1
|
Wang B, Li M, Cao D, Sun Q, Yu W, Ma J, Ren H, Xu G, Zhou L. Lys-63-specific deubiquitinase BRCC36 enhances the sensitivity of multiple myeloma cells to lenalidomide by inhibiting lysosomal degradation of cereblon. Cell Mol Life Sci 2024; 81:349. [PMID: 39136771 PMCID: PMC11335271 DOI: 10.1007/s00018-024-05390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Multiple myeloma (MM) is the second most common hematological tumor in adults. Immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide (Len), are effective drugs for the treatment of multiple myeloma. Len can recruit IKZF1 and IKZF3 to cereblon (CRBN), a substrate receptor of the cullin 4-RING E3 ligase (CRL4), promote their ubiquitination and degradation, and finally inhibit the proliferation of myeloma cells. However, MM patients develop resistance to IMiDs over time, leading to disease recurrence and deterioration. To explore the possible approaches that may enhance the sensitivity of IMiDs to MM, in this study, we used the proximity labeling technique TurboID and quantitative proteomics to identify Lys-63-specific deubiquitinase BRCC36 as a CRBN-interacting protein. Biochemical experiments demonstrated that BRCC36 in the BRISC complex protects CRBN from lysosomal degradation by specifically cleaving the K63-linked polyubiquitin chain on CRBN. Further studies found that a small-molecule compound SHIN1, which binds to BRISC complex subunit SHMT2, can upregulate CRBN by elevating BRCC36. The combination of SHIN1 and Len can further increase the sensitivity of MM cells to IMiDs. Therefore, this study provides the basis for the exploration of a possible strategy for the SHIN1 and Len combination treatment for MM.
Collapse
Affiliation(s)
- Busong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Dan Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qing Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Wenjun Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
2
|
Borsi E, Mazzocchetti G, Dico AF, Vigliotta I, Martello M, Poletti A, Solli V, Armuzzi S, Taurisano B, Kanapari A, Pistis I, Zamagni E, Tacchetti P, Pantani L, Mancuso K, Rocchi S, Rizzello I, Cavo M, Terragna C. High levels of CRBN isoform lacking IMiDs binding domain predicts for a worse response to IMiDs-based upfront therapy in newly diagnosed myeloma patients. Clin Exp Med 2023; 23:5227-5239. [PMID: 37815734 PMCID: PMC10725394 DOI: 10.1007/s10238-023-01205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
In recent years, the immunoderivative (IMiD) agents have been extensively used for the treatment of multiple myeloma (MM). IMiDs and their newer derivatives CRBN E3 ligase modulator bind the E3 ligase substrate recognition adapter protein cereblon (CRBN), which has been recognized as one of the IMiDs' direct target proteins, and it is essential for the therapeutic effect of these agents.High expression of CRBN was associated with improved clinical response in patients with MM treated with IMiDs, further confirming that the expression of IMiDs' direct target protein CRBN is required for the anti-MM activity. CRBN's central role as a target of IMiDs suggests potential utility as a predictive biomarker of response or resistance to IMiDs therapy. Additionally, the presence of alternatively spliced variants of CRBN in MM cells, especially those lacking the drug-binding domain for IMiDs, raise questions concerning their potential biological function, making difficult the transcript measurement, which leads to inaccurate overestimation of full-length CRBN transcripts. In sight of this, in the present study, we evaluated the CRBN expression, both full-length and spliced isoforms, by using real-time assay data from 87 patients and RNA sequencing data from 50 patients (n = 137 newly diagnosed MM patients), aiming at defining CRBN's role as a predictive biomarker for response to IMiDs-based induction therapy. We found that the expression level of the spliced isoform tends to be higher in not-responding patients, confirming that the presence of a more CRBN spliced transcript predicts for lack of IMiDs response.
Collapse
Affiliation(s)
- Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| | - Gaia Mazzocchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Marina Martello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Andrea Poletti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Vincenza Solli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Silvia Armuzzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Barbara Taurisano
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ajsi Kanapari
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ignazia Pistis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Lucia Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Serena Rocchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Ilaria Rizzello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| |
Collapse
|
3
|
Zhang SH, Zeng N, Sun JX, Liu CQ, Xu JZ, Xu MY, An Y, Zhong XY, Ma SY, He HD, Xia QD, Hu J, Wang SG. Pan-cancer analysis reveals the prognostic and immunologic roles of cereblon and its significance for PROTAC design. Heliyon 2023; 9:e16644. [PMID: 37303568 PMCID: PMC10248115 DOI: 10.1016/j.heliyon.2023.e16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cereblon (CRBN) has emerged as a vital E3 ubiquitin ligase for Proteolysis-targeting chimera (PROTAC) design. However, few studies focus on the physiological mechanism of CRBN, and more studies are needed to explore the influence of CRBN on tumorigenesis. This pan-cancer analysis aims to explore the prognostic and immunologic roles of CRBN, and provide new insight for CRBN into cancer treatment and PROTAC design. Methods The TCGA database, TIMER 2.0 database, and TISIDB database were used to analyze the role of CRBN in pan-cancer. Multiple bioinformatic methods (ssGSEA, Kaplan-Meier, univariate cox regression, ESTIMATE, CIBERSORT) were applied to investigate the CRBN expression status, gene activity, prognostic values, and its correlation with immune scores, immune infiltration, immune-related functions, HALLMARKs functions, and response to immunotherapy in pan-cancer. Results In most cancer types, the expression and activity of CRBN in tumor groups were lower compared with normal groups. Upregulated CRBN expression may indicate a better prognosis for cancer patients. The Immune score, stromal score, and tumor purity varied greatly among different cancer types. GSEA analysis showed that high CRBN expression was correlated with the downregulation of tumor-promoting signaling pathways. The level of CRBN was associated with Tumor mutation burden (TMB), Microsatellite instability (MSI), objective response rate (ORR), and immune cell infiltration in a few cancer types. Conclusion Pan-cancer analysis reveals the potential role of CRBN as a prognostic biomarker and versatile immunologic roles in different cancer types. Upregulated expression of CRBN may be beneficial to CRBN-related immunotherapy and PROTAC design.
Collapse
|
4
|
Cereblon-Recruiting PROTACs: Will New Drugs Have to Face Old Challenges? Pharmaceutics 2023; 15:pharmaceutics15030812. [PMID: 36986673 PMCID: PMC10053963 DOI: 10.3390/pharmaceutics15030812] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The classical low-molecular-weight drugs are designed to bind with high affinity to the biological targets endowed with receptor or enzymatic activity, and inhibit their function. However, there are many non-receptor or non-enzymatic disease proteins that seem undruggable using the traditional drug approach. This limitation has been overcome by PROTACs, bifunctional molecules that are able to bind the protein of interest and the E3 ubiquitin ligase complex. This interaction results in the ubiquitination of POI and subsequent proteolysis in the cellular proteasome. Out of hundreds of proteins serving as substrate receptors in E3 ubiquitin ligase complexes, current PROTACs recruit only a few of them, including CRBN, cIAP1, VHL or MDM-2. This review will focus on PROTACs recruiting CRBN E3 ubiquitin ligase and targeting various proteins involved in tumorigenesis, such as transcription factors, kinases, cytokines, enzymes, anti-apoptotic proteins and cellular receptors. The structure of several PROTACs, their chemical and pharmacokinetic properties, target affinity and biological activity in vitro and in vivo, will be discussed. We will also highlight cellular mechanisms that may affect the efficacy of PROTACs and pose a challenge for the future development of PROTACs.
Collapse
|
5
|
Kulig P, Milczarek S, Bakinowska E, Szalewska L, Baumert B, Machaliński B. Lenalidomide in Multiple Myeloma: Review of Resistance Mechanisms, Current Treatment Strategies and Future Perspectives. Cancers (Basel) 2023; 15:963. [PMID: 36765919 PMCID: PMC9913106 DOI: 10.3390/cancers15030963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, accounting for approximately 1% of all cancers. Despite the initial poor prognosis for MM patients, their life expectancy has improved significantly with the development of novel agents. Immunomodulatory drugs (IMiDs) are widely used in MM therapy. Their implementation has been a milestone in improving the clinical outcomes of patients. The first molecule belonging to the IMiDs was thalidomide. Subsequently, its novel derivatives, lenalidomide (LEN) and pomalidomide (POM), were implemented. Almost all MM patients are exposed to LEN, which is the most commonly used IMiD. Despite the potent anti-MM activity of LEN, some patients eventually relapse and become LEN-resistant. Drug resistance is one of the greatest challenges of modern oncology and has become the main cause of cancer treatment failures. The number of patients receiving LEN is increasing, hence the problem of LEN resistance has become a great obstacle for hematologists worldwide. In this review, we intended to shed more light on the pathophysiology of LEN resistance in MM, with particular emphasis on the molecular background. Moreover, we have briefly summarized strategies to overcome LEN resistance and we have outlined future directions.
Collapse
Affiliation(s)
- Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Sławomir Milczarek
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Estera Bakinowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Laura Szalewska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
6
|
Fuchs O. Targeting cereblon in hematologic malignancies. Blood Rev 2023; 57:100994. [PMID: 35933246 DOI: 10.1016/j.blre.2022.100994] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
The protein cereblon (CRBN) is a substrate receptor of the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase complex CRL4CRBN. Targeting CRBN mediates selective protein ubiquitination and subsequent degradation via the proteasome. This review describes novel thalidomide analogs, immunomodulatory drugs, also known as CRBN E3 ubiquitin ligase modulators or molecular glues (avadomide, iberdomide, CC-885, CC-90009, BTX-1188, CC-92480, CC-99282, CFT7455, and CC-91633), and CRBN-based proteolysis targeting chimeras (PROTACs) with increased efficacy and potent activity for application in hematologic malignancies. Both types of CRBN-binding drugs, molecular glues, and PROTACs stimulate the interaction between CRBN and its neosubstrates, recruiting target disease-promoting proteins and the E3 ubiquitin ligase CRL4CRBN. Proteins that are traditionally difficult to target (transcription factors and oncoproteins) can be polyubiquitinated and degraded in this way. The competition of CRBN neosubstrates with endogenous CRBN-interacting proteins and the pharmacology and rational combination therapies of and mechanisms of resistance to CRL4CRBN modulators or CRBN-based PROTACs are described.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12800 Praha 2, Czech Republic.
| |
Collapse
|
7
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Chen LY, Gooding S. Tumor and microenvironmental mechanisms of resistance to immunomodulatory drugs in multiple myeloma. Front Oncol 2022; 12:1038329. [PMID: 36439455 PMCID: PMC9682014 DOI: 10.3389/fonc.2022.1038329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 10/07/2023] Open
Abstract
Resistance to immunomodulatory drugs (IMiDs®) is a major cause of treatment failure, disease relapse and ultimately poorer outcomes in multiple myeloma (MM). In order to optimally deploy IMiDs and their newer derivates CRBN E3 ligase modulators (CELMoDs®) into future myeloma therapeutic regimens, it is imperative to understand the mechanisms behind the inevitable emergence of IMiD resistance. IMiDs bind and modulate Cereblon (CRBN), the substrate receptor of the CUL4CRBN E3 ubiquitin ligase, to target novel substrate proteins for ubiquitination and degradation. Most important of these are IKZF1 and IKZF3, key MM survival transcription factors which sustain the expression of myeloma oncogenes IRF4 and MYC. IMiDs directly target MM cell proliferation, but also stimulate T/NK cell activation by their CRBN-mediated effects, and therefore enhance anti-MM immunity. Thus, their benefits in myeloma are directed against tumor and immune microenvironment - and in considering the mechanisms by which IMiD resistance emerges, both these effects must be appraised. CRBN-dependent mechanisms of IMiD resistance, including CRBN genetic aberrations, CRBN protein loss and CRBN-substrate binding defects, are beginning to be understood. However, only a proportion of IMiD-resistant cases are related to CRBN and therefore additional mechanisms, which are currently less well described, need to be sought. These include resistance within the immune microenvironment. Here we review the existing evidence on both tumor and immune microenvironment mechanisms of resistance to IMiDs, pose important questions for future study, and consider how knowledge regarding resistance mechanism may be utilized to guide treatment decision making in the clinic.
Collapse
Affiliation(s)
- Lucia Y. Chen
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
10
|
Karagoz K, Stokes M, Ortiz-Estévez M, Towfic F, Flynt E, Gooding S, Pierceall W, Thakurta A. Multiple Myeloma Patient Tumors With High Levels of Cereblon Exon-10 Deletion Splice Variant Upregulate Clinically Targetable Pro-Inflammatory Cytokine Pathways. Front Genet 2022; 13:831779. [PMID: 35222546 PMCID: PMC8864318 DOI: 10.3389/fgene.2022.831779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Immunomodulatory drugs (IMiDs), including lenalidomide and pomalidomide, are used in the routine treatment for multiple myeloma (MM) patients. Cereblon (CRBN) is the direct molecular target of IMiDs. While CRBN is not an essential gene for MM cell proliferation, the frequency of CRBN genetic aberrations, including mutation, copy number loss, and exon-10 (which includes a portion of the IMiD-binding domain) splicing, have been reported to incrementally increase in later-line patients. CRBN exon-10 splicing has also been shown to be associated with decreased progression-free survival in both newly diagnosed and relapsed refractory MM patients. Although we did not find significant general splicing defects among patients with CRBN exon-10 splice variant when compared to those expressing the full-length transcript, we identified upregulated TNFA signaling via NFKB, inflammatory response, and IL-10 signaling pathways in patients with exon-10 splice variant across various data sets—all potentially promoting tumor growth via chronic growth signals. We examined master regulators that mediate transcriptional programs in CRBN exon-10 splice variant patients and identified BATF, EZH2, and IKZF1 as the key candidates across the four data sets. Upregulated downstream targets of BATF, EZH2, and IKZF1 are components of TNFA signaling via NFKB, IL2/STAT5 signaling pathways, and IFNG response pathways. Previously, BATF-mediated transcriptional regulation was associated with venetoclax sensitivity in MM. Interestingly, we found that an EZH2 sensitivity gene expression signature also correlated with high BATF or venetoclax sensitivity scores in these tumors. Together, these data provide a rationale for investigating EZH2 inhibitors or venetoclax in combination with the next generation CRBN-targeting agents, such as CELMoDs, for patients overexpressing the CRBN exon-10 splice variant.
Collapse
Affiliation(s)
- Kubra Karagoz
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, United States
| | - Matthew Stokes
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, United States
| | - María Ortiz-Estévez
- Bristol Myers Squibb Center for Innovation and Translational Research Europe, Sevilla, Spain
| | - Fadi Towfic
- Bristol Myers Squibb, San Diego, CA, United States
| | - Erin Flynt
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, United States
| | - Sarah Gooding
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - William Pierceall
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, United States
| | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, United States.,Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Lu X, Sabbasani VR, Osei-Amponsa V, Evans CN, King JC, Tarasov SG, Dyba M, Das S, Chan KC, Schwieters CD, Choudhari S, Fromont C, Zhao Y, Tran B, Chen X, Matsuo H, Andresson T, Chari R, Swenson RE, Tarasova NI, Walters KJ. Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Nat Commun 2021; 12:7318. [PMID: 34916494 PMCID: PMC8677766 DOI: 10.1038/s41467-021-27570-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Proteasome substrate receptor hRpn13 is a promising anti-cancer target. By integrated in silico and biophysical screening, we identified a chemical scaffold that binds hRpn13 with non-covalent interactions that mimic the proteasome and a weak electrophile for Michael addition. hRpn13 Pru domain binds proteasomes and ubiquitin whereas its DEUBAD domain binds deubiquitinating enzyme UCHL5. NMR revealed lead compound XL5 to interdigitate into a hydrophobic pocket created by lateral movement of a Pru β-hairpin with an exposed end for Proteolysis Targeting Chimeras (PROTACs). Implementing XL5-PROTACs as chemical probes identified a DEUBAD-lacking hRpn13 species (hRpn13Pru) present naturally with cell type-dependent abundance. XL5-PROTACs preferentially target hRpn13Pru, causing its ubiquitination. Gene-editing and rescue experiments established hRpn13 requirement for XL5-PROTAC-triggered apoptosis. These data establish hRpn13 as an anti-cancer target for multiple myeloma and introduce an hRpn13-targeting scaffold that can be optimized for preclinical trials against hRpn13Pru-producing cancer types.
Collapse
Affiliation(s)
- Xiuxiu Lu
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vasty Osei-Amponsa
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Christine N Evans
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Julianna C King
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sergey G Tarasov
- Biophysics Resource, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Marzena Dyba
- Biophysics Resource, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - King C Chan
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-5620, USA
| | - Sulbha Choudhari
- Sequencing Facility Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Caroline Fromont
- Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Yongmei Zhao
- Sequencing Facility Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Bao Tran
- Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Xiang Chen
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Hiroshi Matsuo
- Basic Science Program, Center for Structural Biology, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadya I Tarasova
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
12
|
USP15 antagonizes CRL4 CRBN-mediated ubiquitylation of glutamine synthetase and neosubstrates. Proc Natl Acad Sci U S A 2021; 118:2111391118. [PMID: 34583995 DOI: 10.1073/pnas.2111391118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Targeted protein degradation by the ubiquitin-proteasome system represents a new strategy to destroy pathogenic proteins in human diseases, including cancer and neurodegenerative diseases. The immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide have revolutionized the treatment of patients with multiple myeloma (MM) and other hematologic malignancies, but almost all patients eventually develop resistance to IMiDs. CRBN, a substrate receptor of CUL4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase, is a direct target for thalidomide teratogenicity and antitumor activity of IMiDs (now known as Cereblon E3 ligase modulators: CELMoDs). Despite recent advances in developing potent CELMoDs and CRBN-based proteolysis-targeting chimeras (PROTACs), many questions apart from clinical efficacy remain unanswered. CRBN is required for the action of IMiDs, but its protein expression levels do not correlate with intrinsic resistance to IMiDs in MM cells, suggesting other factors involved in regulating resistance to IMiDs. Our recent work revealed that the CRL4CRBN-p97 pathway is required for degradation of natural substrate glutamine synthetase (GS) and neosubstrates. Here, I show that USP15 is a key regulator of the CRL4CRBN-p97 pathway to control stability of GS and neosubstrates IKZF1, IKZF3, CK1-α, RNF166, GSPT1, and BRD4, all of which are crucial drug targets in different types of cancer. USP15 antagonizes ubiquitylation of CRL4CRBN target proteins, thereby preventing their degradation. Notably, USP15 is highly expressed in IMiD-resistant cells, and depletion of USP15 sensitizes these cells to lenalidomide. Inhibition of USP15 represents a valuable therapeutic opportunity to potentiate CELMoD and CRBN-based PROTAC therapies for the treatment of cancer.
Collapse
|
13
|
Zhou L, Huang X, Niesvizky R, Pu Z, Xu G. Caspase-8 regulates the anti-myeloma activity of bortezomib and lenalidomide. J Pharmacol Exp Ther 2021; 379:303-309. [PMID: 34588172 DOI: 10.1124/jpet.121.000818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Proteasome inhibitors and immunomodulatory drugs (IMiDs) are two major types of drugs for treatment of multiple myeloma. Although different combination therapies for myeloma have been developed and achieved high responsive rate, these strategies frequently result in drug resistance. Therefore, it is necessary to explore new molecular mechanisms and therapeutic approaches to fulfill this unmet medical need. Here, we find that proteasome inhibitor bortezomib (Btz) causes cereblon (CRBN) cleavage and caspase-8 (CASP-8) is responsible for this cleavage. Either inhibition or genetic depletion of CASP-8 decreased the CRBN cleavage upon Btz treatment, which could potentiate the anti-myeloma activity of IMiD lenalidomide (Len). This work suggests that administration of CASP-8 inhibitors might enhance the overall effectiveness of Btz/Len-based therapeutic treatment for myeloma patients. Significance Statement Caspase-8 activation upon bortezomib treatment results in the cleavage of cereblon, a substrate receptor of the cullin 4-RING E3 ligase, which is responsible for the degradation of two transcription factors IKZF1 and IKZF3 in the presence of immunomodulatory drugs including lenalidomide. The administration of caspase-8 inhibitor may enhance the anti-myeloma activity of the combination therapy with bortezomib and lenalidomide to multiple myeloma.
Collapse
Affiliation(s)
| | | | | | - Zhongjian Pu
- Haian Hospital of Traditional Chinese Medicine, China
| | | |
Collapse
|
14
|
Kim HK, Seol JE, Ahn SW, Jeon S, Park CS, Han J. Cereblon: promise and challenges for combating human diseases. Pflugers Arch 2021; 473:1695-1711. [PMID: 34553266 DOI: 10.1007/s00424-021-02624-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022]
Abstract
Cereblon (CRBN) is a substrate recognition protein in the E3-ligase ubiquitin complex. The binding target of CRBN varies according to tissues and cells, and the protein regulates various biological functions by regulating tissue-specific targets. As new endogenous targets of CRBN have been identified over the past decade, the physiological and pathological functions of CRBN and its potential as a therapeutic target in various diseases have greatly expanded. For this purpose, in this review article, we introduce the basic principle of the ubiquitin-proteasome system, the regulation of physiological/pathological functions related to the endogenous substrate of CRBN, and the discovery of immunomodulatory imide drug-mediated neo-substrates of CRBN. In addition, the development of CRBN-based proteolysis-targeting chimeras, which has been actively researched recently, and strategies for developing therapeutic agents using them are introduced. These recent updates on CRBN will be useful in the establishment of strategies for disease treatment and utilization of CRBNs in biomedical engineering and clinical medicine.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, 47392, Busan, Korea
| | - Jung Eun Seol
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, 47392, Busan, Korea
- Department of Dermatology, Inje University Busan Paik Hospital, Inje University, 47392, Busan, Korea
| | - Sang Woo Ahn
- Department of Dermatology, Inje University Busan Paik Hospital, Inje University, 47392, Busan, Korea
| | - Seungje Jeon
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, 47392, Busan, Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, 47392, Busan, Korea.
| |
Collapse
|
15
|
Wallington-Beddoe CT, Mynott RL. Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol 2021; 14:151. [PMID: 34556161 PMCID: PMC8461914 DOI: 10.1186/s13045-021-01162-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
New approaches to stratify multiple myeloma patients based on prognosis and therapeutic decision-making, or prediction, are needed since patients are currently managed in a similar manner regardless of individual risk factors or disease characteristics. However, despite new and improved biomarkers for determining the prognosis of patients, there is currently insufficient information to utilise biomarkers to intensify, reduce or altogether change treatment, nor to target patient-specific biology in a so-called predictive manner. The ever-increasing number and complexity of drug classes to treat multiple myeloma have improved response rates and so clinically useful biomarkers will need to be relevant in the era of such novel therapies. Therefore, the field of multiple myeloma biomarker development is rapidly progressing, spurred on by new technologies and therapeutic approaches, and underpinned by a deeper understanding of tumour biology with individualised patient management the goal. In this review, we describe the main biomarker categories in multiple myeloma and relate these to diagnostic, prognostic and predictive applications. ![]()
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- College of Medicine and Public Health, Level 4, Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, 5042, Australia. .,Flinders Medical Centre, Bedford Park, SA, 5042, Australia. .,Centre for Cancer Biology, SA Pathology and The University of South Australia, Adelaide, SA, 5000, Australia. .,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Rachel L Mynott
- College of Medicine and Public Health, Level 4, Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
16
|
Kalff A, Khong T, Ramachandran M, Walker P, Schwarer A, Roberts AW, Campbell P, Filshie R, Norton S, Reynolds J, Young M, Pierceall W, Thakurta A, Guo M, Oppermann U, Wang M, Ren Y, Kennedy N, Parekh S, Spencer A. Cereblon pathway biomarkers and immune profiles in patients with myeloma receiving post-ASCT lenalidomide maintenance (LEOPARD). Leuk Lymphoma 2021; 62:2981-2991. [PMID: 34263697 DOI: 10.1080/10428194.2021.1948030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
LEOPARD was a single arm, phase II study of lenalidomide (LEN) and alternate day prednisolone maintenance in patients with newly diagnosed multiple myeloma (MM) following autologous stem cell transplantation (ASCT). Sixty patients were enrolled. Estimated median potential follow-up was 44 m, median PFS was 38.3 m, median OS was not reached (landmark 36 m OS: 71.4%). Correlative immunohistochemistry performed on pre-ASCT trephines demonstrated high MM tumor cereblon (total/cytoplasmic) was associated with superior OS (p = .045, p = .031, respectively), whereas high c-Myc was associated with inferior PFS (p = .04). Patients with high cereblon (total/nuclear) were more likely to improve depth of response, whereas patients with high c-Myc were less likely, suggesting alternative/more effective post-ASCT strategies for patients with high c-Myc need identification. Peripheral blood immune profiling (mass cytometry) informed a more sustained response to LEN maintenance, demonstrating enrichment of activated/cytotoxic NK cells and cytotoxic T cells in patients with durable responses, contrasting with enrichment of B-regs in early relapsers.
Collapse
Affiliation(s)
- Anna Kalff
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia.,Department of Clinical Haematology, Monash University, Clayton, Australia
| | - Tiffany Khong
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia
| | - Malarmathy Ramachandran
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia
| | - Patricia Walker
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| | | | - Andrew W Roberts
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | - John Reynolds
- Epidemiology and Preventive Medicine Department, Alfred Health - Monash University, Melbourne, Australia
| | - Mary Young
- Bristol-Myers Squibb Corporation, Summit, NJ, USA
| | | | | | - Manman Guo
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Maria Wang
- Bristol-Myers Squibb Corporation, Summit, NJ, USA
| | - Yan Ren
- Bristol-Myers Squibb Corporation, Summit, NJ, USA
| | - Nola Kennedy
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| | - Samir Parekh
- Icahn School of Medicine, Mt Sinai Hospital, New York City, NY, USA
| | - Andrew Spencer
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia.,Department of Clinical Haematology, Monash University, Clayton, Australia
| |
Collapse
|
17
|
Wang Y, An G, Qiu LG. [Progress in clonal evolution of multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:611-615. [PMID: 34455753 PMCID: PMC8408495 DOI: 10.3760/cma.j.issn.0253-2727.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Y Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - G An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L G Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
18
|
Lee BH, Kang KW, Jeon MJ, Yu ES, Kim DS, Lee SR, Sung HJ, Park Y, Choi CW, Kim BS. Prediction Model for Cereblon Expression in Bone Marrow Plasma Cells Based on Blood Markers in Multiple Myeloma Patients. Front Oncol 2021; 11:687361. [PMID: 34336672 PMCID: PMC8316857 DOI: 10.3389/fonc.2021.687361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 12/01/2022] Open
Abstract
Background Cereblon (CRBN) is a direct target of immunomodulatory drugs (IMiDs) and is known to be sensitive and responsive to IMiD therapy. We evaluated CRBN expression in bone marrow plasma cells and analyzed whether CRBN expression was associated with multiple myeloma prognosis. Lastly, we developed a nomogram model for predicting high CRBN expression based on clinically significant blood markers. Methods We evaluated 143 multiple myeloma patients (internal dataset) who underwent bone marrow examinations. For evaluating the prognostic ability of the nomogram model, two external cohorts (235 patients in external dataset 1 and 156 patients in external dataset 2) were analyzed. The expression of CRBN in bone marrow aspirate samples was evaluated using immunohistochemistry. High CRBN expression was defined as the study-defined H-score ≥6. Results In the high CRBN group, the median progression-free survival (PFS) and overall survival (OS) of patients receiving the IMiD-based therapy and non-IMiD therapy were 29 and 10 months for PFS, and NR (not reached) and 54 months for OS, respectively. IMiD-based therapy was significantly associated with better PFS and OS outcomes. High CRBN expression was independently predicted by female sex, high serum free-light chain (FLC) ratio, higher serum M-protein level, and higher β2-microglobulin level. Based on these results, we constructed a new nomogram model to predict high CRBN expression and the effectiveness of IMiD therapy in multiple myeloma. Conclusion This nomogram could improve the prognostic evaluation of myeloma patients exhibiting high CRBN expression treated with IMiD therapy and might help provide personalized treatment strategies to clinicians.
Collapse
Affiliation(s)
- Byung-Hyun Lee
- Department of Internal Medicine, Korea University College of Medicine, Anam Hospital, Seoul, South Korea
| | - Ka-Won Kang
- Department of Internal Medicine, Korea University College of Medicine, Anam Hospital, Seoul, South Korea
| | - Min Ji Jeon
- Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul, South Korea
| | - Eun Sang Yu
- Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul, South Korea
| | - Dae Sik Kim
- Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul, South Korea
| | - Se Ryeon Lee
- Department of Internal Medicine, Korea University College of Medicine, Ansan Hospital, Gyeonggi-do, South Korea
| | - Hwa Jung Sung
- Department of Internal Medicine, Korea University College of Medicine, Ansan Hospital, Gyeonggi-do, South Korea
| | - Yong Park
- Department of Internal Medicine, Korea University College of Medicine, Anam Hospital, Seoul, South Korea
| | - Chul Won Choi
- Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul, South Korea
| | - Byung Soo Kim
- Department of Internal Medicine, Korea University College of Medicine, Anam Hospital, Seoul, South Korea
| |
Collapse
|
19
|
Jan M, Sperling AS, Ebert BL. Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide. Nat Rev Clin Oncol 2021; 18:401-417. [PMID: 33654306 PMCID: PMC8903027 DOI: 10.1038/s41571-021-00479-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
For decades, anticancer targeted therapies have been designed to inhibit kinases or other enzyme classes and have profoundly benefited many patients. However, novel approaches are required to target transcription factors, scaffolding proteins and other proteins central to cancer biology that typically lack catalytic activity and have remained mostly recalcitrant to drug development. The selective degradation of target proteins is an attractive approach to expand the druggable proteome, and the selective oestrogen receptor degrader fulvestrant served as an early example of this concept. Following a long and tragic history in the clinic, the immunomodulatory imide drug (IMiD) thalidomide was discovered to exert its therapeutic activity via a novel and unexpected mechanism of action: targeting proteins to an E3 ubiquitin ligase for subsequent proteasomal degradation. This discovery has paralleled and directly catalysed myriad breakthroughs in drug development, leading to the rapid maturation of generalizable chemical platforms for the targeted degradation of previously undruggable proteins. Decades of clinical experience have established front-line roles for thalidomide analogues, including lenalidomide and pomalidomide, in the treatment of haematological malignancies. With a new generation of 'degrader' drugs currently in development, this experience provides crucial insights into class-wide features of degraders, including a unique pharmacology, mechanisms of resistance and emerging therapeutic opportunities. Herein, we review these past experiences and discuss their application in the clinical development of novel degrader therapies.
Collapse
Affiliation(s)
- Max Jan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
20
|
The CRBN, CUL4A and DDB1 Expression Predicts the Response to Immunomodulatory Drugs and Survival of Multiple Myeloma Patients. J Clin Med 2021; 10:jcm10122683. [PMID: 34207079 PMCID: PMC8235391 DOI: 10.3390/jcm10122683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are effective in the treatment of multiple myeloma (MM), myelodysplastic syndrome with deletion of chromosome 5q and other haematological malignancies. Recent studies showed that IMiDs bind to cereblon (CRBN), a substrate receptor of the CRL4–CRBN complex, to induce the ubiquitination and degradation of IKZF1 and IKZF3 in MM cells, contributing to their anti-myeloma activity. We aimed to determine whether the CRL4–CRBN complex proteins’ expression predicts the prognosis of MM patients treated with IMiDs. Here, we evaluated the expression of CRL4–CRBN complex proteins and their downstream targets with immunohistochemistry (IHC) staining in 130 bone marrow samples from MM patients treated with thalidomide or lenalidomide-based regimens. We found that the expression of CRBN and CUL4A was associated with the superior IMiD-based treatment response (p = 0.007 and p = 0.007, respectively). Moreover, the CUL4A expression was associated with improved PFS (HR = 0.66, 95% CI 0.44–0.99; p = 0.046) and DDB1 expression showed a negative impact on OS both in the univariate (HR = 2.75, 95% CI 1.65–4.61; p = 0.001) and the multivariate (HR 3.67; 95% CI 1.79–7.49; p < 0.001) analysis. Overall, our data suggest that the expression of DDB1, CUL4A and CRBN assessed by IHC predicts the clinical course of MM patients and identifies patients with a high probability of responding to IMiD-based therapy.
Collapse
|
21
|
Mondala PK, Vora AA, Zhou T, Lazzari E, Ladel L, Luo X, Kim Y, Costello C, MacLeod AR, Jamieson CHM, Crews LA. Selective antisense oligonucleotide inhibition of human IRF4 prevents malignant myeloma regeneration via cell cycle disruption. Cell Stem Cell 2021; 28:623-636.e9. [PMID: 33476575 DOI: 10.1016/j.stem.2020.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
In multiple myeloma, inflammatory and anti-viral pathways promote disease progression and cancer stem cell generation. Using diverse pre-clinical models, we investigated the role of interferon regulatory factor 4 (IRF4) in myeloma progenitor regeneration. In a patient-derived xenograft model that recapitulates IRF4 pathway activation in human myeloma, we test the effects of IRF4 antisense oligonucleotides (ASOs) and identify a lead agent for clinical development (ION251). IRF4 overexpression expands myeloma progenitors, while IRF4 ASOs impair myeloma cell survival and reduce IRF4 and c-MYC expression. IRF4 ASO monotherapy impedes tumor formation and myeloma dissemination in xenograft models, improving animal survival. Moreover, IRF4 ASOs eradicate myeloma progenitors and malignant plasma cells while sparing normal human hematopoietic stem cell development. Mechanistically, IRF4 inhibition disrupts cell cycle progression, downregulates stem cell and cell adhesion transcript expression, and promotes sensitivity to myeloma drugs. These findings will enable rapid clinical development of selective IRF4 inhibitors to prevent myeloma progenitor-driven relapse.
Collapse
Affiliation(s)
- Phoebe K Mondala
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ashni A Vora
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Elisa Lazzari
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Luisa Ladel
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | - Caitlin Costello
- Moores Cancer Center at University of California, San Diego, La Jolla, CA 92093, USA; Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center at University of California, San Diego, La Jolla, CA 92093, USA.
| | - Leslie A Crews
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center at University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Gooding S, Ansari-Pour N, Towfic F, Ortiz Estévez M, Chamberlain PP, Tsai KT, Flynt E, Hirst M, Rozelle D, Dhiman P, Neri P, Ramasamy K, Bahlis N, Vyas P, Thakurta A. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood 2021; 137:232-237. [PMID: 33443552 PMCID: PMC7893409 DOI: 10.1182/blood.2020007081] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Emergence of drug resistance to all available therapies is the major challenge to improving survival in myeloma. Cereblon (CRBN) is the essential binding protein of the widely used immunomodulatory drugs (IMiDs) and novel CRBN E3 ligase modulator drugs (CELMoDs) in myeloma, as well as certain proteolysis targeting chimeras (PROTACs), in development for a range of diseases. Using whole-genome sequencing (WGS) data from 455 patients and RNA sequencing (RNASeq) data from 655 patients, including newly diagnosed (WGS, n = 198; RNASeq, n = 437), lenalidomide (LEN)-refractory (WGS, n = 203; RNASeq, n = 176), and pomalidomide (POM)-refractory cohorts (WGS, n = 54; RNASeq, n = 42), we found incremental increases in the frequency of 3 CRBN aberrations, namely point mutations, copy losses/structural variations, and a specific variant transcript (exon 10 spliced), with progressive IMiD exposure, until almost one-third of patients had CBRN alterations by the time they were POM refractory. We found all 3 CRBN aberrations were associated with inferior outcomes to POM in those already refractory to LEN, including those with gene copy losses and structural variations, a finding not previously described. This represents the first comprehensive analysis and largest data set of CBRN alterations in myeloma patients as they progress through therapy. It will help inform patient selection for sequential therapies with CRBN-targeting drugs.
Collapse
Affiliation(s)
- Sarah Gooding
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre
- Oxford Centre for Translational Myeloma Research, and
| | - Naser Ansari-Pour
- NIHR Oxford Biomedical Research Centre
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | - Paula Dhiman
- NIHR Oxford Biomedical Research Centre
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom; and
| | - Paola Neri
- Tom Baker Cancer Center, University of Calgary, Calgary, AB, Canada
| | - Karthik Ramasamy
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre
- Oxford Centre for Translational Myeloma Research, and
| | - Nizar Bahlis
- Tom Baker Cancer Center, University of Calgary, Calgary, AB, Canada
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre
| | | |
Collapse
|
23
|
Shrestha P, Davis DA, Jaeger HK, Stream A, Aisabor AI, Yarchoan R. Pomalidomide restores immune recognition of primary effusion lymphoma through upregulation of ICAM-1 and B7-2. PLoS Pathog 2021; 17:e1009091. [PMID: 33411730 PMCID: PMC7817053 DOI: 10.1371/journal.ppat.1009091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/20/2021] [Accepted: 10/23/2020] [Indexed: 01/08/2023] Open
Abstract
Pomalidomide (Pom) is an immunomodulatory drug that has efficacy against Kaposi’s sarcoma, a tumor caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Pom also induces direct cytotoxicity in primary effusion lymphoma (PEL), a B-cell malignancy caused by KSHV, in part through downregulation of IRF4, cMyc, and CK1α as a result of its interaction with cereblon, a cellular E3 ubiquitin ligase. Additionally, Pom can reverse KSHV-induced downregulation of MHCI and co-stimulatory immune surface molecules ICAM-1 and B7-2 on PELs. Here, we show for the first time that Pom-induced increases in ICAM-1 and B7-2 on PEL cells lead to an increase in both T-cell activation and NK-mediated cytotoxicity against PEL. The increase in T-cell activation can be prevented by blocking ICAM-1 and/or B7-2 on the PEL cell surface, suggesting that both ICAM-1 and B7-2 are important for T-cell co-stimulation by PELs. To gain mechanistic insights into Pom’s effects on surface markers, we generated Pom-resistant (PomR) PEL cells, which showed about 90% reduction in cereblon protein level and only minimal changes in IRF4 and cMyc upon Pom treatment. Pom no longer upregulated ICAM-1 and B7-2 on the surface of PomR cells, nor did it increase T-cell and NK-cell activation. Cereblon-knockout cells behaved similarly to the pomR cells upon Pom-treatment, suggesting that Pom’s interaction with cereblon is necessary for these effects. Further mechanistic studies revealed PI3K signaling pathway as being important for Pom-induced increases in these molecules. These observations provide a rationale for the study of Pom as therapy in treating PEL and other KSHV-associated tumors. Primary effusion lymphoma (PEL) is an aggressive B-cell lymphoma caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV encodes various genes that enable infected cells to evade recognition and elimination by the immune system. PEL cells are poorly recognized by T-cells and NK cells, partly due to KSHV-induced downregulation of immune stimulatory surface molecules ICAM-1 and B7-2. We previously found that a cereblon-binding immunomodulatory drug pomalidomide (Pom) can restore the levels of these markers on PELs. Here, we show that the increases in ICAM-1 and B7-2 induced by Pom leads to a functional increase in the recognition and killing of PELs by both T-cells and NK cells. Further, exposure of both the PEL cells and T-cells to Pom lead to an even higher T-cell stimulation providing strong evidence that Pom could help PEL patients by providing specific immune-stimulatory effect. We further perform mechanistic studies and show that Pom’s cellular binding partner cereblon as well as the PI3K pathway are important for Pom-mediated increases in these surface markers.
Collapse
Affiliation(s)
- Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hannah K. Jaeger
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alexandra Stream
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Ashley I. Aisabor
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Shirasaki R, Matthews GM, Gandolfi S, de Matos Simoes R, Buckley DL, Raja Vora J, Sievers QL, Brüggenthies JB, Dashevsky O, Poarch H, Tang H, Bariteau MA, Sheffer M, Hu Y, Downey-Kopyscinski SL, Hengeveld PJ, Glassner BJ, Dhimolea E, Ott CJ, Zhang T, Kwiatkowski NP, Laubach JP, Schlossman RL, Richardson PG, Culhane AC, Groen RWJ, Fischer ES, Vazquez F, Tsherniak A, Hahn WC, Levy J, Auclair D, Licht JD, Keats JJ, Boise LH, Ebert BL, Bradner JE, Gray NS, Mitsiades CS. Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins. Cell Rep 2021; 34:108532. [PMID: 33406420 DOI: 10.1016/j.celrep.2020.108532] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 06/14/2019] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex. The substantial gene-level differences for resistance mechanisms to CRBN- versus VHL-based degraders explains mechanistically the lack of cross-resistance with sequential administration of these two degrader classes. Development of degraders leveraging more diverse E3 ligases/CRLs may facilitate sequential/alternating versus combined uses of these agents toward potentially delaying or preventing resistance.
Collapse
Affiliation(s)
- Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Geoffrey M Matthews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Dennis L Buckley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseline Raja Vora
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Quinlan L Sievers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Johanna B Brüggenthies
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Haley Poarch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huihui Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Megan A Bariteau
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Yiguo Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sondra L Downey-Kopyscinski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul J Hengeveld
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brian J Glassner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas P Kwiatkowski
- Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacob P Laubach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Robert L Schlossman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aedin C Culhane
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard W J Groen
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Eric S Fischer
- Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joan Levy
- Multiple Myeloma Research Foundation, Norwalk, CT, USA
| | | | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | | | - Lawrence H Boise
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathanael S Gray
- Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Zhou L, Yu W, Jayabalan DS, Niesvizky R, Jaffrey SR, Huang X, Xu G. Caspase-8 Inhibition Prevents the Cleavage and Degradation of E3 Ligase Substrate Receptor Cereblon and Potentiates Its Biological Function. Front Cell Dev Biol 2020; 8:605989. [PMID: 33392195 PMCID: PMC7773819 DOI: 10.3389/fcell.2020.605989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
Cereblon (CRBN), a substrate receptor of cullin 4-RING E3 ligase (CRL4), mediates the ubiquitination and degradation of constitutive substrates and immunomodulatory drug-induced neo-substrates including MEIS2, c-Jun, CLC1, IKZF1/3, CK1α, and SALL4. It has been reported that CRBN itself could be degraded through the ubiquitin-proteasome system by its associated or other cullin-RING E3 ligases, thus influencing its biological functions. However, it is unknown whether the CRBN stability and its biological function could be modulated by caspases. In this study, using model cell lines, we found that activation of the death receptor using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) leads to the decreased CRBN protein level. Through pharmacological inhibition and activation of caspase-8 (CASP-8), we disclosed that CASP-8 regulates CRBN cleavage in cell lines. Site mapping experiments revealed that CRBN is cleaved after Asp9 upon CASP-8 activation, resulting in the reduced stability. Using myeloma as a model system, we further revealed that either inhibition or genetic depletion of CASP-8 enhances the anti-myeloma activity of lenalidomide (Len) by impairing CRBN cleavage, leading to the attenuated IKZF1 and IKZF3 protein levels and the reduced viability of myeloma cell lines and primary myeloma cells from patients. The present study discovered that the stability of the substrate receptor of an E3 ligase can be modulated by CASP-8 and suggested that administration of CASP-8 inhibitors enhances the overall effectiveness of Len-based combination therapy in myeloma.
Collapse
Affiliation(s)
- Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wenjun Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - David S Jayabalan
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Ruben Niesvizky
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Xiangao Huang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Misiewicz-Krzeminska I, de Ramón C, Corchete LA, Krzeminski P, Rojas EA, Isidro I, García-Sanz R, Martínez-López J, Oriol A, Bladé J, Lahuerta JJ, San Miguel J, Rosiñol L, Mateos MV, Gutiérrez NC. Quantitative expression of Ikaros, IRF4, and PSMD10 proteins predicts survival in VRD-treated patients with multiple myeloma. Blood Adv 2020; 4:6023-6033. [PMID: 33284947 PMCID: PMC7724915 DOI: 10.1182/bloodadvances.2020002711] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The search for biomarkers based on the mechanism of drug action has not been thoroughly addressed in the therapeutic approaches to multiple myeloma (MM), mainly because of the difficulty in analyzing proteins obtained from purified plasma cells. Here, we investigated the prognostic impact of the expression of 12 proteins involved in the mechanism of action of bortezomib, lenalidomide, and dexamethasone (VRD), quantified by capillary nanoimmunoassay, in CD138-purified samples from 174 patients with newly diagnosed MM treated according to the PETHEMA/GEM2012 study. A high level of expression of 3 out of 5 proteasome components tested (PSMD1, PSMD4, and PSMD10) negatively influenced survival. The 5 analyzed proteins involved in lenalidomide's mode of action were associated with time to progression (TTP); low levels of cereblon and IRF4 protein and high levels of Ikaros, AGO2, and Aiolos were significantly associated with shorter TTP. Although the glucocorticoid receptor (GCR) level by itself had no significant impact on MM prognosis, a high XPO1 (exportin 1)/GCR ratio was associated with shorter TTP and progression-free survival (PFS). The multivariate Cox model identified high levels of PSMD10 (hazard ratio [HR] TTP, 3.49; P = .036; HR PFS, 5.33; P = .004) and Ikaros (HR TTP, 3.01, P = .014; HR PFS, 2.57; P = .028), and low levels of IRF4 protein expression (HR TTP, 0.33; P = .004; HR PFS, 0.35; P = .004) along with high-risk cytogenetics (HR TTP, 3.13; P < .001; HR PFS, 2.69; P = .002), as independently associated with shorter TTP and PFS. These results highlight the value of assessing proteins related to the mechanism of action of drugs used in MM for predicting treatment outcome.
Collapse
Affiliation(s)
- Irena Misiewicz-Krzeminska
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Cristina de Ramón
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Patryk Krzeminski
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Elizabeta A Rojas
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
| | - Isabel Isidro
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
| | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Joaquín Martínez-López
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Medicine Department, Complutense University, Madrid, Spain
- Hematology Department, Hospital 12 de Octubre, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Albert Oriol
- Hospital Germans Trias i Pujol, Barcelona, Spain
| | | | | | - Jesús San Miguel
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Clínica Universidad de Navarra, Centro de Investigaciones Médicas Aplicadas, Pamplona, Spain
| | | | - María-Victoria Mateos
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
| | - Norma C Gutiérrez
- Hematology Department, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, University of Salamanca-National Research Council (USAL-CSIC), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| |
Collapse
|
27
|
Van Oekelen O, Parekh S, Cho HJ, Vishnuvardhan N, Madduri D, Richter J, Ip C, Lau K, Florendo E, Mancia IS, Thomas J, Verina D, Chan E, Zarychta K, La L, Strumolo G, Melnekoff DT, Leshchenko VV, Kim-Schulze S, Couto S, Wang M, Pierceall WE, Thakurta A, Laganà A, Jagannath S, Chari A. A phase II study of pomalidomide, daily oral cyclophosphamide, and dexamethasone in relapsed/refractory multiple myeloma. Leuk Lymphoma 2020; 61:2208-2215. [DOI: 10.1080/10428194.2020.1805111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Samir Parekh
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hearn J. Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Deepu Madduri
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Richter
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chun Ip
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Lau
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erika Florendo
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ines S. Mancia
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanne Thomas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Verina
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elaine Chan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Lisa La
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gina Strumolo
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Suzana Couto
- Celgene Corporation, Translational Development and Diagnostics, Summit, NJ, USA
| | - Maria Wang
- Celgene Corporation, Translational Development and Diagnostics, Summit, NJ, USA
| | | | - Anjan Thakurta
- Celgene Corporation, Translational Development and Diagnostics, Summit, NJ, USA
| | | | | | - Ajai Chari
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
A452, HDAC6-selective inhibitor synergistically enhances the anticancer activity of immunomodulatory drugs in IMiDs-resistant multiple myeloma. Leuk Res 2020; 95:106398. [DOI: 10.1016/j.leukres.2020.106398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022]
|
29
|
Beedie SL, Huang PA, Harris EM, Strope JD, Mahony C, Chau CH, Vargesson N, Figg WD. Role of cereblon in angiogenesis and in mediating the antiangiogenic activity of immunomodulatory drugs. FASEB J 2020; 34:11395-11404. [PMID: 32677118 DOI: 10.1096/fj.201903060rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/11/2022]
Abstract
Cereblon (CRBN) is a substrate recruiter element of the E3 cullin 4-RING ubiquitin ligase complex, and a binding target of immunomodulatory agents (IMiDs). CRBN is responsible for the pleiotropic effects of IMiDs, yet its function in angiogenesis and in mediating the antiangiogenic effects of IMiDs remains unclear. We investigated the role of CRBN in the angiogenic process and in propagating the antiangiogenic effects of IMiDs in vitro. siRNA-mediated CRBN knock down in human endothelial cells (HUVEC and HMVEC-L), did not affect endothelial cell proliferation, migration, or tube formation. Using CRBN-deficient mice, we further demonstrated that microvessal formation can occur independently of cereblon in the ex vivo mouse aortic ring model. The cereblon E3 ubiquitin ligase complex can recruit endothelial cell-specific factors, AGO2 (associated with angiogenesis), and SALL4 (associated with embryogenesis/angiogenesis), for ubiquitin-mediated degradation. Knockdown of CRBN caused a corresponding increase in AGO2 and SALL4 protein expression and IMiD treatment was able to rescue the siCRBN effect to increase the CRBN expression. These findings suggest one potential mechanism of action that likely involves a tightly coordinated regulation of CRBN with endothelial cell targets and highlight the need to further elucidate the mechanism(s), which could include cereblon-independent pathways, through which IMiDs exert their antiangiogenic effects.
Collapse
Affiliation(s)
- Shaunna L Beedie
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Phoebe A Huang
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily M Harris
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Mahony
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Pál I, Szilágyi B, Nagy B, Pál T, Hodosi K, Illés Á, Váróczy L. The Impact of Beta-Catenin and glutathione-S-transferase Gene Polymorphisms on the Treatment Results and Survival of Multiple Myeloma Patients. Pathol Oncol Res 2020; 26:1633-1638. [PMID: 31506802 PMCID: PMC7297842 DOI: 10.1007/s12253-019-00747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) is an incurable disease, however, novel therapeutic agents has significantly improved its prognosis. In this study we analyzed if polymorphisms in the genes of β-catenin and glutathione-S-transferase have affected the clinical course, treatment response and progression-free survival (PFS) of MM patients. Ninety-seven MM patients were involved who were administered immunomodulatory drug (Imid) or alkylating agent-based therapy. β-catenin (CTNNB1, rs4135385 A > G, rs4533622 A > C) and glutathione-S-transferase (GSTP1 105, GSTP1 114) gene polymorphisms were analyzed by Light SNiP assays. The distribution of CTNNB1 (rs4135385) AA, AG and GG genotypes were 48.4%, 47.4% and 4,1%, respectively. Patients with AA genotype were older than those who carried G allele (64.5 vs. 61.0 years of age, p < 0.05). Response to Imid-based therapies (p < 0.05) and PFS (p = 0.032) were significantly more favourable in the AA homozygous group. The other polymorphism (rs4533622) of β-catenin gene did not markedly influence these clinical parameters, although MM was diagnosed at significantly younger age in subjects with CC genotype compared to AG/AA combined genotypes (59.1 vs. 65.7 years, p = 0.015). When GSTP1 polymorphisms were investigated, no such significant associations were observed. Our results demonstrate that the polymorphism of β-catenin gene (rs4135385) may be an independent predictive factor in MM.
Collapse
|
31
|
Li Y, Kassir N, Wang X, Palmisano M, Zhou S. Population Pharmacokinetics and Exposure Response Analysis of Pomalidomide in Subjects With Relapsed or Refractory Multiple Myeloma From the Novel Combination Treatment of Pomalidomide, Bortezomib, and Low-Dose Dexamethasone. J Clin Pharmacol 2020; 60:1061-1075. [PMID: 32168381 DOI: 10.1002/jcph.1602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 11/11/2022]
Abstract
Multiple myeloma is an incurable progressive neoplastic disease that accounts for 10% of all hematologic malignancies. Even though significant progress has been made in the treatment of newly diagnosed multiple myeloma, the disease follows a relapsing course in the majority of patients, and there is a need for more effective therapeutic options for the treatment of relapsed or refractory multiple myeloma. CC-4047-MM-005 and CC-4047-MM-007 were phase 1 and 3 studies to evaluate the novel combination of pomalidomide, bortezomib, and low-dose dexamethasone for the treatment of patients with relapsed or refractory multiple myeloma who have already received lenalidomide-based treatments early. This analysis was performed to characterize the population pharmacokinetics (PK) of pomalidomide from the combination treatment and to examine exposure-response relationships. Our analysis showed that pomalidomide concentration-time profiles from the combination treatment were adequately described with a 1-compartment PK model, with first-order absorption and elimination and pomalidomide exhibiting linear and time-invariant PK with moderate variability from the combination treatment. Except for the body surface area, none of the tested covariates had an effect on pomalidomide PK. Although body surface area was identified as a statistically significant covariate of pomalidomide PK, the impact was not deemed clinically relevant. A flat exposure-response curve was observed, consistent with a near-saturated drug effect at the tested exposure range suggesting an appropriately recommended clinical dose of 4 mg of pomalidomide for the combination treatment. Finally, pomalidomide exposure was not associated with higher probabilities of dose interruption during cycle 1 or dose reduction during the treatment period.
Collapse
Affiliation(s)
- Yan Li
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, New Jersey, USA
| | | | - Xiaomin Wang
- Non-Clinical Development, Celgene Corporation, Summit, New Jersey, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, New Jersey, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, New Jersey, USA
| |
Collapse
|
32
|
Iskierka-Jażdżewska E, Canzian F, Stępień A, Martino A, Campa D, Stein A, Krawczyk-Kuliś M, Rybicka-Ramos M, Kyrcz-Krzemień S, Butrym A, Mazur G, Jurczyszyn A, Zawirska D, Grząśko N, Tomczak W, Subocz E, Wątek M, Pasiarski M, Rymko M, Całbecka M, Druzd-Sitek A, Walewski J, Kruszewski M, Raźny M, Zaucha JM, Dudziński M, Gaj P, Robak T, Warzocha K, Jamroziak K. Cereblon ( CRBN) gene polymorphisms predict clinical response and progression-free survival in relapsed/refractory multiple myeloma patients treated with lenalidomide: a pharmacogenetic study from the IMMEnSE consortium. Leuk Lymphoma 2019; 61:699-706. [PMID: 31746254 DOI: 10.1080/10428194.2019.1689391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cereblon (CRBN) is crucial for antiproliferative and immunomodulatory properties of immunomodulatory drugs. The objective of this study was to verify whether germline single nucleotide polymorphisms (SNPs) in the CRBN gene may influence response to lenalidomide in multiple myeloma (MM). Fourteen tagging SNPs covering the genetic variability in the CRBN gene region were genotyped in 167 Polish patients with refractory/relapsed MM treated with lenalidomide-based regimens. We found that carriers of minor alleles of two studied CRBN SNPs rs1714327G > C (OR = 0.26; 95% CI = 0.1-0.67; p = .0055, Bonferroni corrected p = .033) and rs1705814T > C (OR = 0.22; 95% CI = 0.07-0.65; p = .0063, Bonferroni corrected p = .037) were significantly associated with lower probability of achievement at least partial remission while treated with lenalidomide-based regimens, using the dominant inheritance model. Moreover, one of these SNPs, namely rs1705814T > C, was correlated with shorter progression-free survival (HR = 2.49; 95%CI = 1.31-4.74, p = .0054, Bonferroni corrected p = .033). It is suggested that selected germline CRBN allelic variants (rs1714327G > C and rs1705814T > C) affect lenalidomide efficacy in patients with relapsed/refractory MM.
Collapse
Affiliation(s)
| | | | - Anna Stępień
- Laboratory of Clinical and Transplant Immunology and Genetics, Copernicus Memorial Hospital, Lodz, Poland
| | | | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Angelica Stein
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Jurczyszyn
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Daria Zawirska
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Norbert Grząśko
- Department of Haematology, Jagiellonian University Medical College, Cracow, Poland
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Marzena Wątek
- Department of Hematology, Holycross Cancer Center, Kielce, Poland
| | - Marcin Pasiarski
- Department of Hematology, Holycross Cancer Center, Kielce, Poland
| | - Marcin Rymko
- Department of Hematology, Copernicus Hospital, Torun, Poland
| | | | - Agnieszka Druzd-Sitek
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie Institute Oncology Centre, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie Institute Oncology Centre, Warsaw, Poland
| | | | - Małgorzata Raźny
- Department of Haematology, Rydygier Memorial Hospital, Cracow, Poland
| | - Jan Maciej Zaucha
- Department of Oncological Propaedeutics, Medical University of Gdansk, Gdansk, Poland.,Gdynia Oncology Center, Gdynia, Poland
| | | | - Paweł Gaj
- Laboratory of Human Cancer Genetics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tadeusz Robak
- Department of Hematology, Copernicus Memorial Hospital, Medical University, Lodz, Poland
| | - Krzysztof Warzocha
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
33
|
Huang PA, Beedie SL, Chau CH, Venzon DJ, Gere S, Kazandjian D, Korde N, Mailankody S, Landgren O, Figg WD. Cereblon gene variants and clinical outcome in multiple myeloma patients treated with lenalidomide. Sci Rep 2019; 9:14884. [PMID: 31619706 PMCID: PMC6795854 DOI: 10.1038/s41598-019-51446-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Carfilzomib-lenalidomide-dexamethasone (KRd) therapy has yielded promising results in patients with newly diagnosed multiple myeloma (NDMM). Cereblon (CRBN) is the direct molecular target of lenalidomide and genetic polymorphisms in CRBN have been associated with lenalidomide efficacy. In this study, we assessed the correlation of five single nucleotide variants (SNVs) in the CRBN gene with clinical response and outcomes in patients with NDMM administered KRd therapy with lenalidomide maintenance, achieving favorable trial endpoints in a prospective Phase II study (NCT01402284). Of the observed SNVs, no associations with KRd therapy response were found in this patient cohort, although strong trends in hypoalbuminemia grade and hyperbilirubinemia grade emerged across the CRBN rs1672753 genotype (P = 0.0008) and the rs1714327 genotype (P = 0.0010), respectively. Our results do not provide conclusive support for the predictive utility of CRBN gene polymorphisms as potential biomarkers of clinical response to lenalidomide-based therapy in our patient population. However, these findings remain to be validated in prospective studies using larger patient populations.
Collapse
Affiliation(s)
- Phoebe A Huang
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shaunna L Beedie
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cindy H Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD, USA
| | - Sheryl Gere
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dickran Kazandjian
- Myeloma Program, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
34
|
Sperling AS, Burgess M, Keshishian H, Gasser JA, Bhatt S, Jan M, Słabicki M, Sellar RS, Fink EC, Miller PG, Liddicoat BJ, Sievers QL, Sharma R, Adams DN, Olesinski EA, Fulciniti M, Udeshi ND, Kuhn E, Letai A, Munshi NC, Carr SA, Ebert BL. Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood 2019; 134:160-170. [PMID: 31043423 PMCID: PMC6624968 DOI: 10.1182/blood.2019000789] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacologic agents that modulate ubiquitin ligase activity to induce protein degradation are a major new class of therapeutic agents, active in a number of hematologic malignancies. However, we currently have a limited understanding of the determinants of activity of these agents and how resistance develops. We developed and used a novel quantitative, targeted mass spectrometry (MS) assay to determine the relative activities, kinetics, and cell-type specificity of thalidomide and 4 analogs, all but 1 of which are in clinical use or clinical trials for hematologic malignancies. Thalidomide analogs bind the CRL4CRBN ubiquitin ligase and induce degradation of particular proteins, but each of the molecules studied has distinct patterns of substrate specificity that likely underlie the clinical activity and toxicities of each drug. Our results demonstrate that the activity of molecules that induce protein degradation depends on the strength of ligase-substrate interaction in the presence of drug, the levels of the ubiquitin ligase, and the expression level of competing substrates. These findings highlight a novel mechanism of resistance to this class of drugs mediated by competition between substrates for access to a limiting pool of the ubiquitin ligase. We demonstrate that increased expression of a nonessential substrate can lead to decreased degradation of other substrates that are critical for antineoplastic activity of the drug, resulting in drug resistance. These studies provide general rules that govern drug-dependent substrate degradation and key differences between thalidomide analog activity in vitro and in vivo.
Collapse
Affiliation(s)
- Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Jessica A Gasser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Shruti Bhatt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Max Jan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Mikołaj Słabicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Translational Oncology, National Center for Tumor Diseases Heidelberg, German Cancer Research Center, Heidelberg, Germany; and
| | - Rob S Sellar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Emma C Fink
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Peter G Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brian J Liddicoat
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Quinlan L Sievers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Rohan Sharma
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
| | - Dylan N Adams
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
| | - Elyse A Olesinski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Eric Kuhn
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
35
|
Kint N, Vlayen S, Delforge M. The treatment of multiple myeloma in an era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1606672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nicolas Kint
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Sophie Vlayen
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Michel Delforge
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
37
|
SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol 2018; 14:981-987. [PMID: 30190590 DOI: 10.1038/s41589-018-0129-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/02/2018] [Indexed: 01/12/2023]
Abstract
Targeted protein degradation via small-molecule modulation of cereblon offers vast potential for the development of new therapeutics. Cereblon-binding therapeutics carry the safety risks of thalidomide, which caused an epidemic of severe birth defects characterized by forelimb shortening or phocomelia. Here we show that thalidomide is not teratogenic in transgenic mice expressing human cereblon, indicating that binding to cereblon is not sufficient to cause birth defects. Instead, we identify SALL4 as a thalidomide-dependent cereblon neosubstrate. Human mutations in SALL4 cause Duane-radial ray, IVIC, and acro-renal-ocular syndromes with overlapping clinical presentations to thalidomide embryopathy, including phocomelia. SALL4 is degraded in rabbits but not in resistant organisms such as mice because of SALL4 sequence variations. This work expands the scope of cereblon neosubstrate activity within the formerly 'undruggable' C2H2 zinc finger family and offers a path toward safer therapeutics through an improved understanding of the molecular basis of thalidomide-induced teratogenicity.
Collapse
|
38
|
Caers J, Garderet L, Kortüm KM, O'Dwyer ME, van de Donk NWCJ, Binder M, Dold SM, Gay F, Corre J, Beguin Y, Ludwig H, Larocca A, Driessen C, Dimopoulos MA, Boccadoro M, Gramatzki M, Zweegman S, Einsele H, Cavo M, Goldschmidt H, Sonneveld P, Delforge M, Auner HW, Terpos E, Engelhardt M. European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when. Haematologica 2018; 103:1772-1784. [PMID: 30171031 PMCID: PMC6278986 DOI: 10.3324/haematol.2018.189159] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/27/2018] [Indexed: 01/04/2023] Open
Abstract
The diagnosis of multiple myeloma can be challenging, even for experienced physicians, and requires close collaboration between numerous disciplines (orthopedics, radiology, nuclear medicine, radiation therapy, hematology and oncology) before the final diagnosis of myeloma is made. The definition of multiple myeloma is based on the presence of clinical, biochemical, histopathological, and radiological markers of disease. Specific tests are needed both at presentation and during follow-up in order to reach the correct diagnosis and characterize the disease precisely. These tests can also serve prognostic purposes and are useful for follow-up of myeloma patients. Molecular analyses remain pivotal for defining high-risk myeloma and are used in updated patient stratifications, while minimal residual disease assessment via flow cytometry, molecular techniques and radiological approaches provides additional prognostic information on patients' long-term outcome. This pivotal information will guide our future treatment decisions in forthcoming clinical trials. The European Myeloma Network group updated their guidelines on different diagnostic recommendations, which should be of value to enable appropriate use of the recommendations both at diagnosis and during follow-up.
Collapse
Affiliation(s)
- Jo Caers
- Department of Hematology, University Hospital of Liege, Belgium .,Laboratory of Hematology, GIGA-I3, University of Liège, Belgium
| | | | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital of Wuerzburg, Germany
| | - Michael E O'Dwyer
- Department of Hematology, National University of Ireland Galway, Ireland
| | | | - Mascha Binder
- Department of Internal Medicine II, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Maria Dold
- Department of Medicine I, Hematology, Oncology & Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Francesca Gay
- Department of Hematology-Oncology, University Hospital Città della Salute e della Scienza, Torino, Italy
| | - Jill Corre
- Unit for Genomics in Myeloma, Institut Universitaire du Cancer - Oncopole, Toulouse, France
| | - Yves Beguin
- Department of Hematology, University Hospital of Liege, Belgium.,Laboratory of Hematology, GIGA-I3, University of Liège, Belgium
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Alessandra Larocca
- Department of Hematology-Oncology, University Hospital Città della Salute e della Scienza, Torino, Italy
| | - Christoph Driessen
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, Switzerland
| | | | - Mario Boccadoro
- Department of Hematology-Oncology, University Hospital Città della Salute e della Scienza, Torino, Italy
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, University of Kiel, Germany
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, Germany
| | - Michele Cavo
- Seragnoli 'Institute of Hematology, Bologna University School of Medicine, Italy
| | - Hartmut Goldschmidt
- Department of Hematology, Rheumatology and Oncology, University Hospital Heidelberg, Germany.,National Center for Tumor Diseases, Heidelberg Medical University, Germany
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Michel Delforge
- Department of Hematology, University Hospital Leuven, Belgium
| | - Holger W Auner
- Centre for Haematology, Hammersmith Hospital, Imperial College London, UK
| | - Evangelos Terpos
- School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Monika Engelhardt
- Department of Medicine I, Hematology, Oncology & Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
39
|
Qian X, Dimopoulos MA, Amatangelo M, Bjorklund C, Towfic F, Flynt E, Weisel KC, Ocio EM, Yu X, Peluso T, Sternas L, Zaki M, Moreau P, Thakurta A. Cereblon gene expression and correlation with clinical outcomes in patients with relapsed/refractory multiple myeloma treated with pomalidomide: an analysis of STRATUS. Leuk Lymphoma 2018; 60:462-470. [PMID: 30068263 DOI: 10.1080/10428194.2018.1485915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We analyzed gene expression levels of CRBN, cMYC, IRF4, BLIMP1, and XBP1 in 224 patients with multiple myeloma treated with pomalidomide and low-dose dexamethasone in the STRATUS study (ClinicalTrials.gov: NCT01712789; EudraCT number: 2012-001888-78). Clinical responses were observed at all CRBN expression levels. A trend in progression-free survival (PFS; p = .038) and a potential trend in overall survival (OS; p = .059) favoring high CRBN expressers were observed; however, no notable difference in overall response rate (ORR) was observed. ORR (30%), median PFS (17.7 weeks), and median OS (52.3 weeks) in low-CRBN expressers were comparable to those in the STRATUS intent-to-treat population (ORR, 33%; median PFS, 20.0 weeks; median OS, 51.7 weeks). A trend in ORR (p = .050) favoring higher cMYC expressers was observed with no notable difference in PFS or OS. This analysis does not support exploring CRBN as a biomarker for selecting patients for pomalidomide therapy.
Collapse
Affiliation(s)
| | - Meletios A Dimopoulos
- b Department of Clinical Therapeutics, National and Kapodistrian University of Athens , Athens , Greece
| | | | | | | | - Erin Flynt
- a Celgene Corporation , Summit , NJ , USA
| | - Katja C Weisel
- c Department of Medicine, University Hospital of Tübingen , Tübingen , Germany
| | - Enrique M Ocio
- d Cancer Research Center (IBMCC-CSIC-USAL) , University Hospital of Salamanca-IBSAL , Salamanca , Spain
| | - Xin Yu
- a Celgene Corporation , Summit , NJ , USA
| | | | | | | | - Philippe Moreau
- e Hematology Department, University Hospital Hôtel-Dieu , Nantes , France
| | | |
Collapse
|
40
|
Donovan KA, An J, Nowak RP, Yuan JC, Fink EC, Berry BC, Ebert BL, Fischer ES. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 2018; 7:38430. [PMID: 30067223 PMCID: PMC6156078 DOI: 10.7554/elife.38430] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
In historical attempts to treat morning sickness, use of the drug thalidomide led to the birth of thousands of children with severe birth defects. Despite their teratogenicity, thalidomide and related IMiD drugs are now a mainstay of cancer treatment; however, the molecular basis underlying the pleiotropic biology and characteristic birth defects remains unknown. Here we show that IMiDs disrupt a broad transcriptional network through induced degradation of several C2H2 zinc finger transcription factors, including SALL4, a member of the spalt-like family of developmental transcription factors. Strikingly, heterozygous loss of function mutations in SALL4 result in a human developmental condition that phenocopies thalidomide-induced birth defects such as absence of thumbs, phocomelia, defects in ear and eye development, and congenital heart disease. We find that thalidomide induces degradation of SALL4 exclusively in humans, primates, and rabbits, but not in rodents or fish, providing a mechanistic link for the species-specific pathogenesis of thalidomide syndrome.
Collapse
Affiliation(s)
- Katherine A Donovan
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Jian An
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Radosław P Nowak
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Jingting C Yuan
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
| | - Emma C Fink
- Division of HematologyBrigham and Women’s HospitalBostonUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Bethany C Berry
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
| | - Benjamin L Ebert
- Division of HematologyBrigham and Women’s HospitalBostonUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Eric S Fischer
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| |
Collapse
|
41
|
Liu XP, He L, Zhang QP, Zeng XT, Liu SQ. Baicalein Inhibits Proliferation of Myeloma U266 Cells by Downregulating IKZF1 and IKZF3. Med Sci Monit 2018; 24:2809-2817. [PMID: 29729093 PMCID: PMC5958785 DOI: 10.12659/msm.907058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Baicalein can suppress the growth of multiple tumors, including multiple myeloma (MM), but the exact mechanisms remains elusive. Here, we investigated the exact mechanisms of the anti-myeloma activity of baicalein. MATERIAL AND METHODS Proliferation and rates of apoptosis of myeloma U266 cells exposed to baicalein were detected. Microarray, polymerase chain reaction (PCR) assay, and Western blot analysis were applied to evaluate the mRNA and protein levels of associated molecules. Survival analysis of IKZF1 and IKZF3 was conducted as well. RESULTS Baicalein suppressed the growth and stimulated apoptosis of myeloma U266 cells in a dose- and time-dependent way. Baicalein increased mRNA level of CRBN, and further studies suggested that baicalein downregulated IKZF1 and IKZF3 on a post-transcriptional level. Although the differences did not reach statistical significance, IKZF1 and IKZF3 were associated with poor overall survival. CONCLUSIONS Our results suggest that baicalein suppresses the growth and promotes apoptosis of myeloma U266 cells through downregulating IKZF1 and IKZF3. Baicalein increased the expression of CRBN, which might exert a reversion effect on resistance of IMiDs. MM patients in IKZF1 and IKZF3 low-expression groups had better overall survival than those in IKZF1 and IKZF3 high-expression groups. Thus, the present results indicate that baicalein might be a therapeutic choice for targeting IKZF1 and IKZF3.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Qiu-Ping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Shang-Qin Liu
- Department of Hematology, Zhongnan hospital of Wuhan University, , China (mainland)
| |
Collapse
|
42
|
Le Roy A, Prébet T, Castellano R, Goubard A, Riccardi F, Fauriat C, Granjeaud S, Benyamine A, Castanier C, Orlanducci F, Ben Amara A, Pont F, Fournié JJ, Collette Y, Mege JL, Vey N, Olive D. Immunomodulatory Drugs Exert Anti-Leukemia Effects in Acute Myeloid Leukemia by Direct and Immunostimulatory Activities. Front Immunol 2018; 9:977. [PMID: 29780393 PMCID: PMC5945824 DOI: 10.3389/fimmu.2018.00977] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are anticancer drugs with immunomodulatory, anti-angiogenesis, anti-proliferative, and pro-apoptotic properties. IMiDs are currently used for the treatment of multiple myeloma, myelodysplastic syndrome, and B-cell lymphoma; however, little is known about efficacy in acute myeloid leukemia (AML). We proposed in this study to investigate the relevance of IMiDs therapy for AML treatment. We evaluated the effect of IMiDs on primary AML blasts (n = 24), and the impact in natural killer (NK) cell-mediated immunosurveillance of AML. Using primary AML cells and an immunodeficient mouse leukemia xenograft model, we showed that IMiDs induce AML cell death in vitro and impair leukemia progression in vivo. In addition, treatment of AML blasts with IMiDs resulted in enhanced allogeneic NK cell anti-leukemia reactivity. Treatment by pomalidomide of AML blasts enhanced lysis, degranulation, and cytokine production by primary allogeneic NK cells. Furthermore, the treatment with lenalidomide of patients with myeloid malignancies resulted in NK cell phenotypic changes similar to those observed in vitro. IMiDs increased CD56 and decreased NKp30, NKp46, and KIR2D expression on NK cells. Finally, AML blasts treatment with IMiDs induced phenotypic alterations including downregulation of HLA-class I. The effect of pomalidomide was not correlated with cereblon expression and A/G polymorphism in AML cells. Our data revealed, a yet unobserved, dual effects on AML affecting both AML survival and their sensitivity to NK immunotherapy using IMiDs. Our study encourages continuing investigation for the use of IMiDs in AML, especially in combination with conventional therapy or immunotherapy strategies.
Collapse
Affiliation(s)
- Aude Le Roy
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Thomas Prébet
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, United States
| | - Rémy Castellano
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Armelle Goubard
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Florence Riccardi
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Cyril Fauriat
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- CiBi Platform, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Audrey Benyamine
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Céline Castanier
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Florence Orlanducci
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Frédéric Pont
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM/Université Toulouse III Paul Sabatier/ERL5294 CNRS, Oncopole de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM/Université Toulouse III Paul Sabatier/ERL5294 CNRS, Oncopole de Toulouse, Toulouse, France
| | - Yves Collette
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and infections (MEPHI), IHU Méditerranée Infection, Marseille, France
| | - Norbert Vey
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Hematology Department, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
43
|
Dimopoulos K, Fibiger Munch-Petersen H, Winther Eskelund C, Dissing Sjö L, Ralfkiaer E, Gimsing P, Grønbaek K. Expression of CRBN, IKZF1, and IKZF3 does not predict lenalidomide sensitivity and mutations in the cereblon pathway are infrequent in multiple myeloma. Leuk Lymphoma 2018; 60:180-188. [DOI: 10.1080/10428194.2018.1466290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | | | | | - Lene Dissing Sjö
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | - Elisabeth Ralfkiaer
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | - Peter Gimsing
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
44
|
Łacina P, Butrym A, Mazur G, Bogunia-Kubik K. BSG and MCT1 Genetic Variants Influence Survival in Multiple Myeloma Patients. Genes (Basel) 2018; 9:genes9050226. [PMID: 29695106 PMCID: PMC5977166 DOI: 10.3390/genes9050226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple myeloma (MM) is a haematologic malignancy characterized by the presence of atypical plasma cells. Basigin (BSG, CD147) controls lactate export through the monocarboxylic acid transporter 1 (MCT1, SLC16A1) and supports MM survival and proliferation. Additionally, BSG is implicated in response to treatment with immunomodulatory drugs (thalidomide and its derivatives). We investigated the role of single nucleotide polymorphisms (SNPs) in the gene coding for BSG and SLC16A1 in MM. Following an in silico analysis, eight SNPs (four in BSG and four in SLC16A1) predicted to have a functional effect were selected and analyzed in 135 MM patients and 135 healthy individuals. Alleles rs4919859 C, rs8637 G, and haplotype CG were associated with worse progression-free survival (p = 0.006, p = 0.017, p = 0.002, respectively), while rs7556664 A, rs7169 T and rs1049434 A (all in linkage disequilibrium (LD), r² > 0.98) were associated with better overall survival (p = 0.021). Similar relationships were observed in thalidomide-treated patients. Moreover, rs4919859 C, rs8637 G, rs8259 A and the CG haplotype were more common in patients in stages II⁻III of the International Staging System (p < 0.05), while rs8259 A correlated with higher levels of β-2-microglobulin and creatinine (p < 0.05). Taken together, our results show that BSG and SLC16A1 variants affect survival, and may play an important role in MM.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Aleksandra Butrym
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| |
Collapse
|
45
|
Franssen LE, Nijhof IS, Couto S, Levin MD, Bos GMJ, Broijl A, Klein SK, Ren Y, Wang M, Koene HR, Bloem AC, Beeker A, Faber LM, van der Spek E, Raymakers R, Leguit RJ, Sonneveld P, Zweegman S, Lokhorst H, Mutis T, Thakurta A, Qian X, van de Donk NWCJ. Cereblon loss and up-regulation of c-Myc are associated with lenalidomide resistance in multiple myeloma patients. Haematologica 2018; 103:e368-e371. [PMID: 29545338 DOI: 10.3324/haematol.2017.186601] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Inger S Nijhof
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Suzana Couto
- Department of Exploratory Toxicology, Celgene, San Diego, CA, USA
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Gerard M J Bos
- Department of Hematology, Maastricht University Medical Center, the Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Saskia K Klein
- Department of Internal Medicine, Meander Medical Center, Amersfoort, the Netherlands
| | - Yan Ren
- Department of Exploratory Toxicology, Celgene, San Diego, CA, USA
| | - Maria Wang
- Department of Exploratory Toxicology, Celgene, San Diego, CA, USA
| | - Harry R Koene
- Department of Hematology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Andries C Bloem
- Laboratory for Translational Immunology, University Medical Center Utrecht, the Netherlands
| | - Aart Beeker
- Department of Internal Medicine, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Laura M Faber
- Department of Internal Medicine, Rode Kruis Hospital, Beverwijk, the Netherlands
| | - Ellen van der Spek
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, the Netherlands
| | - Reinier Raymakers
- Department of Hematology, University Medical Center Utrecht Cancer Center, the Netherlands
| | - Roos J Leguit
- Department of Pathology, University Medical Center Utrecht, the Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Henk Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tuna Mutis
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Anjan Thakurta
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Xiaozhong Qian
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | | |
Collapse
|
46
|
Misiewicz-Krzeminska I, Corchete LA, Rojas EA, Martínez-López J, García-Sanz R, Oriol A, Bladé J, Lahuerta JJ, Miguel JS, Mateos MV, Gutiérrez NC. A novel nano-immunoassay method for quantification of proteins from CD138-purified myeloma cells: biological and clinical utility. Haematologica 2018; 103:880-889. [PMID: 29545347 PMCID: PMC5927993 DOI: 10.3324/haematol.2017.181628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022] Open
Abstract
Protein analysis in bone marrow samples from patients with multiple myeloma has been limited by the low concentration of proteins obtained after CD138+ cell selection. A novel approach based on capillary nano-immunoassay could make it possible to quantify dozens of proteins from each myeloma sample in an automated manner. Here we present a method for the accurate and robust quantification of the expression of multiple proteins extracted from CD138-purified multiple myeloma samples frozen in RLT Plus buffer, which is commonly used for nucleic acid preservation and isolation. Additionally, the biological and clinical value of this analysis for a panel of 12 proteins essential to the pathogenesis of multiple myeloma was evaluated in 63 patients with newly diagnosed multiple myeloma. The analysis of the prognostic impact of CRBN/Cereblon and IKZF1/Ikaros mRNA/protein showed that only the protein levels were able to predict progression-free survival of patients; mRNA levels were not associated with prognosis. Interestingly, high levels of Cereblon and Ikaros proteins were associated with longer progression-free survival only in patients who received immunomodulatory drugs and not in those treated with other drugs. In conclusion, the capillary nano-immunoassay platform provides a novel opportunity for automated quantification of the expression of more than 20 proteins in CD138+ primary multiple myeloma samples.
Collapse
Affiliation(s)
- Irena Misiewicz-Krzeminska
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Spain.,National Medicines Institute, Warsaw, Poland
| | - Luis Antonio Corchete
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - Elizabeta A Rojas
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital 12 de Octubre, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Ramón García-Sanz
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Spain.,Hospital Universitario de Salamanca, CIBERONC, Spain
| | - Albert Oriol
- Hospital Germans Trias i Pujol, Barcelona, Spain
| | | | | | - Jesús San Miguel
- Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - María-Victoria Mateos
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Spain.,Hospital Universitario de Salamanca, CIBERONC, Spain
| | - Norma C Gutiérrez
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain .,Institute of Biomedical Research of Salamanca (IBSAL), Spain.,Hospital Universitario de Salamanca, CIBERONC, Spain
| |
Collapse
|
47
|
Akuffo AA, Alontaga AY, Metcalf R, Beatty MS, Becker A, McDaniel JM, Hesterberg RS, Goodheart WE, Gunawan S, Ayaz M, Yang Y, Karim MR, Orobello ME, Daniel K, Guida W, Yoder JA, Rajadhyaksha AM, Schönbrunn E, Lawrence HR, Lawrence NJ, Epling-Burnette PK. Ligand-mediated protein degradation reveals functional conservation among sequence variants of the CUL4-type E3 ligase substrate receptor cereblon. J Biol Chem 2018; 293:6187-6200. [PMID: 29449372 DOI: 10.1074/jbc.m117.816868] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function.
Collapse
Affiliation(s)
- Afua A Akuffo
- From the Department of Immunology.,the Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida 33612
| | | | | | | | | | | | - Rebecca S Hesterberg
- From the Department of Immunology.,the Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida 33612
| | | | - Steven Gunawan
- the Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Muhammad Ayaz
- the Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | | | - Md Rezaul Karim
- the Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | | | | | | | - Jeffrey A Yoder
- the Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, and
| | - Anjali M Rajadhyaksha
- Pediatric Neurology, Pediatrics, Brain and Mind Research Institute, Graduate Program in Neuroscience, Weill Cornell Medicine, Molecular and Developmental Neuroscience Laboratory, New York, New York 10065
| | - Ernst Schönbrunn
- the Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | | | - Nicholas J Lawrence
- the Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | | |
Collapse
|
48
|
Dimopoulos K, Søgaard Helbo A, Fibiger Munch-Petersen H, Sjö L, Christensen J, Sommer Kristensen L, Asmar F, Hermansen NEU, O'Connel C, Gimsing P, Liang G, Grønbaek K. Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a cereblon-independent manner. Mol Oncol 2017; 12:180-195. [PMID: 29130642 PMCID: PMC5792743 DOI: 10.1002/1878-0261.12157] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Thalidomide and its derivatives, lenalidomide and pomalidomide (also known as IMiDs), have significantly changed the treatment landscape of multiple myeloma, and the recent discovery of cereblon (CRBN) as their direct biological target has led to a deeper understanding of their complex mechanism of action. In an effort to comprehend the precise mechanisms behind the development of IMiD resistance and examine whether it is potentially reversible, we established lenalidomide‐resistant (‐LR) and pomalidomide‐resistant (‐PR) human myeloma cell lines from two IMiD‐sensitive cell lines, OPM2 and NCI‐H929, by continuous culture in the presence of lenalidomide or pomalidomide for 4–6 months, until acquirement of stable resistance. By assessing genome‐wide DNA methylation and chromatin accessibility in these cell lines, we found that acquired IMiD resistance is associated with an increase in genome‐wide DNA methylation and an even greater reduction in chromatin accessibility. Transcriptome analysis confirmed that resistant cell lines are mainly characterized by a reduction in gene expression, identifying SMAD3 as a commonly downregulated gene in IMiD‐resistant cell lines. Moreover, we show that these changes are potentially reversible, as combination of 5‐azacytidine and EPZ‐6438 not only restored the observed accessibility changes and the expression of SMAD3, but also resensitized the resistant cells to both lenalidomide and pomalidomide. Interestingly, the resensitization process was independent of CRBN. Our data suggest that simultaneous inhibition of DNA methyl transferases and EZH2 leads to an extensive epigenetic reprogramming which allows myeloma cells to (re)gain sensitivity to IMiDs.
Collapse
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Alexandra Søgaard Helbo
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | | - Lene Sjö
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Jesper Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | | | - Casey O'Connel
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter Gimsing
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Gangning Liang
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| |
Collapse
|
49
|
Mouse Monoclonal Antibodies Generated from Full Length Human Cereblon: Detection of Cereblon Protein in Patients with Multiple Myeloma. Int J Mol Sci 2017; 18:ijms18091999. [PMID: 28926977 PMCID: PMC5618648 DOI: 10.3390/ijms18091999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/18/2023] Open
Abstract
Immunomodulatory drugs (IMiDs) are profoundly active compounds in the treatment of patients with multiple myeloma (MM). However, despite the fact that treatment with IMiDs has dramatically improved survival for patients with MM, the majority of MM patients develop IMiDs resistance over time. We have found that expression of functional cereblon is required for IMiDs' action. In addition, it has been reported that cells expressing high levels of cereblon are resistant to proteasome inhibitor, implying that patients with high levels of cereblon should be resistant to proteasome inhibitor. If the above conclusions are correct, cereblon could be considered as a biomarker to determine which standard regimens should be used to treat patients with MM. Unfortunately, the conclusions mentioned above have not been clinically confirmed. In order to confirm these conclusions, we have generated three highly specific mouse monoclonal antibodies (mAbs) against full-length human cereblon. These mAbs can be used to do western blot, immunoprecipitation and immunohistochemistry staining. In addition, their epitopes have been precisely determined and the peptides covering their epitopes completely blocked the antibody binding to cereblon in western blot analysis or in immunohistochemistry staining of MM patients' specimens.
Collapse
|
50
|
Sebastian S. IMiD-induced gene expression profiling predicts multiple myeloma prognosis. Lancet Haematol 2017; 4:e406-e407. [PMID: 28863799 DOI: 10.1016/s2352-3026(17)30153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Sinto Sebastian
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|