College of Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
Wagdi A, Malan D, Sathyanarayanan U, Beauchamp JS, Vogt M, Zipf D, Beiert T, Mansuroglu B, Dusend V, Meininghaus M, Schneider L, Kalthof B, Wiegert JS, König GM, Kostenis E, Patejdl R, Sasse P, Bruegmann T. Selective optogenetic control of G q signaling using human Neuropsin. Nat Commun 2022; 13:1765. [PMID: 35365606 PMCID: PMC8975936 DOI: 10.1038/s41467-022-29265-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Gq proteins are universally important for signal transduction in mammalian cells. The underlying kinetics and transformation from extracellular stimuli into intracellular signaling, however could not be investigated in detail so far. Here we present the human Neuropsin (hOPN5) for specific and repetitive manipulation of Gq signaling in vitro and in vivo with high spatio-temporal resolution. Properties and G protein specificity of hOPN5 are characterized by UV light induced IP3 generation, Ca2+ transients and inhibition of GIRK channel activity in HEK cells. In adult hearts from a transgenic animal model, light increases the spontaneous beating rate. In addition, we demonstrate light induced contractions in the small intestine, which are not detectable after pharmacological Gq protein block. All-optical high-throughput screening for TRPC6 inhibitors is more specific and sensitive than conventional pharmacological screening. Thus, we demonstrate specific Gq signaling of hOPN5 and unveil its potential for optogenetic applications.
Collapse
Affiliation(s)
- Ahmed Wagdi
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Present Address: Department of Cardiology and Pulmonology, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
| | - Daniela Malan
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Udhayabhaskar Sathyanarayanan
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Janosch S. Beauchamp
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Vogt
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - David Zipf
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Beiert
- grid.15090.3d0000 0000 8786 803XDepartment of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Berivan Mansuroglu
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Vanessa Dusend
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Mark Meininghaus
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - Linn Schneider
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - Bernd Kalthof
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, 42096 Wuppertal, Germany
| | - J. Simon Wiegert
- grid.13648.380000 0001 2180 3484Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele M. König
- grid.10388.320000 0001 2240 3300Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- grid.10388.320000 0001 2240 3300Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Robert Patejdl
- grid.413108.f0000 0000 9737 0454Oscar-Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Philipp Sasse
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- grid.411984.10000 0001 0482 5331Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany ,grid.10388.320000 0001 2240 3300Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany ,grid.10388.320000 0001 2240 3300Research Training Group 1873, University of Bonn, Bonn, Germany ,grid.7450.60000 0001 2364 4210Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Mahendra CK, Ser HL, Pusparajah P, Htar TT, Chuah LH, Yap WH, Tang YQ, Zengin G, Tang SY, Lee WL, Liew KB, Ming LC, Goh BH. Cosmeceutical Therapy: Engaging the Repercussions of UVR Photoaging on the Skin's Circadian Rhythm. Int J Mol Sci 2022; 23:2884. [PMID: 35270025 PMCID: PMC8911461 DOI: 10.3390/ijms23052884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; or
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia;
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
24
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
25
|
de Assis LVM, Moraes MN, Mendes D, Silva MM, Menck CFM, Castrucci AMDL. Loss of Melanopsin (OPN4) Leads to a Faster Cell Cycle Progression and Growth in Murine Melanocytes. Curr Issues Mol Biol 2021; 43:1436-1450. [PMID: 34698095 PMCID: PMC8929055 DOI: 10.3390/cimb43030101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Skin melanocytes harbor a complex photosensitive system comprised of opsins, which were shown, in recent years, to display light- and thermo-independent functions. Based on this premise, we investigated whether melanopsin, OPN4, displays such a role in normal melanocytes. In this study, we found that murine Opn4KO melanocytes displayed a faster proliferation rate compared to Opn4WT melanocytes. Cell cycle population analysis demonstrated that OPN4KO melanocytes exhibited a faster cell cycle progression with reduced G0–G1, and highly increased S and slightly increased G2/M cell populations compared to the Opn4WT counterparts. Expression of specific cell cycle-related genes in Opn4KO melanocytes exhibited alterations that corroborate a faster cell cycle progression. We also found significant modification in gene and protein expression levels of important regulators of melanocyte physiology. PER1 protein level was higher while BMAL1 and REV-ERBα decreased in Opn4KO melanocytes compared to Opn4WT cells. Interestingly, the gene expression of microphthalmia-associated transcription factor (MITF) was upregulated in Opn4KO melanocytes, which is in line with a higher proliferative capability. Taken altogether, we demonstrated that OPN4 regulates cell proliferation, cell cycle, and affects the expression of several important factors of the melanocyte physiology; thus, arguing for a putative tumor suppression role in melanocytes.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (M.N.M.); (A.M.d.L.C.)
- Correspondence:
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (M.N.M.); (A.M.d.L.C.)
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.M.); (M.M.S.); (C.F.M.M.)
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.M.); (M.M.S.); (C.F.M.M.)
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.M.); (M.M.S.); (C.F.M.M.)
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (M.N.M.); (A.M.d.L.C.)
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
26
|
de Assis LVM, Castrucci AML. Novel light-dependent and light-independent functions of opsin 5. Br J Dermatol 2021; 185:249-250. [PMID: 33829486 DOI: 10.1111/bjd.20052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Affiliation(s)
- L V M de Assis
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - A M L Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|