1
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
2
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
3
|
Sconocchia T, Foßelteder J, Sconocchia G, Reinisch A. Langerhans cell histiocytosis: current advances in molecular pathogenesis. Front Immunol 2023; 14:1275085. [PMID: 37965340 PMCID: PMC10642229 DOI: 10.3389/fimmu.2023.1275085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare and clinically heterogeneous hematological disease characterized by the accumulation of mononuclear phagocytes in various tissues and organs. LCH is often characterized by activating mutations of the mitogen-activated protein kinase (MAPK) pathway with BRAFV600E being the most recurrent mutation. Although this discovery has greatly helped in understanding the disease and in developing better investigational tools, the process of malignant transformation and the cell of origin are still not fully understood. In this review, we focus on the newest updates regarding the molecular pathogenesis of LCH and novel suggested pathways with treatment potential.
Collapse
Affiliation(s)
- Tommaso Sconocchia
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Foßelteder
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Kim J, Lee J, Li X, Lee HS, Kim K, Chaparala V, Murphy W, Zhou W, Cao J, Lowes MA, Krueger JG. Single-cell transcriptomics suggest distinct upstream drivers of IL-17A/F in hidradenitis versus psoriasis. J Allergy Clin Immunol 2023; 152:656-666. [PMID: 37271319 PMCID: PMC11057969 DOI: 10.1016/j.jaci.2023.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND On the basis of the mounting evidence that type 17 T (T17) cells and increased IL-17 play a key role in driving hidradenitis suppurativa (HS) lesion development, biologic agents used previously in psoriasis that block signaling of IL-17A and/or IL-17F isoforms have been repurposed to treat HS. OBJECTIVE Our research aimed to characterize the transcriptome of HS T17 cells compared to the transcriptome of psoriasis T17 cells, along with their ligand-receptor interactions with neighborhood immune cell subsets. METHODS Single-cell data of 12,300 cutaneous immune cells from 8 deroofing surgical HS skin samples including dermal tunnels were compared to single-cell data of psoriasis skin (19,525 cells from 11 samples) and control skin (11,920 cells from 10 samples). All single-cell data were generated by the same protocol. RESULTS HS T17 cells expressed lower levels of IL23R and higher levels of IL1R1 and IL17F compared to psoriasis T17 cells (P < .05). HS Treg cells expressed higher levels of IL1R1 and IL17F compared to psoriasis Treg cells (P < .05). Semimature dendritic cells were the major immune cell subsets expressing IL1B in HS, and IL-1β ligand-receptor interactions between semimature dendritic cells and T17 cells were increased in HS compared to psoriasis (P < .05). HS dermal tunnel keratinocytes expressed inflammatory cytokines (IL17C, IL1A, IL1B, and IL6) that differed from the HS epidermis keratinocytes (IL36G) (P < .05). IL6, which synergizes with IL1B to maintain cytokine expression in T17 cells, was mainly expressed by fibroblasts in HS, which also expressed IL11+ inflammatory fibroblast genes (IL11, IL24, IL6, and POSTN) involved in the paracrine IL-1/IL-6 loop. CONCLUSION The IL-1β-T17 cell cytokine axis is likely a dominant pathway in HS with HS T17 cells activated by IL-1β signaling, unlike psoriasis T17 cells, which are activated by IL-23 signaling.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Dermatology, University of California, Davis, Sacramento, Calif; Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, Calif; Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY.
| | - Jongmi Lee
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, Calif
| | - Xuan Li
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - Hyun Soo Lee
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - Katherine Kim
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, Calif
| | - Vasuma Chaparala
- Dermatology Section, Veterans Affairs Northern California Health Care System, Mather, Calif
| | - William Murphy
- Department of Dermatology, University of California, Davis, Sacramento, Calif
| | - Wei Zhou
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY
| | - Junyue Cao
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY
| | - Michelle A Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY.
| |
Collapse
|
5
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
6
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
7
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Dong M, Zhang J, Chen Q, He D, Yan H, Zheng G, Han X, He J, Cai Z. High serum IL-17A is associated with bone destruction in newly diagnosed multiple myeloma patients. Front Oncol 2022; 12:936670. [PMID: 36119497 PMCID: PMC9471080 DOI: 10.3389/fonc.2022.936670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignant proliferative disease of the blood system, characterized by the abnormal growth of clonal plasma cells in the bone marrow. The bone marrow microenvironment (BMM) is highly critical in the pathological process of MM. Many studies have shown that serum interleukin-17A (IL-17A) plays a key role in various infectious diseases, autoimmune diseases, and cancers. However, more clinical studies need to be performed to further prove the influence of serum IL-17A levels on multiple myeloma patients. Methods Among a total of 357 participants in our institution’s MM cohort, 175 were eligible for the retrospective study. Multivariate regression models adjusted by potential confounding factors, the violin plots, the generalized additive model and smooth curve fittings, receiver operating characteristic (ROC) curve, and Kaplan–Meier (K-M) curve analysis were applied to the research. Results A total of 175 patients with newly diagnosed MM were enrolled in this study. The multivariate linear regression analysis showed that serum IL-17A level in MM patients correlated with the degree of bone lesions and fracture incidence (fully adjusted model, pbone lesion < 0.0001, pfracture < 0.0001). The violin plot showed that MM patients with higher serum IL-17A levels had more severe bone lesions and higher fracture incidence than those with lower serum IL-17A levels. A total of 171 patients were included in the study of the relationship between serum IL-17A and best overall effect (BOE). We found that serum IL-17A levels were independently related to the best inductive therapeutic efficacy (fully adjusted model, p = 0.037), and the relationship was especially obvious in the light chain group (fully adjusted model, p = 0.009) and IgA group (fully adjusted model, p = 0.0456). It could be deduced from the smooth curve that the higher the serum IL-17A level, the worse the BOE (p = 0.0163). The ROC prediction curve suggested that serum IL-17A could predict the BOE to a certain extent (area under the curve (AUC) = 0.717, p = 0.0327). A total of 148 MM patients were observed in the longitudinal study of the relationship between serum IL-17A and progression-free survival/overall survival (PFS/OS). The K-M curve analysis indicated that serum IL-17A levels in MM patients were not significantly correlated with PFS and OS. However, in the light chain subgroup, MM patients with high serum IL-17A had worse PFS (p = 0.015) and OS (p = 0.0076) compared to those with low serum IL-17A. In the IgA type subgroup, the higher IL-17A level was related to worse OS (p = 0.0061). Conclusion This retrospective study found that higher levels of serum IL-17A were independently correlated with higher severity of bone disease and fracture incidence in newly diagnosed MM patients. High serum IL-17A level was related to poor best overall efficacy in the light chain type. High serum IL-17A was also associated with poor PFS and OS in the light chain type and OS in the IgA type subgroup.
Collapse
Affiliation(s)
- Mengmeng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinna Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Zhen Cai, ; Jingsong He,
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- *Correspondence: Zhen Cai, ; Jingsong He,
| |
Collapse
|
9
|
Zahran AM, Nafady-Hego H, Moeen SM, Eltyb HA, Wahman MM, Nafady A. Higher proportion of non-classical and intermediate monocytes in newly diagnosed multiple myeloma patients in Egypt: A possible prognostic marker. Afr J Lab Med 2021; 10:129. [PMID: 34522628 PMCID: PMC8424713 DOI: 10.4102/ajlm.v10i1.1296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background Interaction between multiple myeloma (MM) cells and proximal monocytes is expected during plasma cell proliferation. However, the role of monocyte subsets in the disease progression is unknown. Objective This study evaluated circulating monocyte populations in MM patients and their correlation with disease severity. Methods Peripheral monocytes from 20 patients with MM attending Assiut University Hospital in Assiut, Egypt, between October 2018 and August 2019 were processed using a flow cytometry procedure and stratified using the intensity of expression of CD14 and CD16 into classical (CD16-CD14++), intermediate (CD16+CD14++), and non-classical (CD16++CD14+) subsets. The data were compared with data from 20 healthy control participants with comparable age and sex. Results In patients with MM, the percentage of classical monocytes was significantly lower (mean ± standard error: 77.24 ± 0.66 vs 83.75 ± 0.5), while those of non-classical (12.44 ± 0.5 vs 8.9 ± 0.34) and intermediate (10.3 ± 0.24 vs 7.4 ± 0.29) monocytes were significantly higher when compared with those of controls (all p < 0.0001). Proportions of non-classical and intermediate monocytes correlated positively with serum levels of plasma cells, M-protein, calcium, creatinine and lactate dehydrogenase, and correlated negatively with the serum albumin level. Proportions of classical monocytes correlated positively with albumin level and negatively correlated with serum levels of M-protein, plasma cells, calcium, creatinine, and lactate dehydrogenase. Conclusion Circulating monocyte subpopulations are skewed towards non-classical and intermediate monocytes in MM patients, and the intensity of this skewness increases with disease severity.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Hanaa Nafady-Hego
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sawsan M Moeen
- Department of Internal Medicine, Clinical Haematology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hanan A Eltyb
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University Assiut, Egypt
| | - Mohammed M Wahman
- Department of Clinical Oncology, South Valley University, Qena, Egypt
| | - Asmaa Nafady
- Department of Clinical and Chemical Pathology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
10
|
Tsukamoto S, Kido A, Tanaka Y, Facchini G, Peta G, Rossi G, Mavrogenis AF. Current Overview of Treatment for Metastatic Bone Disease. Curr Oncol 2021; 28:3347-3372. [PMID: 34590591 PMCID: PMC8482272 DOI: 10.3390/curroncol28050290] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
The number of patients with bone metastasis increases as medical management and surgery improve the overall survival of patients with cancer. Bone metastasis can cause skeletal complications, including bone pain, pathological fractures, spinal cord or nerve root compression, and hypercalcemia. Before initiation of treatment for bone metastasis, it is important to exclude primary bone malignancy, which would require a completely different therapeutic approach. It is essential to select surgical methods considering the patient’s prognosis, quality of life, postoperative function, and risk of postoperative complications. Therefore, bone metastasis treatment requires a multidisciplinary team approach, including radiologists, oncologists, and orthopedic surgeons. Recently, many novel palliative treatment options have emerged for bone metastases, such as stereotactic body radiation therapy, radiopharmaceuticals, vertebroplasty, minimally invasive spine stabilization with percutaneous pedicle screws, acetabuloplasty, embolization, thermal ablation techniques, electrochemotherapy, and high-intensity focused ultrasound. These techniques are beneficial for patients who may not benefit from surgery or radiotherapy.
Collapse
Affiliation(s)
- Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Nara, Japan;
- Correspondence: ; Tel.: +81-744-22-3051
| | - Akira Kido
- Department of Rehabilitation Medicine, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Nara, Japan;
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Nara, Japan;
| | - Giancarlo Facchini
- Department of Radiology and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (G.F.); (G.P.); (G.R.)
| | - Giuliano Peta
- Department of Radiology and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (G.F.); (G.P.); (G.R.)
| | - Giuseppe Rossi
- Department of Radiology and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (G.F.); (G.P.); (G.R.)
| | - Andreas F. Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 41 Ventouri Street, 15562 Athens, Greece;
| |
Collapse
|
11
|
The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers (Basel) 2021; 13:cancers13040625. [PMID: 33562441 PMCID: PMC7914424 DOI: 10.3390/cancers13040625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between multiple myeloma and immune cells within the bone marrow niche has been identified as an emerging hallmark of this hematological disease. As our knowledge on this interplay increases, it becomes more evident that successful treatment approaches need to boost the body’s natural defenses through immunotherapy. The present review will focus on the mechanisms by which myeloma cancer cells turn immune populations into their “partners in crime”. Additionally, we will provide an overview of currently ongoing pre-clinical studies targeting the bone marrow immune microenvironment. Abstract Multiple myeloma (MM) is one of the most prevalent hematological cancers worldwide, characterized by the clonal expansion of neoplastic plasma cells in the bone marrow (BM). A combination of factors is implicated in disease progression, including BM immune microenvironment changes. Increasing evidence suggests that the disruption of immunological processes responsible for myeloma control ultimately leads to the escape from immune surveillance and resistance to immune effector function, resulting in an active form of myeloma. In fact, one of the hallmarks of MM is the development of a permissive BM milieu that provides a growth advantage to the malignant cells. Consequently, a better understanding of how myeloma cells interact with the BM niche compartments and disrupt the immune homeostasis is of utmost importance to develop more effective treatments. This review focuses on the most up-to-date knowledge regarding microenvironment-related mechanisms behind MM immune evasion and suppression, as well as promising molecules that are currently under pre-clinical tests targeting immune populations.
Collapse
|
12
|
van Bodegraven AA, Bravenboer N. Perspective on skeletal health in inflammatory bowel disease. Osteoporos Int 2020; 31:637-646. [PMID: 31822927 PMCID: PMC7075921 DOI: 10.1007/s00198-019-05234-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
Abstract
Osteopenia and osteoporosis are common features in inflammatory bowel disease (IBD), comprising both Crohn's disease and ulcerative colitis. Moreover, Crohn's disease is associated with increased fracture risk. The etiology of bone loss in IBD is multifactorial. It includes insufficient intake or absorption of calcium, vitamin D, and potassium; smoking; a low peak bone mass; a low body mass index; and decreased physical activity. In several studies, it has been shown that elevated concentrations of systemic and local pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interferon-γ (IFNγ), interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-13, and IL-17, present in IBD patients are potentially detrimental for bone metabolism and may be responsible for bone loss and increased fracture risk. This perspective aims to review the current literature on the role of inflammatory factors in the pathophysiology of skeletal problems in IBD and to suggest potential treatment to improve bone health, based on a combination of evidence and clinical and pathophysiological reasoning.
Collapse
Affiliation(s)
- A. A. van Bodegraven
- Department of Gastroenterology, Geriatrics, Internal and Intensive Care Medicine(Co-MIK), Zuyderland MC, Sittard-Geleen-Heerlen, Dr H van der Hoffplein 1, 6162 BG Geleen, Netherlands
- Department of Gastroenterology, Amsterdam UMC, Location Vrije Universiteit, PO Box 7057, 1007 MB Amsterdam, Netherlands
| | - N. Bravenboer
- Department of Clinical Chemistry, Research Institute Amsterdam Movement Sciences Amsterdam UMC, Location Vrije Universiteit, PO Box 7057, 1007 MB Amsterdam, Netherlands
- Department of Internal Medicine, Endocrinology Section, Centre for Bone Quality LUMC, Albinusdreef 2, Leiden, 2333 ZA Netherlands
| |
Collapse
|
13
|
Wu L, Luo Z, Liu Y, Jia L, Jiang Y, Du J, Guo L, Bai Y, Liu Y. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation. Stem Cell Res Ther 2019; 10:375. [PMID: 31805984 PMCID: PMC6894480 DOI: 10.1186/s13287-019-1500-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023] Open
Abstract
Background Aspirin has been demonstrated to promote osteoblast-mediated bone formation and inhibit osteoclast (OC)-mediated bone resorption. However, it remains unclear whether aspirin influences other immune cells during bone resorption. Dendritic cells (DCs), the most potent antigen-presenting cells, can also transdifferentiate into active OCs in the presence of receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The effects of aspirin on DC-derived OCs (DDOCs) were investigated in the current study. Methods Flow cytometry and mixed lymphocyte reaction (MLR) assays were used for DC identification. The proliferative capacity of DCs was determined by BrdU assays. Apoptosis was examined by flow cytometry. The osteoclastic potential of DCs was tested using tartrate-resistant acid phosphatase (TRAP) staining, western blotting, and reverse transcription polymerase chain reaction (RT-PCR). Western blotting was also used to examine signaling pathways. A mandibular bone defect model was established to assess the effect of aspirin on bone resorption. Results Aspirin had no influence on the surface phenotype, proliferation, or apoptosis of DCs, though aspirin significantly inhibited osteoclast differentiation in RANKL-stimulated DCs. DC osteoclast differentiation was modulated by aspirin via the nuclear factor kappa B (NF-κB)/nuclear factor of activated T cell, cytoplasmic 1 (NFATc1) signaling pathway. Aspirin treatment also had favorable therapeutic effects on bone regeneration in the bone defect model, and the number of osteoclasts was decreased. Conclusions Aspirin inhibited RANKL-induced OC differentiation in DCs via the NF-κB pathway, downregulating expression of NFATc1. Aspirin treatment promoted bone regeneration by inhibiting DDOC activation in the early stages of inflammation in a rat mandibular bone defect model.
Collapse
Affiliation(s)
- Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
14
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
15
|
Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help? JOURNAL OF ONCOLOGY 2019; 2019:2186494. [PMID: 31093282 PMCID: PMC6481018 DOI: 10.1155/2019/2186494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is usually diagnosed in older adults at the time of immunosenescence, a collection of age-related changes in the immune system that contribute to increased susceptibility to infection and cancer. The MM tumor microenvironment and cumulative chemotherapies also add to defects in immunity over the course of disease. In this review we discuss how mouse models have furthered our understanding of the immune defects caused by MM and enabled immunotherapeutics to progress to clinical trials, but also question the validity of using immunodeficient models for these purposes. Immunocompetent models, in particular the 5T series and Vk⁎MYC models, are increasingly being utilized in preclinical studies and are adding to our knowledge of not only the adaptive immune system but also how the innate system might be enhanced in anti-MM activity. Finally we discuss the concept of immune profiling to target patients who might benefit the most from immunotherapeutics, and the use of humanized mice and 3D culture systems for personalized medicine.
Collapse
|
16
|
D'Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol 2019; 15:004-4. [PMID: 30937279 PMCID: PMC6429006 DOI: 10.1016/j.jbo.2018.10.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Bone metastases (BM) are a common complication of cancer, whose management often requires a multidisciplinary approach. Despite the recent therapeutic advances, patients with BM may still experience skeletal-related events and symptomatic skeletal events, with detrimental impact on quality of life and survival. A deeper knowledge of the mechanisms underlying the onset of lytic and sclerotic BM has been acquired in the last decades, leading to the development of bone-targeting agents (BTA), mainly represented by anti-resorptive drugs and bone-seeking radiopharmaceuticals. Recent pre-clinical and clinical studies have showed promising effects of novel agents, whose safety and efficacy need to be confirmed by prospective clinical trials. Among BTA, adjuvant bisphosphonates have also been shown to reduce the risk of BM in selected breast cancer patients, but failed to reduce the incidence of BM from lung and prostate cancer. Moreover, adjuvant denosumab did not improve BM free survival in patients with breast cancer, suggesting the need for further investigation to clarify BTA role in early-stage malignancies. The aim of this review is to describe BM pathogenesis and current treatment options in different clinical settings, as well as to explore the mechanism of action of novel potential therapeutic agents for which further investigation is needed.
Collapse
Key Words
- ActRIIA, activin-A type IIA receptor
- BC, breast cancer
- BM, bone metastases
- BMD, bone mineral density
- BMPs, bone morphogenetic proteins
- BMSC, bone marrow stromal cells
- BPs, bisphosphonates
- BTA, bone targeting agents
- BTM, bone turnover markers
- Bone metastases
- Bone targeting agents
- CCR, chemokine-receptor
- CRPC, castration-resistant PC
- CXCL-12, C–X–C motif chemokine-ligand-12
- CXCR-4, chemokine-receptor-4
- DFS, disease-free survival
- DKK1, dickkopf1
- EBC, early BC
- ECM, extracellular matrix
- ET-1, endothelin-1
- FDA, food and drug administration
- FGF, fibroblast growth factor
- GAS6, growth-arrest specific-6
- GFs, growth factors
- GnRH, gonadotropin-releasing hormone
- HER-2, human epidermal growth factor receptor 2
- HR, hormone receptor
- IL, interleukin
- LC, lung cancer
- MAPK, mitogen-activated protein kinase
- MCSF, macrophage colony-stimulating factor
- MCSFR, MCSF receptor
- MIP-1α, macrophage inflammatory protein-1 alpha
- MM, multiple myeloma
- MPC, malignant plasma cells
- N-BPs, nitrogen-containing BPs
- NF-κB, nuclear factor-κB
- ONJ, osteonecrosis of the jaw
- OS, overall survival
- Osteotropic tumors
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression-free survival
- PIs, proteasome inhibitors
- PSA, prostate specific antigen
- PTH, parathyroid hormone
- PTH-rP, PTH related protein
- QoL, quality of life
- RANK-L, receptor activator of NF-κB ligand
- RT, radiation therapy
- SREs, skeletal-related events
- SSEs, symptomatic skeletal events
- Skeletal related events
- TGF-β, transforming growth factor β
- TK, tyrosine kinase
- TKIs, TK inhibitors
- TNF, tumornecrosis factor
- VEGF, vascular endothelial growth factor
- VEGFR, VEGF receptor
- mTOR, mammalian target of rapamycin
- non-N-BPs, non-nitrogen containing BPs
- v-ATPase, vacuolar-type H+ ATPase
Collapse
Affiliation(s)
- Stella D'Oronzo
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| | - Robert Coleman
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Janet Brown
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Francesco Silvestris
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
17
|
Gao Y, Wang B, Shen C, Xin W. Overexpression of miR‑146a blocks the effect of LPS on RANKL‑induced osteoclast differentiation. Mol Med Rep 2018; 18:5481-5488. [PMID: 30387844 PMCID: PMC6236290 DOI: 10.3892/mmr.2018.9610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/09/2018] [Indexed: 01/23/2023] Open
Abstract
The concept that inflammation serves a leading role in osteoclast-induced bone loss under pathological circumstances is now widely accepted. In the present study, it was observed that lipopolysaccharides (LPSs) demonstrated a synergic effect on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclast differentiation in Raw264.7 cells, with increasing levels of multiple pro-inflammatory cytokines including interleukin (IL)-6, tumor necrosis factor-α and IL-1β. Furthermore, microRNA (miR)-146a was highly induced by LPS and RANKL co-stimulation during the process of osteoclast differentiation. Overexpression of miR-146a inhibited osteoclast transformation by targeting the key regulators of nuclear factor (NF)-κβ signaling, TNF receptor-associated factor 6 and interleukin-1 receptor-associated kinase 1. The downstream activation of NF-κβ signaling was also inhibited by transfection with a miR-146a mimic. Altogether, the results of the present study demonstrated that miR-146a prevents osteoclast differentiation induced by LPS and RANKL co-stimulation, suggesting that miR-146a may be a promising therapeutic target for treatment of inflammation mediated bone loss.
Collapse
Affiliation(s)
- Yingjian Gao
- Department of Orthopedics, Renji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Minhang, Shanghai 201100, P.R. China
| | - Bo Wang
- Second Department of Orthopaedics, Baoding No. 1 Central Hospital, Baoding, Hebei 300000, P.R. China
| | - Conghuan Shen
- General Surgery Department, Affiliated Huashan Hospital of Fudan University, Jingan, Shanghai 200040, P.R. China
| | - Weiwei Xin
- Department of Orthopedics, Renji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Minhang, Shanghai 201100, P.R. China
| |
Collapse
|
18
|
Dendritic cells in inflammatory angiogenesis and lymphangiogenesis. Curr Opin Immunol 2018; 53:180-186. [PMID: 29879585 DOI: 10.1016/j.coi.2018.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Lymph node (LN) expansion during inflammation is essential to establish immune responses and relies on the development of blood and lymph vessels. Human dendritic cells (DCs), subdivided into two main subsets, namely conventional DCs (cDCs) and plasmacytoid DCs (pDCs), are professional antigen presenting cells endowed with the capability to produce soluble mediators regulating inflammation and tissue repair. cDCs support angiogenesis in secondary LNs both directly and indirectly through the secretion of vascular endothelial growth factor-A (VEGF)-A and VEGF-C and the production of several other mediators endowed with angiogenic properties. Finally, cDCs can affect neovascular formation via a transdifferentiation process. At variance with cDCs, the angiogenic properties of pDCs still remain poorly explored.
Collapse
|
19
|
Stucci LS, D'Oronzo S, Tucci M, Macerollo A, Ribero S, Spagnolo F, Marra E, Picasso V, Orgiano L, Marconcini R, De Rosa F, Di Guardo L, Galli G, Gandini S, Palmirotta R, Palmieri G, Queirolo P, Silvestris F. Vitamin D in melanoma: Controversies and potential role in combination with immune check-point inhibitors. Cancer Treat Rev 2018; 69:21-28. [PMID: 29864718 DOI: 10.1016/j.ctrv.2018.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
The role of vitamin D in melanoma is still controversial. Although several Authors described a correlation between vitamin D deficiency and poor survival in metastatic melanoma patients, clinical trials exploring the effects of vitamin D supplementation in this clinical setting were mostly inconclusive. However, recent evidence suggests that vitamin D exerts both anti-proliferative effects on tumor cells and immune-modulating activities, that have been widely explored in auto-immune disorders. On the one hand, vitamin D has been shown to inhibit T-helper17 lymphocytes, notoriously involved in the pathogenesis of immune-related adverse events (iAEs) which complicate immune-checkpoint inhibitor (ICI) treatment. On the other hand, vitamin D up-regulates PDL-1 expression on both epithelial and immune cells, suggesting a synergic effect in combination with ICIs, for which further investigation is needed.
Collapse
Affiliation(s)
- Luigia Stefania Stucci
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| | - Stella D'Oronzo
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy.
| | - Marco Tucci
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| | - Antonella Macerollo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Simone Ribero
- Department of Medical Sciences Section of Dermatology, University of Turin, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology , Ospedale Policlinico San Martino, Genova, Italy
| | - Elena Marra
- Department of Medical Sciences Section of Dermatology, University of Turin, Italy
| | - Virginia Picasso
- Department of Medical Oncology , Ospedale Policlinico San Martino, Genova, Italy
| | - Laura Orgiano
- Department of Medical Oncology, University of Cagliari, Cagliari, Italy
| | - Riccardo Marconcini
- Department of Oncology, Azienda Ospedaliero-Universitaria Pisana and University of Pisa, Istituto Toscano Tumori, Santa Chiara Hospital, Pisa, Italy
| | - Francesco De Rosa
- Immunotherapy-Cell Therapy and Biobank Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lorenza Di Guardo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Raffaele Palmirotta
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| | | | - Paola Queirolo
- Department of Medical Oncology , Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Silvestris
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Italy
| | | |
Collapse
|
20
|
Tucci M, Mannavola F, Passarelli A, Stucci LS, Cives M, Silvestris F. Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity. Oncotarget 2018; 9:20826-20837. [PMID: 29755693 PMCID: PMC5945529 DOI: 10.18632/oncotarget.24846] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023] Open
Abstract
Exosomes (Exo) are small vesicles produced by melanoma cells and the accessory cells of the tumor microenvironment. They emerge via both classical and direct pathways and actively participate in tumor colonisation of distant tissues. The proteins, nucleic acids, cytokines and growth factors engulfed by Exo are transferred to recipient cells, where they drive numerous functions required for the tumor escape from immune system control and tumor progression. By positively or negatively modulating immune cell properties, Exo provoke immune suppression and, in turn, defective dendritic cell (DC) functions. Together, these effects limit the cytotoxicity of T-cells and expand both T-regulatory and myeloid-derived suppressor populations. They also hinder perforin and granzyme production by natural killer cells. Finally, Exo also control the organotropism of melanoma cells. The distinct phenotypic properties of Exo can be exploited both for diagnostic purposes and in the early identification of melanoma patients likely to respond to immunotherapy. The potential therapeutic application of Exo derived from DCs has been demonstrated in vaccination trials, which showed an increase in anti-melanoma activity with respect to circulating tumor cells. However, additional studies are required before Exo can be effectively used in diagnostic and therapeutic applications in melanoma.
Collapse
Affiliation(s)
- Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
21
|
Bae J, Hideshima T, Zhang GL, Zhou J, Keskin DB, Munshi NC, Anderson KC. Identification and characterization of HLA-A24-specific XBP1, CD138 (Syndecan-1) and CS1 (SLAMF7) peptides inducing antigens-specific memory cytotoxic T lymphocytes targeting multiple myeloma. Leukemia 2018; 32:752-764. [PMID: 29089645 PMCID: PMC5953209 DOI: 10.1038/leu.2017.316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022]
Abstract
X-box binding protein 1 (XBP1), CD138 (Syndecan-1) and CS1 (SLAMF7) are highly expressed antigens in cancers including multiple myeloma (MM). Here, we identify and characterize immunogenic HLA-A24 peptides derived from these antigens for potential vaccination therapy of HLA-A24+ patients with MM. The identified immunogenic HLA-A24-specific XBP1 unspliced (UN)185-193 (I S P W I L A V L), XBP1 spliced (SP)223-231 (V Y P E G P S S L), CD138265-273 (I F A V C L V G F) and CS1240-248 (L F V L G L F L W) peptides induced antigen-specific CTL with anti-MM activity in an HLA-A24 restricted manner. Furthermore, a cocktail containing the four HLA-A24 peptides evoked MM-specific CTL with distinct phenotypic profiles (CD28, CD40L, 41BB, CD38, CD69) and anti-tumor activities, evidenced by perforin upregulation, CD107a degranulation (cytotoxicity) and Th1-type cytokines (IFN-γ/IL-2/TNF-α) production in response to HLA-A24+ MM cells. The multipeptide-specific CTL included antigen-specific memory CD8+ T cells expressing both T-cell activation (CD38, CD69) and immune checkpoints antigens (CTLA, PD-1, LAG-3, TIM-3). These results provide the framework for a multipeptide vaccination therapy to induce tumor-specific CTL in HLA-A24-positive patients with myeloma and other cancers expressing these antigens.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jun Zhou
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Derin B. Keskin
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil C. Munshi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kenneth C. Anderson
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia 2017; 32:1003-1015. [PMID: 29158557 PMCID: PMC5886056 DOI: 10.1038/leu.2017.336] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients' adverse prognosis and development of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM.
Collapse
|
23
|
Tucci M, Passarelli A, Mannavola F, Stucci LS, Ascierto PA, Capone M, Madonna G, Lopalco P, Silvestris F. Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. Oncoimmunology 2017; 7:e1387706. [PMID: 29308314 DOI: 10.1080/2162402x.2017.1387706] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy is effective in metastatic melanoma (MM) but most studies failed in discovering a biomarker predictive of clinical response. Exosomes (Exo) from melanoma cells are detectable in sera of MM patients similarly to those produced by immune cells that control the tumor progression. Here, we investigated by flow-cytometry the levels of Exo from both T-cells and dendritic cells (DCs) in 59 patients with MM treated with IPI and the relative expression of PD-1, CD28 and ICOS as well as CD80 and CD86. We found a significant increment of PD-1 and CD28 expression in patients achieving a clinical response reflected by improvement of both PFS and OS. Furthermore, MM patients receiving IPI who showed extended PFS underwent increased expression of CD80 and CD86 on DC-derived Exo at the end of treatment. These results suggest a possible association of both PD-1 and CD28 up-regulation on immune cell-derived Exo in patients with better clinical response to IPI.
Collapse
Affiliation(s)
- Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, 'G. Pascale Tumor National Institute' - Naples, Naples, Italy
| | - Marilena Capone
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, 'G. Pascale Tumor National Institute' - Naples, Naples, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, 'G. Pascale Tumor National Institute' - Naples, Naples, Italy
| | - Patrizia Lopalco
- Department of basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
24
|
Mansour A, Wakkach A, Blin-Wakkach C. Emerging Roles of Osteoclasts in the Modulation of Bone Microenvironment and Immune Suppression in Multiple Myeloma. Front Immunol 2017; 8:954. [PMID: 28848556 PMCID: PMC5554508 DOI: 10.3389/fimmu.2017.00954] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/26/2017] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) is one of the most common forms of hematologic malignancy resulting from cancerous proliferation of mature malignant plasma cells (MPCs). But despite the real improvement in therapeutics in the past years, it remains largely incurable. MM is the most frequent cancer to involve bone due to the stimulation of osteoclast (OCL) differentiation and activity. OCLs have a unique capacity to resorb bone. However, recent studies reveal that they are not restrained to this sole function. They participate in the control of angiogenesis, medullary niches, and immune responses, including in MM. Therefore, therapeutic approaches targeting OCLs probably affect not only bone resorption but also many other functions, and OCLs should not be considered anymore only as targets to improve the bone phenotype but also to modulate bone microenvironment. In this review, we explore these novel contributions of OCLs to MM which reveal their strong implication in the MM physiopathology. We also underline the therapeutic interest of targeting OCLs not only to overcome bone lesions, but also to improve bone microenvironment and anti-tumoral immune responses.
Collapse
Affiliation(s)
- Anna Mansour
- CNRS, UMR7370, LP2M, Faculté de Médecine, Nice, France.,Université Nice Sophia Antipolis, Nice, France.,Faculté de Médecine, Université Aix-Marseille, Marseille, France
| | - Abdelilah Wakkach
- CNRS, UMR7370, LP2M, Faculté de Médecine, Nice, France.,Université Nice Sophia Antipolis, Nice, France
| | - Claudine Blin-Wakkach
- CNRS, UMR7370, LP2M, Faculté de Médecine, Nice, France.,Université Nice Sophia Antipolis, Nice, France
| |
Collapse
|
25
|
Kasamatsu T, Kimoto M, Takahashi N, Minato Y, Gotoh N, Takizawa M, Matsumoto M, Sawamura M, Yokohama A, Handa H, Tsukamoto N, Saitoh T, Murakami H. IL17A
and IL23R
gene polymorphisms affect the clinical features and prognosis of patients with multiple myeloma. Hematol Oncol 2017; 36:196-201. [DOI: 10.1002/hon.2469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences; Gunma University Graduate School of Health Sciences; Maebashi Gunma Japan
| | - Mari Kimoto
- Department of Laboratory Sciences; Gunma University Graduate School of Health Sciences; Maebashi Gunma Japan
| | - Noriyuki Takahashi
- Department of Laboratory Sciences; Gunma University Graduate School of Health Sciences; Maebashi Gunma Japan
| | - Yusuke Minato
- Department of Anatomy and Cell Biology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences; Gunma University Graduate School of Health Sciences; Maebashi Gunma Japan
| | - Makiko Takizawa
- Department of Hematology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Morio Matsumoto
- National Hospital Organization; Shibukawa Medical Center; Shibukawa Gunma Japan
| | - Morio Sawamura
- National Hospital Organization; Shibukawa Medical Center; Shibukawa Gunma Japan
| | - Akihiko Yokohama
- Blood Transfusion Service; Gunma University Hospital; Maebashi Gunma Japan
| | - Hiroshi Handa
- Department of Hematology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | | | - Takayuki Saitoh
- Department of Laboratory Sciences; Gunma University Graduate School of Health Sciences; Maebashi Gunma Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences; Gunma University Graduate School of Health Sciences; Maebashi Gunma Japan
| |
Collapse
|
26
|
Meziane I, Huhn S, Filho MIDS, Weinhold N, Campo C, Nickel J, Hoffmann P, Nöthen MM, Jöckel KH, Landi S, Mitchell JS, Johnson D, Jauch A, Morgan GJ, Houlston R, Goldschmidt H, Milani P, Merlini G, Rowcieno D, Hawkins P, Hegenbart U, Palladini G, Wechalekar A, Försti A, Schönland SO, Hemminki K. Genome-wide association study of clinical parameters in immunoglobulin light chain amyloidosis in three patient cohorts. Haematologica 2017; 102:e411-e414. [PMID: 28679651 DOI: 10.3324/haematol.2017.171108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Iman Meziane
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Huhn
- Department of Internal Medicine V, University of Heidelberg, Germany
| | | | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Germany.,Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chiara Campo
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jolanta Nickel
- Department of Internal Medicine V, University of Heidelberg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Germany.,Department of Biomedicine, University of Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Germany.,Department of Genomics, Life & Brain Research Center, University of Bonn, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | | | - Jonathan S Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Surrey, UK
| | - David Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, Surrey, UK
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Germany
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Surrey, UK.,Division of Molecular Pathology, The Institute of Cancer Research, Surrey, UK
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Germany.,National Centre of Tumor Diseases, Heidelberg, Germany
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Foundation "Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo", Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation "Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo", Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Italy
| | - Dorota Rowcieno
- National Amyloidosis Centre, University College London Medical School, Royal Free Hospital Campus, London, UK
| | - Philip Hawkins
- National Amyloidosis Centre, University College London Medical School, Royal Free Hospital Campus, London, UK
| | - Ute Hegenbart
- Department of Internal Medicine V, University of Heidelberg, Germany
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation "Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo", Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Italy
| | - Ashutosh Wechalekar
- National Amyloidosis Centre, University College London Medical School, Royal Free Hospital Campus, London, UK
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmo, Sweden
| | | | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmo, Sweden
| |
Collapse
|
27
|
Zhuang C, Hong X, Liu J, Luo X, Mo H. TRAF6 regulates the effects of polarized maturation of tolerability: Marrow-derived dendritic cells on collagen-induced arthritis in mice. Biomed Rep 2017; 6:206-210. [PMID: 28357074 DOI: 10.3892/br.2017.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/28/2016] [Indexed: 11/05/2022] Open
Abstract
The study aimed to investigate the relationship between tumor necrosis factor receptor-associated factor 6 (TRAF6) and a differentially mature dendritic cell (mDC) in collagen-induced arthritis (CIA) mice and to determine whether or not TRAF6 regulates the activation of an immature dendritic cell (iDC) and inhibits iDC maturation to induce immune tolerance. The mouse bone marrow stem cells were induced with recombinant granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant interleukin-4 (rmIL-4) to differentiate immature dendritic cells (DCs), which were divided into four groups with different maturation states: rmGM-CSF, rmIL-4; TNF-α; LPS; and FK506 group. The levels of the cell surfaces of CD80, CD86, and MHI-II were analyzed by flow cytometry to prove DCs at different levels of maturity. The expression of IL-12 in DCs at different maturation states was detected by enzyme-linked immunosorbent assay (ELISA). The expression of TRAF6 mRNA and protein in each group of DCs was detected by a reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. The results revealed that the differentiation of bone marrow cells into iDCs was significantly induced by cytokines (rmGM-CSF, IL-4). CD80, CD86, MHC-II were expressed in the four groups, and the difference between them was statistically significant (P<0.05). A higher degree of DC differentiation led to a gradual increase of IL-12 secretion in the four groups. The difference was statistically significant (P<0.05) for this secretion (group D, 10,620.73±276.73 pg/ml). The expression levels of TRAF6 mRNA were significantly higher in group D than those in the other three groups (P<0.01). Although there was no significant difference in the expression levels of TRAF6 mRNA between groups B and C, the expression levels of TRAF6 mRNA between groups B and C were higher than those of the control group. The TRAF6 protein expression was higher in group D than that in the other three groups (P<0.01), and the difference was statistically significant. There was a statistically significant difference in the TRAF6 protein expression between group A and groups B and C, but the expression in group C was higher than that in group B (P<0.01). In conclusion, the expression of co-stimulatory molecules gradually increased in the DCs of different maturation states, and the expression of IL-12, TRAF6 mRNA, and TRAF6 protein positively correlated with the degree of DC maturation. TRAF6 is important in iDC polarity and maturation.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Xuezhi Hong
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Jia Liu
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Xiaohong Luo
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Hanyou Mo
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| |
Collapse
|
28
|
Bolzoni M, Ronchetti D, Storti P, Donofrio G, Marchica V, Costa F, Agnelli L, Toscani D, Vescovini R, Todoerti K, Bonomini S, Sammarelli G, Vecchi A, Guasco D, Accardi F, Palma BD, Gamberi B, Ferrari C, Neri A, Aversa F, Giuliani N. IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts. Haematologica 2017; 102:773-784. [PMID: 28057743 PMCID: PMC5395118 DOI: 10.3324/haematol.2016.153841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/23/2016] [Indexed: 11/18/2022] Open
Abstract
Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo. Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21R. IL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.
Collapse
Affiliation(s)
- Marina Bolzoni
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Domenica Ronchetti
- Dept. of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, "Fondazione IRCCS Ca' Granda", Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Storti
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy
| | - Gaetano Donofrio
- Dept. of Medical-Veterinary Science, University of Parma, Rionero in Vulture, Italy
| | - Valentina Marchica
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy
| | - Federica Costa
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Luca Agnelli
- Dept. of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, "Fondazione IRCCS Ca' Granda", Ospedale Maggiore Policlinico, Milan, Italy
| | - Denise Toscani
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Rosanna Vescovini
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Katia Todoerti
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Gabriella Sammarelli
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Andrea Vecchi
- Infectious Disease Unit, University Hospital of Parma, Italy
| | - Daniela Guasco
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy
| | - Fabrizio Accardi
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Benedetta Dalla Palma
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Barbara Gamberi
- "Dip. Oncologico e Tecnologie Avanzate", IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Carlo Ferrari
- Infectious Disease Unit, University Hospital of Parma, Italy
| | - Antonino Neri
- Dept. of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, "Fondazione IRCCS Ca' Granda", Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Aversa
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy.,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| | - Nicola Giuliani
- Myeloma Unit, Dept. of Medicine and Surgery, University of Parma, Italy .,CoreLab, University Hospital of Parma, Rionero in Vulture, Italy.,Hematology and BMT Center, University Hospital of Parma, Italy
| |
Collapse
|
29
|
Gigliotti CL, Boggio E, Clemente N, Shivakumar Y, Toth E, Sblattero D, D’Amelio P, Isaia GC, Dianzani C, Yagi J, Rojo JM, Chiocchetti A, Boldorini R, Bosetti M, Dianzani U. ICOS-Ligand Triggering Impairs Osteoclast Differentiation and Function In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 197:3905-3916. [DOI: 10.4049/jimmunol.1600424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023]
|
30
|
Tucci M, Stucci S, Passarelli A, D'Oronzo S, Silvestris F. Everolimus restrains the IL-17A-dependent osteoclast-like transdifferentiation of dendritic cells in multiple myeloma. Exp Hematol 2016; 47:48-53. [PMID: 27765615 DOI: 10.1016/j.exphem.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/31/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Interleukin-17A (IL-17A) promotes the osteoclast (OC)-like differentiation of dendritic cells (DCs) in multiple myeloma (MM) and contributes to the pathogenesis of myeloma bone disease (MBD). In our study, everolimus (EVR) abrogated the in vitro OC-like activity of DCs from 12 MM patients significantly. Exploring the EVR effects, we found that the inhibition of the osteoerosive activity of OC-DCs was mostly due to the blockade of signals driven by the IL-17A receptor toward the CCAAT/enhancer-binding protein beta/musculoaponeurotic fibrosarcoma oncogene homolog B axis Therefore, MM patients with MBD would probably benefit from mammalian target of rapamycin inhibition.
Collapse
Affiliation(s)
- Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Lapérine O, Blin-Wakkach C, Guicheux J, Beck-Cormier S, Lesclous P. Dendritic-cell-derived osteoclasts: a new game changer in bone-resorption-associated diseases. Drug Discov Today 2016; 21:1345-1354. [PMID: 27151158 DOI: 10.1016/j.drudis.2016.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/24/2016] [Accepted: 04/26/2016] [Indexed: 12/23/2022]
Abstract
Bone-resorbing cells, osteoclasts (OCs), and antigen-presenting cells, dendritic cells (DCs), share several features. They are derived from a common hematopoietic precursor, exhibit phagocytic activities and their functions are dependent upon receptor activator of nuclear factor κB ligand (RANKL). Upon inflammatory conditions, DCs can transdifferentiate toward functional OCs in the presence of RANKL. It has then been assumed that the increase in proinflammatory cytokines could provide a supportive environment for this transdifferentiation. In this review, we emphasize the molecular mechanisms underlying the potential for DCs to give rise to resorbing OCs in the context of bone-destruction-associated diseases upon inflammatory conditions. Whether these mechanisms reveal new strategies for the discovery of therapeutic targets and drugs is discussed extensively.
Collapse
Affiliation(s)
- Olivier Lapérine
- INSERM, U791, LIOAD, Nantes F-44042, France; Université de Nantes, UMR-S 791, LIOAD, UFR Odontologie, Nantes F-44042, France; ONIRIS, UMR-S 791, LIOAD, Nantes F-44307, France
| | - Claudine Blin-Wakkach
- CNRS, UMR 7370, LP2M, Faculté de médecine, Nice, France; Université Nice Sophia Antipolis, Nice, France
| | - Jérôme Guicheux
- INSERM, U791, LIOAD, Nantes F-44042, France; Université de Nantes, UMR-S 791, LIOAD, UFR Odontologie, Nantes F-44042, France; ONIRIS, UMR-S 791, LIOAD, Nantes F-44307, France; CHU Nantes, PHU 4 OTONN, Nantes F-44042, France.
| | - Sarah Beck-Cormier
- INSERM, U791, LIOAD, Nantes F-44042, France; Université de Nantes, UMR-S 791, LIOAD, UFR Odontologie, Nantes F-44042, France; ONIRIS, UMR-S 791, LIOAD, Nantes F-44307, France
| | - Philippe Lesclous
- INSERM, U791, LIOAD, Nantes F-44042, France; Université de Nantes, UMR-S 791, LIOAD, UFR Odontologie, Nantes F-44042, France; ONIRIS, UMR-S 791, LIOAD, Nantes F-44307, France; CHU Nantes, PHU 4 OTONN, Nantes F-44042, France
| |
Collapse
|
32
|
Di Lullo G, Marcatti M, Protti MP. Non-redundant roles for Th17 and Th22 cells in multiple myeloma clinical correlates. Oncoimmunology 2015; 5:e1093278. [PMID: 27141378 DOI: 10.1080/2162402x.2015.1093278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/30/2015] [Accepted: 09/07/2015] [Indexed: 02/09/2023] Open
Abstract
We recently reported that in multiple myeloma increased Th22 cell frequencies correlate with poor prognosis. Here we show that within the same patients' cohort Th17 cells associate with bone disease and not with prognosis. Thus, we propose that Th22 and Th17 cells play non-redundant roles in multiple myeloma and constitute independent therapeutic targets.
Collapse
Affiliation(s)
- Giulia Di Lullo
- Tumor Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Shay G, Hazlehurst L, Lynch CC. Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities. J Mol Med (Berl) 2015; 94:21-35. [PMID: 26423531 DOI: 10.1007/s00109-015-1345-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
Multiple myeloma is a plasma cell skeletal malignancy. While therapeutic agents such as bortezomib and lenalidomide have significantly improved overall survival, the disease is currently incurable with the emergence of drug resistance limiting the efficacy of chemotherapeutic strategies. Failure to cure the disease is in part due to the underlying genetic heterogeneity of the cancer. Myeloma progression is critically dependent on the surrounding microenvironment. Defining the interactions between myeloma cells and the more genetically stable hematopoietic and mesenchymal components of the bone microenvironment is critical for the development of new therapeutic targets. In this review, we discuss recent advances in our understanding of how microenvironmental elements contribute to myeloma progression and, therapeutically, how those elements can or are currently being targeted in a bid to eradicate the disease.
Collapse
Affiliation(s)
- G Shay
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA
| | - L Hazlehurst
- Department of Pharmaceutical Sciences and The Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University, Morgantown, WV, 26506, USA
| | - C C Lynch
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
34
|
Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk HD. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol 2015; 6:184. [PMID: 26388774 PMCID: PMC4557110 DOI: 10.3389/fphar.2015.00184] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023] Open
Abstract
Regulatory T cells (Tregs) offer new immunotherapeutic options to control undesired immune reactions, such as those in transplant rejection and autoimmunity. In addition, tissue repair and regeneration depend on a multitude of tightly regulated immune and non-immune cells and signaling molecules. There is mounting evidence that adequate innate responses, and even more importantly balanced adaptive immune responses, are key players in the tissue repair and regeneration processes, even in absence of any immune-related disease or infection. Thus, the anti-inflammatory and anti-apoptotic capacities of Treg can affect not only the effector immune response, creating the appropriate immune environment for successful tissue repair and regeneration, but growing evidence shows that they also have direct effects on tissue cell functions. Here we summarize the present views on how Treg might support tissue regeneration by direct control of undesired immune reactivity and also by direct interaction with non-immune tissue cells. We describe tissue-resident Treg and their specific phenotypes in skin, visceral adipose tissue, and skeletal muscle. In addition, we touch on the topic of osteoimmunology, discussing the direct interactions of Treg with bone-forming cells, such as osteoblasts and their mesenchymal stromal cell (MSC) progenitors-a field which is under-investigated. We hypothesize a cross-talk between Treg and bone-forming cells through the CD39-CD73-(adenosine)-adenosine receptor pathway, which might also potentiate the differentiation of MSCs, thus facilitating bone regeneration. This hypothesis may provide a road map for further investigations on the cross-talk between the immune and the skeletal system, and also enable the development of better strategies to promote bone repair and regeneration.
Collapse
Affiliation(s)
- Hong Lei
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin, Germany ; Institute for Medical Immunology, Charité University Medicine Berlin , Berlin, Germany
| | - Katharina Schmidt-Bleek
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin, Germany ; Julius Wolff Institute, Charité University Medicine Berlin , Berlin, Germany
| | - Anke Dienelt
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin, Germany ; Julius Wolff Institute, Charité University Medicine Berlin , Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin, Germany ; Department of Nephrology and Intensive Care, Charité University Medicine Berlin , Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin, Germany ; Institute for Medical Immunology, Charité University Medicine Berlin , Berlin, Germany
| |
Collapse
|
35
|
Prabhala RH, Fulciniti M, Pelluru D, Rashid N, Nigroiu A, Nanjappa P, Pai C, Lee S, Prabhala NS, Bandi RL, Smith R, Lazo-Kallanian SB, Valet S, Raje N, Gold JS, Richardson PG, Daley JF, Anderson KC, Ettenberg SA, Di Padova F, Munshi NC. Targeting IL-17A in multiple myeloma: a potential novel therapeutic approach in myeloma. Leukemia 2015; 30:379-89. [PMID: 26293646 PMCID: PMC4740263 DOI: 10.1038/leu.2015.228] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that interleukin-17A (IL-17) producing Th17 cells are significantly elevated in blood and bone marrow (BM) in multiple myeloma (MM) and IL-17A promotes MM cell growth via the expression of IL-17 receptor. In this study, we evaluated anti-human IL-17A human monoclonal antibody (mAb), AIN457 in MM. We observe significant inhibition of MM cell growth by AIN457 both in the presence and absence of BM stromal cells (BMSC). While IL-17A induces IL-6 production, AIN457 significantly down-regulated IL-6 production and MM cell-adhesion in MM-BMSC co-culture. AIN-457 also significantly inhibited osteoclast cell–differentiation. More importantly, in the SCIDhu model of human myeloma administration of AIN-457 weekly for 4 weeks after the first detection of tumor in mice led to a significant inhibition of tumor growth and reduced bone damage compared to isotype control mice. To understand the mechanism of action of anti-IL-17A mAb, we report here, that MM cells express IL-17A. We also observed that IL-17A knock-down inhibited MM cell growth and their ability to induce IL-6 production in co-cultures with BMSC. These pre-clinical observations suggest efficacy of AIN 457 in myeloma and provide the rationale for its clinical evaluation for anti-myeloma effects and for improvement of bone disease.
Collapse
Affiliation(s)
- R H Prabhala
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Fulciniti
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Pelluru
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Rashid
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Nigroiu
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - P Nanjappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Pai
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - S Lee
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - N S Prabhala
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - R L Bandi
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S B Lazo-Kallanian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Valet
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - N Raje
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - J S Gold
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J F Daley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S A Ettenberg
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - F Di Padova
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - N C Munshi
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Avβ3 integrin: Pathogenetic role in osteotropic tumors. Crit Rev Oncol Hematol 2015; 96:183-93. [PMID: 26126493 DOI: 10.1016/j.critrevonc.2015.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
The interplay of cancer cells and accessory cells within the microenvironment drives signals regulating the proliferation, migration and skeleton colonization. Osteotropism of tumor cells depends on chemokine activation, production of soluble factors and defective gene expression that cooperate within the metastatic niche to the bone resorbing functions of osteoclasts. Adhesion of cancer cells to the extracellular matrix is regulated by integrins as αvβ3 that enhances their invasiveness, pro-tumor angiogenesis and skeleton invasion. Therefore, αvβ3 signaling is implicated in enhancing osteotropism of breast and prostate cancers as well as of multiple myeloma. Targeting of αvβ3 has been adopted to restrain the tumor progression in several cancer models leading to improvement of overall survival as effect of the reduction of both tumor burden and osteotropism by malignant cells. Here, we review both the role of αvβ3 in malignant osteoclastogenesis and its potential targeting to restrain the bone colonization by skeleton invading cancers.
Collapse
|
37
|
Sponaas AM, Moen SH, Liabakk NB, Feyzi E, Holien T, Kvam S, Grøseth LAG, Størdal B, Buene G, Espevik T, Waage A, Standal T, Sundan A. The proportion of CD16(+)CD14(dim) monocytes increases with tumor cell load in bone marrow of patients with multiple myeloma. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:94-102. [PMID: 26029369 PMCID: PMC4444152 DOI: 10.1002/iid3.53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/13/2022]
Abstract
Multiple myeloma is an incurable cancer with expansion of malignant plasma cells in the bone marrow. Previous studies have shown that monocytes and macrophages in the bone marrow milieu are important for tumor growth and may play a role in the drug response. We therefore characterized monocytes in bone marrow aspirates by flow cytometry. We found that there was significant correlation between the proportion of CX3CR1+, CD16+CD14dim non classical monocytes, and percent plasma cells (PC) in the bone marrow of myeloma patients. The bone marrow monocytes could be stimulated by TLR ligands to produce cytokines which promote myeloma cell growth. The proportion of the non-classical monocytes increased with the tumor load, particularly in patients with tumor loads in the range of 10–30% bone marrow PC.
Collapse
Affiliation(s)
- Anne M Sponaas
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway
| | - Siv H Moen
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway ; Department for Cancer Research and Molecular Medicine, Center for Molecular Inflammation Research NTNU, Trondheim, Norway
| | - Nina B Liabakk
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway
| | - Emadoldin Feyzi
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway ; Section of Hematology, St. Olav's University Hospital Trondheim, Norway
| | - Toril Holien
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway
| | - Solveig Kvam
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway
| | - Lill Anny G Grøseth
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway ; Section of Hematology, St. Olav's University Hospital Trondheim, Norway
| | - Berit Størdal
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway
| | - Glenn Buene
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway
| | - Terje Espevik
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway ; Department for Cancer Research and Molecular Medicine, Center for Molecular Inflammation Research NTNU, Trondheim, Norway
| | - Anders Waage
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway ; Section of Hematology, St. Olav's University Hospital Trondheim, Norway
| | - Therese Standal
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway ; Department for Cancer Research and Molecular Medicine, Center for Molecular Inflammation Research NTNU, Trondheim, Norway
| | - Anders Sundan
- K.G. Jebsen Center for Myeloma Research Trondheim, Norway ; Department for Cancer Research and Molecular Medicine, Center for Molecular Inflammation Research NTNU, Trondheim, Norway
| |
Collapse
|
38
|
Adamopoulos IE, Mellins ED. Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol 2014; 11:189-94. [PMID: 25422000 DOI: 10.1038/nrrheum.2014.198] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Osteoclasts are cells of haematopoietic origin that are uniquely specialized to degrade bone. Under physiological conditions, the osteoclastogenesis pathway depends on macrophage colony-stimulating factor 1 (CSF-1, also known as M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). However, an emerging hypothesis is that alternative pathways of osteoclast generation might be active during inflammatory arthritis. In this Perspectives article, we summarize the physiological pathway of osteoclastogenesis and then focus on experimental findings that support the hypothesis that infiltrating inflammatory cells and the cytokine milieu provide multiple routes to bone destruction. The precise identity of osteoclast precursor(s) is not yet known. We propose that myeloid cell differentiation during inflammation could be an important contributor to the differentiation of osteoclast populations and their associated pathologies. Understanding the dynamics of osteoclast differentiation in inflammatory arthritis is crucial for the development of therapeutic strategies for inflammatory joint disease in children and adults.
Collapse
Affiliation(s)
- Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Shriners Hospitals for Children Northern California, 2425 Stockton Boulevard, Room 653A, Sacramento, CA 95817, USA
| | - Elizabeth D Mellins
- Division of Pediatric Rheumatology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
39
|
Detection of IL-17A-producing peripheral blood monocytes in Langerhans cell histiocytosis patients. Clin Immunol 2014; 153:112-22. [DOI: 10.1016/j.clim.2014.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/03/2014] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
|
40
|
Abstract
The immune system and bone are intimately linked with significant physical and functionally related interactions. The innate immune system functions as an immediate response system to initiate protections against local challenges such as pathogens and cellular damage. Bone is a very specific microenvironment, in which infectious attack is less common but repair and regeneration are ongoing and important functions. Thus, in the bone the primary goal of innate immune and bone interactions is to maintain tissue integrity. Innate immune signals are critical for removal of damaged and apoptotic cells and to stimulate normal tissue repair and regeneration. In this review we focus on the innate immune mechanisms that function to regulate bone homeostasis.
Collapse
Affiliation(s)
- Julia F. Charles
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02115 Phone: FAX:
| | - Mary C. Nakamura
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143
- Arthritis/Immunology Section, Veterans Affairs Medical Center, 4150 Clement Street, 111R, San Francisco, CA 94121, Phone: 415 750-2104, FAX: 415 750-6920,
- corresponding author: Arthritis/Immunology Section, Veterans Affairs Medical Center, 4150 Clement Street, 111R, San Francisco, CA 94121
| |
Collapse
|
41
|
Rizzo FM, Cives M, Simone V, Silvestris F. New insights into the molecular pathogenesis of langerhans cell histiocytosis. Oncologist 2014; 19:151-63. [PMID: 24436311 DOI: 10.1634/theoncologist.2013-0341] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare proliferative disorder characterized by an accumulation of cells sharing the major phenotypic features of cutaneous Langerhans cells. Given its variable clinical evolution, ranging from self-limiting lesions to multisystemic forms with a poor prognosis, in the last decades it has been debated whether LCH might not have a neoplastic rather than an inflammatory nature. However, although the fundamental events underlying the pathogenesis of LCH are still elusive, recent advances have strikingly improved our understanding of the disease. In particular, the identification of multiple interplays between LCH cells and their tumor microenvironment, along with the recognition of the lesional cytokine storm as a key determinant of LCH progression, has substantiated new opportunities for devising targeted therapeutic approaches. Strikingly, the detection of the rapidly accelerated fibrosarcoma isoform B(V600E) gain-of-function mutation as a genetic alteration recurring in more than 50% of patients has fueled the paradoxical picture of LCH as a tumor of the antigen-presenting cells that can evade rejection by the immune system. Thus, new evidence regarding the ontogeny of LCH cells, as well as a better understanding of the putative immune system frustrating strategy in LCH, may help to define the precise pathogenesis.
Collapse
Affiliation(s)
- Francesca M Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | | | | |
Collapse
|