1
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Boccellato C, Rehm M. TRAIL-induced apoptosis and proteasomal activity - Mechanisms, signalling and interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119688. [PMID: 38368955 DOI: 10.1016/j.bbamcr.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies. This review provides detailed insights into the complex signalling of TRAIL-induced pathways and the activities of the proteasome. It explores their core mechanisms of action, pharmaceutical druggability, and describes how their interplay can be strategically leveraged to enhance cell death responses in cancer cells. Offering this comprehensive and timely overview will allow to navigate the complexity of the processes governing cell death mechanisms in TRAIL- and proteasome inhibitor-based treatment conditions.
Collapse
Affiliation(s)
- Chiara Boccellato
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany.
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart 70569, Germany.
| |
Collapse
|
3
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
4
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Tang G, Huang S, Luo J, Wu Y, Zheng S, Tong R, Zhong L, Shi J. Advances in research on potential inhibitors of multiple myeloma. Eur J Med Chem 2023; 262:115875. [PMID: 37879169 DOI: 10.1016/j.ejmech.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Collapse
Affiliation(s)
- Guoyuan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ji Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yingmiao Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Shuai Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Rongsheng Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610044, China.
| | - Jianyou Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
6
|
Vulin M, Zhong Y, Maloney BJ, Bauer B, Hartz AMS. Proteasome inhibition protects blood-brain barrier P-glycoprotein and lowers Aβ brain levels in an Alzheimer's disease model. Fluids Barriers CNS 2023; 20:70. [PMID: 37803468 PMCID: PMC10559617 DOI: 10.1186/s12987-023-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Loss of P-glycoprotein (P-gp) at the blood-brain barrier contributes to amyloid-β (Aβ) brain accumulation in Alzheimer's disease (AD). Using transgenic human amyloid precursor protein (hAPP)-overexpressing mice (Tg2576), we previously showed that Aβ triggers P-gp loss by activating the ubiquitin-proteasome pathway, which leads to P-gp degradation. Furthermore, we showed that inhibiting the ubiquitin-activating enzyme (E1) prevents P-gp loss and lowers Aβ accumulation in the brain of hAPP mice. Based on these data, we hypothesized that repurposing the FDA-approved proteasome inhibitor, bortezomib (Velcade®; BTZ), protects blood-brain barrier P-gp from degradation in hAPP mice in vivo. METHODS We treated hAPP mice with the proteasome inhibitor BTZ or a combination of BTZ with the P-gp inhibitor cyclosporin A (CSA) for 2 weeks. Vehicle-treated wild-type (WT) mice were used as a reference for normal P-gp protein expression and transport activity. In addition, we used the opioid receptor agonist loperamide as a P-gp substrate in tail flick assays to indirectly assess P-gp transport activity at the blood-brain barrier in vivo. We also determined P-gp protein expression by Western blotting, measured P-gp transport activity levels in isolated brain capillaries with live cell confocal imaging and assessed Aβ plasma and brain levels with ELISA. RESULTS We found that 2-week BTZ treatment of hAPP mice restored P-gp protein expression and transport activity in brain capillaries to levels found in WT mice. We also observed that hAPP mice displayed significant loperamide-induced central antinociception compared to WT mice indicating impaired P-gp transport activity at the blood-brain barrier of hAPP mice in vivo. Furthermore, BTZ treatment prevented loperamide-induced antinociception suggesting BTZ protected P-gp loss in hAPP mice. Further, BTZ-treated hAPP mice had lower Aβ40 and Aβ42 brain levels compared to vehicle-treated hAPP mice. CONCLUSIONS Our data indicate that BTZ protects P-gp from proteasomal degradation in hAPP mice, which helps to reduce Aβ brain levels. Our data suggest that the proteasome system could be exploited for a novel therapeutic strategy in AD, particularly since increasing Aβ transport across the blood-brain barrier may prove an effective treatment for patients.
Collapse
Affiliation(s)
- Milica Vulin
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA
| | - Yu Zhong
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA
| | - Bryan J Maloney
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 124 Healthy Kentucky Research Building 760 Press Avenue, Lexington, KY, 40508, USA.
| |
Collapse
|
7
|
Jane EP, Reslink MC, Gatesman TA, Halbert ME, Miller TA, Golbourn BJ, Casillo SM, Mullett SJ, Wendell SG, Obodo U, Mohanakrishnan D, Dange R, Michealraj A, Brenner C, Agnihotri S, Premkumar DR, Pollack IF. Targeting mitochondrial energetics reverses panobinostat- and marizomib-induced resistance in pediatric and adult high-grade gliomas. Mol Oncol 2023; 17:1821-1843. [PMID: 37014128 PMCID: PMC10483615 DOI: 10.1002/1878-0261.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
In previous studies, we demonstrated that panobinostat, a histone deacetylase inhibitor, and bortezomib, a proteasomal inhibitor, displayed synergistic therapeutic activity against pediatric and adult high-grade gliomas. Despite the remarkable initial response to this combination, resistance emerged. Here, in this study, we aimed to investigate the molecular mechanisms underlying the anticancer effects of panobinostat and marizomib, a brain-penetrant proteasomal inhibitor, and the potential for exploitable vulnerabilities associated with acquired resistance. RNA sequencing followed by gene set enrichment analysis (GSEA) was employed to compare the molecular signatures enriched in resistant compared with drug-naïve cells. The levels of adenosine 5'-triphosphate (ATP), nicotinamide adenine dinucleotide (NAD)+ content, hexokinase activity, and tricarboxylic acid (TCA) cycle metabolites required for oxidative phosphorylation to meet their bioenergetic needs were analyzed. Here, we report that panobinostat and marizomib significantly depleted ATP and NAD+ content, increased mitochondrial permeability and reactive oxygen species generation, and promoted apoptosis in pediatric and adult glioma cell lines at initial treatment. However, resistant cells exhibited increased levels of TCA cycle metabolites, which required for oxidative phosphorylation to meet their bioenergetic needs. Therefore, we targeted glycolysis and the electron transport chain (ETC) with small molecule inhibitors, which displayed substantial efficacy, suggesting that resistant cell survival is dependent on glycolytic and ETC complexes. To verify these observations in vivo, lonidamine, an inhibitor of glycolysis and mitochondrial function, was chosen. We produced two diffuse intrinsic pontine glioma (DIPG) models, and lonidamine treatment significantly increased median survival in both models, with particularly dramatic effects in panobinostat- and marizomib-resistant cells. These data provide new insights into mechanisms of treatment resistance in gliomas.
Collapse
Affiliation(s)
- Esther P. Jane
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew C. Reslink
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Taylor A. Gatesman
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Matthew E. Halbert
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Tracy A. Miller
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Brian J. Golbourn
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Stephanie M. Casillo
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical BiologyUniversity of PittsburghPAUSA
| | - Udochukwu Obodo
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | | | - Riya Dange
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Antony Michealraj
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
| | - Charles Brenner
- Department of Diabetes & Cancer MetabolismCity of Hope Medical CenterDuarteCAUSA
| | - Sameer Agnihotri
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Daniel R. Premkumar
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| | - Ian F. Pollack
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePAUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPAUSA
- UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
8
|
Anders HJ, Kitching AR, Leung N, Romagnani P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat Rev Immunol 2023; 23:453-471. [PMID: 36635359 PMCID: PMC9838307 DOI: 10.1038/s41577-022-00816-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/14/2023]
Abstract
'Glomerulonephritis' (GN) is a term used to describe a group of heterogeneous immune-mediated disorders characterized by inflammation of the filtration units of the kidney (the glomeruli). These disorders are currently classified largely on the basis of histopathological lesion patterns, but these patterns do not align well with their diverse pathological mechanisms and hence do not inform optimal therapy. Instead, we propose grouping GN disorders into five categories according to their immunopathogenesis: infection-related GN, autoimmune GN, alloimmune GN, autoinflammatory GN and monoclonal gammopathy-related GN. This categorization can inform the appropriate treatment; for example, infection control for infection-related GN, suppression of adaptive immunity for autoimmune GN and alloimmune GN, inhibition of single cytokines or complement factors for autoinflammatory GN arising from inborn errors in innate immunity, and plasma cell clone-directed or B cell clone-directed therapy for monoclonal gammopathies. Here we present the immunopathogenesis of GN and immunotherapies in use and in development and discuss how an immunopathogenesis-based GN classification can focus research, and improve patient management and teaching.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
9
|
Abramson HN. Recent Advances in the Applications of Small Molecules in the Treatment of Multiple Myeloma. Int J Mol Sci 2023; 24:2645. [PMID: 36768967 PMCID: PMC9917049 DOI: 10.3390/ijms24032645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Therapy for multiple myeloma (MM), a hematologic neoplasm of plasma cells, has undergone remarkable changes over the past 25 years. Small molecules (molecular weight of less than one kDa), together with newer immunotherapies that include monoclonal antibodies, antibody-drug conjugates, and most recently, chimeric antigen receptor (CAR) T-cells, have combined to double the disease's five-year survival rate to over 50% during the past few decades. Despite these advances, the disease is still considered incurable, and its treatment continues to pose substantial challenges, since therapeutic refractoriness and patient relapse are exceedingly common. This review focuses on the current pipeline, along with the contemporary roles and future prospects for small molecules in MM therapy. While small molecules offer prospective benefits in terms of oral bioavailability, cellular penetration, simplicity of preparation, and improved cost-benefit considerations, they also pose problems of toxicity due to off-target effects. Highlighted in the discussion are recent developments in the applications of alkylating agents, immunomodulators, proteasome inhibitors, apoptosis inducers, kinesin spindle protein inhibitors, blockers of nuclear transport, and drugs that affect various kinases involved in intracellular signaling pathways. Molecular and cellular targets are described for each class of agents in relation to their roles as drivers of MM.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
11
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
12
|
Zhang Z, Zhang S, Lin B, Wang Q, Nie X, Shi Y. Combined treatment of marizomib and cisplatin modulates cervical cancer growth and invasion and enhances antitumor potential in vitro and in vivo. Front Oncol 2022; 12:974573. [PMID: 36110967 PMCID: PMC9468930 DOI: 10.3389/fonc.2022.974573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Proteasome inhibition is an attractive approach for anticancer therapy. Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used as a standard chemotherapy drug in the treatment of solid malignant tumors, such as cervical cancer, ovarian cancer, colorectal cancer, and lung cancer. However, the development of CDDP resistance largely limits its clinical application. Proteasome inhibitors may enhance traditional chemotherapy agent-induced cytotoxicity and apoptosis. Marizomib (NPI-0052, salinosporamide A, Mzb), a second-generation proteasome inhibitor, shows synergistic anticancer activity with some drugs. Currently, the effect of Mzb on cervical cancer cell proliferation remains unclear. In this study, we explored the role of Mzb in three cervical cancer cell lines, HeLa, CaSki, and C33A, representing major molecular subtypes of cervical cancer and xenografts. We found that Mzb alone showed noteworthy cytotoxic effects, and its combination with CDDP resulted in more obvious cytotoxicity and apoptosis in cervical cancer cell lines and xenografts. In order to investigate the mechanism of this effect, we probed whether Mzb alone or in combination with CDDP had a better antitumor response by enhancing CDDP-induced angiopoietin 1 (Ang-1) expression and inhibiting the expression of TEK receptor tyrosine kinase (Tie-2) in the Ang-1/Tie-2 pathway, FMS-like tyrosine kinase 3 ligand (Flt-3L) and stem cell factor (SCF) as identified by a cytokine antibody chip test. The results suggest that Mzb has better antitumor effects on cervical cancer cells and can sensitize cervical cancer cells to CDDP treatment both in vitro and in vivo. Accordingly, we conclude that the combination of CDDP with Mzb produces synergistic anticancer activity and that Mzb may be a potential effective drug in combination therapy for cervical cancer patients.
Collapse
Affiliation(s)
- Ziruizhuo Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Songcheng Zhang
- Department of Pediatrics, Nanyang Chinese Medicine Hospital, Nanyang, Henan, China
| | - Bingjie Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qixin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
- *Correspondence: Yonghua Shi,
| |
Collapse
|
13
|
Capalbo A, Lauritano C. Multiple Myeloma: Possible Cure from the Sea. Cancers (Basel) 2022; 14:cancers14122965. [PMID: 35740630 PMCID: PMC9220879 DOI: 10.3390/cancers14122965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) is a complex white blood cell (plasma cell, PC) cancer. The aetiology of MM is still unknown, and it is still an incurable disease despite efforts by the scientific community. The high level of PC genetic heterogeneity renders MM a complex puzzle to be solved. Combinations of drugs are generally used to treat MM patients, with a general increase in overall survival. Relapsed and refractory MM patients are the generation of patients who resist or do not respond to first-line therapy and need additional treatments. Exploring new sources, such as marine organisms, for drug discovery is fundamental to fighting MM. Various studies have shown that marine natural products (MNPs) might have antiproliferative and cancer-specific cytotoxic properties, giving MNPs a pivotal role in anticancer drug discovery. This review recaps updated frontline treatment options, including new ones developed from MNP research. Abstract Multiple myeloma (MM) is a blood cancer that occurs in the plasma cells (PCs), a type of white blood cell. Despite the progress of several current treatments that prolong the overall patient’s survival, most MM cases are incurable. For this reason, many efforts have been undertaken by the scientific community in the search for new treatments. BLENREPTM and Aplidin® are two marine-derived drugs currently in use for MM. In addition, other natural products have been identified from marine organisms, tested for their possible anticancer properties, and are in preclinical or clinical trials for MM, including cytarabine, a compound in use for leukaemia treatment. Between the most successful marine compounds in fighting MM, there are molecules with specific targets, such as the elongation factor 1-alpha 2 and proteasome inhibitors, and compounds conjugated with antibodies that recognise specific cell types and direct the drug to the correct cell target. Active compounds belong to different chemical classes, from cyclic peptides to alkaloids, highlighting the importance of screening the plethora of compounds produced by marine organisms. In this review, we summarise the current state of art of MM therapies focusing on the marine natural product emerging roles.
Collapse
|
14
|
Wagdy RA, Chen PJ, Hamed MM, Darwish SS, Chen SH, Abadi AH, Abdel-Halim M, Hwan TL, Engel M. From EGFR kinase inhibitors to anti-inflammatory drugs: Optimization and biological evaluation of (4-(phenylamino)quinazolinyl)-phenylthiourea derivatives as novel NF-κB inhibitors. Bioorg Chem 2022; 127:105977. [DOI: 10.1016/j.bioorg.2022.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
15
|
Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091543. [PMID: 35563849 PMCID: PMC9099509 DOI: 10.3390/cells11091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis.
Collapse
|
16
|
Proteasome Inhibitors Decrease the Viability of Pulmonary Arterial Smooth Muscle Cells by Restoring Mitofusin-2 Expression under Hypoxic Conditions. Biomedicines 2022; 10:biomedicines10040873. [PMID: 35453623 PMCID: PMC9030547 DOI: 10.3390/biomedicines10040873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe progressive disease, and the uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the main causes. Mitofusin-2 (MFN2) profoundly inhibits cell growth and proliferation in a variety of tumor cell lines and rat vascular smooth muscle cells. Down-regulation of MFN2 is known to contribute to PH. Proteasome inhibitors have been shown to inhibit the proliferation of PASMCs; however, there is no study on the regulation of proteasome inhibitors through MFN-2 in the proliferation of PASMCs, a main pathophysiology of PH. In this study, PASMCs were exposed to hypoxic conditions and the expression of MFN2 and cleaved-PARP1 were detected by Western blotting. The effects of hypoxia and proteasome inhibitors on the cell viability of PASMC cells were detected by CCK8 assay. The results indicated that hypoxia increases the viability and reduces the expression of MFN2 in a PASMCs model. MFN2 overexpression inhibits the hypoxia-induced proliferation of PASMCs. In addition, proteasome inhibitors, bortezomib and marizomib, restored the decreased expression of MFN2 under hypoxic conditions, inhibited hypoxia-induced proliferation and induced the expression of cleaved-PARP1. These results suggest that bortezomib and marizomib have the potential to improve the hypoxia-induced proliferation of PASMCs by restoring MFN2 expression.
Collapse
|
17
|
Sin CF, Man PHM. The Role of Proteasome Inhibitors in Treating Acute Lymphoblastic Leukaemia. Front Oncol 2022; 11:802832. [PMID: 35004327 PMCID: PMC8733464 DOI: 10.3389/fonc.2021.802832] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematolymphoid malignancy. The prognosis of ALL is excellent in paediatric population, however the outcome of relapse/refractory disease is dismal. Adult ALL has less favourable prognosis and relapse/refractory disease is not uncommonly encountered. Bortezomib is the first generation proteasome inhibitor licensed to treat plasma cell myeloma and mantle cell lymphoma with favourable side effect profile. Efficacy of bortezomib had been proven in other solid tumors. Clinical studies showed promising response for proteasome inhibitors in treating relapse/refractory ALL. Thus, proteasome inhibitors are attractive alternative agents for research in treating ALL. In the review article, we will introduce different proteasome inhibitors and their difference in pharmacological properties. Moreover, the mechanism of action of proteasome inhibitors on ALL will be highlighted. Finally, results of various clinical studies on proteasome inhibitors in both paediatric and adult ALL will be discussed. This review article provides the insights on the use of proteasome inhibitors in treating ALL with a summary of mechanism of action in ALL which facilitates future research on its use to improve the outcome of ALL.
Collapse
Affiliation(s)
- Chun-Fung Sin
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pui-Hei Marcus Man
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Wu J, Liu J. Research progress in proteasome inhibitor resistance to multiple myeloma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:900-908. [PMID: 34565737 PMCID: PMC10929973 DOI: 10.11817/j.issn.1672-7347.2021.200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/03/2022]
Abstract
Multiple myeloma (MM) is a highly heterogeneous malignant plasma cell disease. Proteasome inhibitors (PIs) are the first line of medicine for MM. Bortezomib, ixazomib, and carfilzomib are also widely used for MM. Marizomib, oprozomib, and KZR-616 are in clinical trials. However, the drug resistance of PIs in MM is still a problem. The mechanisms for PIs resistance to MM include ubiquitin-proteasome pathway, autophagy lysosome pathway, endoplasmic reticulum stress pathway, cell survival signal pathway, exosome-mediated resistance, and bone marrow microenvironment-mediated resistance.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Hematology, Loudi Gereral Hospital, Loudi Hunan 417000.
| | - Jing Liu
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
19
|
Mosier JA, Schwager SC, Boyajian DA, Reinhart-King CA. Cancer cell metabolic plasticity in migration and metastasis. Clin Exp Metastasis 2021; 38:343-359. [PMID: 34076787 DOI: 10.1007/s10585-021-10102-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer metastasis in which cancer cells manipulate their metabolic profile to meet the dynamic energetic requirements of the tumor microenvironment. Though cancer cell proliferation and migration through the extracellular matrix are key steps of cancer progression, they are not necessarily fueled by the same metabolites and energy production pathways. The two main metabolic pathways cancer cells use to derive energy from glucose, glycolysis and oxidative phosphorylation, are preferentially and plastically utilized by cancer cells depending on both their intrinsic metabolic properties and their surrounding environment. Mechanical factors in the microenvironment, such as collagen density, pore size, and alignment, and biochemical factors, such as oxygen and glucose availability, have been shown to influence both cell migration and glucose metabolism. As cancer cells have been identified as preferentially utilizing glycolysis or oxidative phosphorylation based on heterogeneous intrinsic or extrinsic factors, the relationship between cancer cell metabolism and metastatic potential is of recent interest. Here, we review current in vitro and in vivo findings in the context of cancer cell metabolism during migration and metastasis and extrapolate potential clinical applications of this work that could aid in diagnosing and tracking cancer progression in vivo by monitoring metabolism. We also review current progress in the development of a variety of metabolically targeted anti-metastatic drugs, both in clinical trials and approved for distribution, and highlight potential routes for incorporating our recent understanding of metabolic plasticity into therapeutic directions. By further understanding cancer cell energy production pathways and metabolic plasticity, more effective and successful clinical imaging and therapeutics can be developed to diagnose, target, and inhibit metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - David A Boyajian
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
20
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
21
|
Choi AY, Manook M, Olaso D, Ezekian B, Park J, Freischlag K, Jackson A, Knechtle S, Kwun J. Emerging New Approaches in Desensitization: Targeted Therapies for HLA Sensitization. Front Immunol 2021; 12:694763. [PMID: 34177960 PMCID: PMC8226120 DOI: 10.3389/fimmu.2021.694763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need for therapeutic interventions for desensitization and antibody-mediated rejection (AMR) in sensitized patients with preformed or de novo donor-specific HLA antibodies (DSA). The risk of AMR and allograft loss in sensitized patients is increased due to preformed DSA detected at time of transplant or the reactivation of HLA memory after transplantation, causing acute and chronic AMR. Alternatively, de novo DSA that develops post-transplant due to inadequate immunosuppression and again may lead to acute and chronic AMR or even allograft loss. Circulating antibody, the final product of the humoral immune response, has been the primary target of desensitization and AMR treatment. However, in many cases these protocols fail to achieve efficient removal of all DSA and long-term outcomes of patients with persistent DSA are far worse when compared to non-sensitized patients. We believe that targeting multiple components of humoral immunity will lead to improved outcomes for such patients. In this review, we will briefly discuss conventional desensitization methods targeting antibody or B cell removal and then present a mechanistically designed desensitization regimen targeting plasma cells and the humoral response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
22
|
Morgan JJ, Crawford LJ. The Ubiquitin Proteasome System in Genome Stability and Cancer. Cancers (Basel) 2021; 13:2235. [PMID: 34066546 PMCID: PMC8125356 DOI: 10.3390/cancers13092235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Faithful DNA replication during cellular division is essential to maintain genome stability and cells have developed a sophisticated network of regulatory systems to ensure its integrity. Disruption of these control mechanisms can lead to loss of genomic stability, a key hallmark of cancer. Ubiquitination is one of the most abundant regulatory post-translational modifications and plays a pivotal role in controlling replication progression, repair of DNA and genome stability. Dysregulation of the ubiquitin proteasome system (UPS) can contribute to the initiation and progression of neoplastic transformation. In this review we provide an overview of the UPS and summarize its involvement in replication and replicative stress, along with DNA damage repair. Finally, we discuss how the UPS presents as an emerging source for novel therapeutic interventions aimed at targeting genomic instability, which could be utilized in the treatment and management of cancer.
Collapse
Affiliation(s)
| | - Lisa J. Crawford
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
23
|
Liu J, Pandya P, Afshar S. Therapeutic Advances in Oncology. Int J Mol Sci 2021; 22:2008. [PMID: 33670524 PMCID: PMC7922397 DOI: 10.3390/ijms22042008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Around 77 new oncology drugs were approved by the FDA in the past five years; however, most cancers remain untreated. Small molecules and antibodies are dominant therapeutic modalities in oncology. Antibody-drug conjugates, bispecific antibodies, peptides, cell, and gene-therapies are emerging to address the unmet patient need. Advancement in the discovery and development platforms, identification of novel targets, and emergence of new technologies have greatly expanded the treatment options for patients. Here, we provide an overview of various therapeutic modalities and the current treatment options in oncology, and an in-depth discussion of the therapeutics in the preclinical stage for the treatment of breast cancer, lung cancer, and multiple myeloma.
Collapse
Affiliation(s)
| | | | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (P.P.)
| |
Collapse
|
24
|
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2021; 10:621294. [PMID: 33643919 PMCID: PMC7905169 DOI: 10.3389/fonc.2020.621294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination, a crucial post-translation modification, regulates the localization and stability of the substrate proteins including nonhistone proteins. The ubiquitin-proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular processes such as DNA repair, transcription, signal transduction, and apoptosis. Its dysregulation induces various diseases including cancer, and the identification of this process may provide potential therapeutic targets for cancer treatment. In this review, we summarize the regulatory roles of key UPS members on major nonhistone substrates in cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in modulating protein target levels with the aid of UPS.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ping Wang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
25
|
Application of marine natural products in drug research. Bioorg Med Chem 2021; 35:116058. [PMID: 33588288 DOI: 10.1016/j.bmc.2021.116058] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
New diseases are emerging as the environment changes, so drug manufacturers are always on the lookout for new resources to develop effective and safe drugs. In recent years, many bioactive substances have been produced in the marine environment, which represents an alternative resource for new drugs used to combat major diseases such as cancer or inflammation. Many marine-derived medicinal substances are in preclinical or early stage of clinical development, and some marine drugs have been put on the market, such as ET743 (Yondelis®). This review presents the sources, activities, mechanisms of action and syntheses of bioactive substances based on marine natural products in clinical trials and on the market, which is helpful to understand the progress of drug research by application of marine natural products.
Collapse
|
26
|
Improving outcomes for patients with relapsed multiple myeloma: Challenges and considerations of current and emerging treatment options. Blood Rev 2021; 49:100808. [PMID: 33863601 DOI: 10.1016/j.blre.2021.100808] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 01/23/2023]
Abstract
Despite the recent introduction of new therapies for multiple myeloma (MM), it remains an incurable disease. As MM progresses, patients experience cycles of relapse and remission, with remission periods becoming increasingly shorter as the disease becomes less treatment-sensitive. The treatment of relapsed refractory MM (RRMM) remains a significant clinical challenge. Patients with RRMM are a highly heterogeneous group and choosing the most appropriate treatment requires careful consideration. Furthermore, the number of treatment options for MM is continually growing with no definitive consensus to guide treating clinicians. The emergence of second-generation proteasome inhibitors (e.g., carfilzomib and ixazomib), immunomodulatory drugs (e.g., pomalidomide) and monoclonal antibodies (e.g., isatuximab) has expanded an already complex treatment landscape. This review provides a clear summary of the available treatments for MM and discusses how to tailor treatments to individual patients' needs. Novel treatments currently under clinical development, including venetoclax, melflufen and CAR T-cell therapies, are also discussed.
Collapse
|
27
|
Recent insight into the role of RING-finger E3 ligases in glioma. Biochem Soc Trans 2021; 49:519-529. [PMID: 33544148 DOI: 10.1042/bst20201060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
The ubiquitin proteasome system (UPS) serves as the major posttranslational modification system for the maintenance of protein homeostasis. The ubiquitin ligases (E3s) are responsible for the recognition and recruitment of specific substrate proteins for polyubiquitination. Really interesting new gene (RING) finger E3s account for the majority of E3s. The human genome encodes more than 600 RING E3s, which are divided into three subclasses: single polypeptide E3s, cullin-RING ligases (CRLs) and other multisubunit E3s. The abnormal regulation of RING E3s has been reported to disrupt normal biological processes and induce the occurrence of many human malignancies. Glioma is the most common type of malignant primary brain tumor. In the last few decades, patient prognosis has improved as novel targeted therapeutic agents have developed. In this review, we will summarize the current knowledge about the dysregulation of RING E3s and the altered stability of their substrates in glioma. We will further introduce and discuss the current status and future perspectives of the application of small inhibitors and proteolysis-targeting chimeric molecules (PROTACs) interfering with RING E3s as potential anticancer agents for glioma.
Collapse
|
28
|
de Jesus CSH, Enache TA, Diculescu VC. Charge transfer reaction mechanisms of epoxyketone and boronated peptides at glassy carbon and boron doped diamond electrodes. J Electroanal Chem (Lausanne) 2020; 878:114733. [PMID: 33020701 PMCID: PMC7526604 DOI: 10.1016/j.jelechem.2020.114733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
The ubiquitin-proteasome system regulates the level of proteins within cells through controlled proteolysis. In some diseases, the system function is dysregulated turning the ubiquitin-proteasome complex into a target for drug development. The redox behavior of proteasome inhibitors, epoxyketone and boronated peptides carfilzomib, oprozomib and delanzomib was investigated by voltammetric methods using glassy carbon and boron doped diamond electrodes. It was showed that the oxidation of epoxyketone peptides carfilzomib and oprozomib occurred in one step at glassy carbon electrode surface while at boron doped diamond two consecutive charge transfer reactions due to different adsorption orientation at the electrode surface were observed. The moieties of these peptides, involved in the oxidation process, were morpholine for carfilzomib and thiazole for oprozomib. For the boronated peptide delanzomib, two irreversible and independent redox processes, oxidation at +0.80 V and reduction at −1.40 V were identified in neutral media at both electrodes. The oxidation reaction occurred at the amino group close to the pyridine moiety of delanzomib with the transfer of one electron and one proton whereas the reduction process takes place at pyridine ring in a two-electrons two-protons mechanism. Redox mechanisms were proposed and the implications on the proteasome inhibition discussed. Electranalysis of proteasome inhibitor peptides and anticancer drugs. Carfilzomib and oprozomib epoxiketones, and boronated delanzomib peptides. Redox behavior at glassy carbon and boron doped diamond electrodes.. Redox mechanisms proposed and implications discussed.
Collapse
Affiliation(s)
| | - Teodor Adrian Enache
- National Institute of Material Physics, Atomistilor 405A, 077125 Magurele, Romania
| | | |
Collapse
|
29
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
30
|
Recent insights how combined inhibition of immuno/proteasome subunits enables therapeutic efficacy. Genes Immun 2020; 21:273-287. [PMID: 32839530 DOI: 10.1038/s41435-020-00109-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells that controls numerous cellular processes through regulated protein degradation. Proteasome inhibitors have significantly improved the survival of multiple myeloma patients. However, clinically approved proteasome inhibitors have failed to show efficacy against solid tumors, neither alone nor in combination with other therapies. Targeting the immunoproteasome with selective inhibitors has been therapeutically effective in preclinical models for several autoimmune diseases and colon cancer. Moreover, immunoproteasome inhibitors prevented the chronic rejection of allogeneic organ transplants. In recent years, it has become apparent that inhibition of one single active center of the proteasome is insufficient to achieve therapeutic benefits. In this review we summarize the latest insights how targeting multiple catalytically active proteasome subunits can interfere with disease progression in autoimmunity, growth of solid tumors, and allograft rejection.
Collapse
|
31
|
Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2020; 20:1180-1202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing Song
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xueyi Qian
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
32
|
Wu P, Oren O, Gertz MA, Yang EH. Proteasome Inhibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Curr Oncol Rep 2020; 22:66. [DOI: 10.1007/s11912-020-00931-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
34
|
Raninga PV, Lee A, Sinha D, Dong LF, Datta KK, Lu X, Kalita-de Croft P, Dutt M, Hill M, Pouliot N, Gowda H, Kalimutho M, Neuzil J, Khanna KK. Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Am J Cancer Res 2020; 10:5259-5275. [PMID: 32373211 PMCID: PMC7196287 DOI: 10.7150/thno.42705] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose: Lacking effective targeted therapies, triple-negative breast cancer (TNBCs) is highly aggressive and metastatic disease, and remains clinically challenging breast cancer subtype to treat. Despite the survival dependency on the proteasome pathway genes, FDA-approved proteasome inhibitors induced minimal clinical response in breast cancer patients due to weak proteasome inhibition. Hence, developing effective targeted therapy using potent proteasome inhibitor is required. Methods: We evaluated anti-cancer activity of a potent proteasome inhibitor, marizomib, in vitro using breast cancer lines and in vivo using 4T1.2 murine syngeneic model, MDA-MB-231 xenografts, and patient-derived tumor xenografts. Global proteome profiling, western blots, and RT-qPCR were used to investigate the mechanism of action for marizomib. Effect of marizomib on lung and brain metastasis was evaluated using syngeneic 4T1BR4 murine TNBC model in vivo. Results: We show that marizomib inhibits multiple proteasome catalytic activities and induces a better anti-tumor response in TNBC cell lines and patient-derived xenografts alone and in combination with the standard-of-care chemotherapy. Mechanistically, we show that marizomib is a dual inhibitor of proteasome and oxidative phosphorylation (OXPHOS) in TNBCs. Marizomib reduces lung and brain metastases by reducing the number of circulating tumor cells and the expression of genes involved in the epithelial-to-mesenchymal transition. We demonstrate that marizomib-induced OXPHOS inhibition upregulates glycolysis to meet the energetic demands of TNBC cells and combined inhibition of glycolysis with marizomib leads to a synergistic anti-cancer activity. Conclusions: Our data provide a strong rationale for a clinical evaluation of marizomib in primary and metastatic TNBC patients.
Collapse
|
35
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
36
|
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2020; 80:58-72. [PMID: 32070764 DOI: 10.1016/j.semcancer.2020.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system. Marine organisms constitute a rich reservoir of new bioactive molecules; some of them have already been exploited for pharmaceutical use, whereas many others are undergoing clinical or preclinical investigations for the treatment of different diseases, including cancer. In this review, we will discuss the immune-modulatory properties of marine compounds for their potential use in cancer prevention and treatment and as possible tools in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Proteasome Inhibitors: Harnessing Proteostasis to Combat Disease. Molecules 2020; 25:molecules25030671. [PMID: 32033280 PMCID: PMC7037493 DOI: 10.3390/molecules25030671] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The proteasome is the central component of the main cellular protein degradation pathway. During the past four decades, the critical function of the proteasome in numerous physiological processes has been revealed, and proteasome activity has been linked to various human diseases. The proteasome prevents the accumulation of misfolded proteins, controls the cell cycle, and regulates the immune response, to name a few important roles for this macromolecular "machine." As a therapeutic target, proteasome inhibitors have been approved for the treatment of multiple myeloma and mantle cell lymphoma. However, inability to sufficiently inhibit proteasome activity at tolerated doses has hampered efforts to expand the scope of proteasome inhibitor-based therapies. With emerging new modalities in myeloma, it might seem challenging to develop additional proteasome-based therapies. However, the constant development of new applications for proteasome inhibitors and deeper insights into the intricacies of protein homeostasis suggest that proteasome inhibitors might have novel therapeutic applications. Herein, we summarize the latest advances in proteasome inhibitor development and discuss the future of proteasome inhibitors and other proteasome-based therapies in combating human diseases.
Collapse
|
38
|
Oriol A, Abril L, Ibarra G, Senin A. Limited treatment options in refractory multiple myeloma: promising therapeutic developments. Expert Rev Anticancer Ther 2020; 20:31-44. [PMID: 31865804 DOI: 10.1080/14737140.2020.1708721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction: Combinations of proteasome inhibitors, immunomodulators, and monoclonal antibodies are highly active against multiple myeloma. Consequently, several combinations have moved from the relapsed to the front-line setting. In the context of lenalidomide and bortezomib being used upfront, salvage options need to be evaluated.Areas covered: This manuscript reviews available data for the treatment of patients progressing on optimal frontline strategies, with a focus on the role of second-generation proteasome inhibitors and immunomodulators, monoclonal antibodies and immunotherapy.Expert opinion: Remarkable progress has been made in myeloma treatment due to the integration of immunomodulators, proteasome inhibitors and more recently monoclonal antibodies in the front-line setting. However, we work on the assumption that most individuals will eventually relapse. Optimized upfront therapy negatively selects more resistant patients among still relapsing individuals. Bortezomib and lenalidomide-exposed patients are under-represented in trials leading to currently approved combinations. Evidence needs to be reviewed taking into account how the improvement of frontline therapy has modified the characteristics of patients at the time of relapse. Second generation immunomodulatory agents and proteasome inhibitors, monoclonal antibodies and other agents have shown efficacy in this new landscape. Immunotherapeutic agents, including CAR-T cells are promising for patients failing standard combinations, despite current data are still immature.
Collapse
Affiliation(s)
- Albert Oriol
- Hematology Service and Hemato-Oncology Clinical Trial Unit, Institut Català d'Oncologia, Badalona, Barcelona, Spain.,Josep Carreras Institute and Germans Trias i Pujol Hospital, Badalona, Barcelona, Spain
| | - Laura Abril
- Hematology Service and Hemato-Oncology Clinical Trial Unit, Institut Català d'Oncologia, Badalona, Barcelona, Spain.,Josep Carreras Institute and Germans Trias i Pujol Hospital, Badalona, Barcelona, Spain
| | - Gladys Ibarra
- Hematology Service and Hemato-Oncology Clinical Trial Unit, Institut Català d'Oncologia, Badalona, Barcelona, Spain.,Josep Carreras Institute and Germans Trias i Pujol Hospital, Badalona, Barcelona, Spain
| | - Alicia Senin
- Hematology Service and Hemato-Oncology Clinical Trial Unit, Institut Català d'Oncologia, Badalona, Barcelona, Spain.,Josep Carreras Institute and Germans Trias i Pujol Hospital, Badalona, Barcelona, Spain
| |
Collapse
|
39
|
Gonzalez-Santamarta M, Quinet G, Reyes-Garau D, Sola B, Roué G, Rodriguez MS. Resistance to the Proteasome Inhibitors: Lessons from Multiple Myeloma and Mantle Cell Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:153-174. [PMID: 32274756 DOI: 10.1007/978-3-030-38266-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since its introduction in the clinics in early 2000s, the proteasome inhibitor bortezomib (BTZ) significantly improved the prognosis of patients with multiple myeloma (MM) and mantle cell lymphoma (MCL), two of the most challenging B cell malignancies in western countries. However, relapses following BTZ therapy are frequent, while primary resistance to this agent remains a major limitation for further development of its therapeutic potential. In the present chapter, we recapitulate the molecular mechanisms associated with intrinsic and acquired resistance to BTZ learning from MM and MCL experience, including mutations of crucial genes and activation of prosurvival signalling pathways inherent to malignant B cells. We also outline the preclinical and clinical evaluations of some potential druggable targets associated to BTZ resistance, considering the most meaningful findings of the past 10 years. Although our understanding of BTZ resistance is far from being completed, recent discoveries are contributing to develop new approaches to treat relapsed MM and MCL patients.
Collapse
Affiliation(s)
| | | | - Diana Reyes-Garau
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | - Brigitte Sola
- Normandie University, INSERM UMR1245, UNICAEN, Caen, France
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | | |
Collapse
|
40
|
Lessons Learned from Proteasome Inhibitors, the Paradigm for Targeting Protein Homeostasis in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:147-162. [PMID: 32297217 DOI: 10.1007/978-3-030-40204-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeting aberrant protein homeostasis (proteostasis) in cancer is an attractive therapeutic strategy. However, this approach has thus far proven difficult to bring to clinical practice, with one major exception: proteasome inhibition. These small molecules have dramatically transformed outcomes for patients with the blood cancer multiple myeloma. However, these agents have failed to make an impact in more common solid tumors. Major questions remain about whether this therapeutic strategy can be extended to benefit even more patients. Here we discuss the role of the proteasome in normal and tumor cells, the basic, preclinical, and clinical development of proteasome inhibitors, and mechanisms proposed to govern both intrinsic and acquired resistance to these drugs. Years of study of both the mechanism of action and modes of resistance to proteasome inhibitors reveal these processes to be surprisingly complex. Here, we attempt to draw lessons from experience with proteasome inhibitors that may be relevant for other compounds targeting proteostasis in cancer, as well as extending the reach of proteasome inhibitors beyond blood cancers.
Collapse
|
41
|
Abstract
Bing-Neel syndrome (BNS) is an uncommon presentation of Waldenström macroglobulinaemia (WM), seen during the course of the disease in about 1% of patients. BNS occurs when WM cells gain access to the central nervous system (CNS) causing neurological deficits. The diagnosis of BNS is suggested by the presence of radiological abnormalities, such as leptomeningeal enhancement on magnetic resonance imaging and confirmed by the presence of clonal lymphoplasmacytic cells and MYD88 L265P in the cerebrospinal fluid. The treatment of BNS requires agents with good penetration into the CNS, such as fludarabine, methotrexate and cytarabine. The novel Bruton Tyrosine Kinase inhibitor ibrutinib has shown CNS-penetrating properties, and recent data suggest a therapeutic role in BNS. In this review, we will discuss the clinical and pathological features, diagnostic criteria, treatment options and outcomes of patients with BNS.
Collapse
Affiliation(s)
- Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Kalff A, Khong T, Mithraprabhu S, Bergin K, Reynolds J, Bowen KM, Thakurta A, Guzman R, Wang M, Couto S, Ren Y, Spencer A. Oral azacitidine (CC-486) in combination with lenalidomide and dexamethasone in advanced, lenalidomide-refractory multiple myeloma (ROAR study). Leuk Lymphoma 2019; 60:2143-2151. [DOI: 10.1080/10428194.2019.1571201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anna Kalff
- Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital/Monash University, Melbourne, Australia
- Malignant Hematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital/Monash University, Melbourne, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital/Monash University, Melbourne, Australia
| | - Krystal Bergin
- Malignant Hematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| | - John Reynolds
- Alfred Health and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Kathryn M. Bowen
- Malignant Hematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| | | | | | | | | | - Yan Ren
- Celgene Corporation, San Diego, CA, USA
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital/Monash University, Melbourne, Australia
- Malignant Hematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
43
|
Baljevic M, Orlowski RZ. Pharmacodynamics and pharmacokinetics of proteasome inhibitors for the treatment of multiple myeloma. Expert Opin Drug Metab Toxicol 2019; 15:459-473. [PMID: 31104525 PMCID: PMC10393465 DOI: 10.1080/17425255.2019.1621839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Multiple myeloma (MM) is the second most commonly diagnosed hematologic malignancy and has an increasing incidence and prevalence globally, and proteasome inhibitors (PIs) form the backbone of some of our most effective regimens for all phases of this disease in fit and frail patients. Areas covered: Strong understanding of the proteasome complex is increasingly important as the rapid development of new PIs and innovative myeloma therapies complicate the use of old and new combination regimens. We focus herein on the pharmacodynamics and pharmacokinetics of the approved PIs and others in development, including their safety and efficacy in corresponding clinical studies. Expert opinion: Advancements such as the first oral PI, ixazomib, with a more convenient route of administration and improved toxicity profile led to an improved quality of life, patient compliance, and all-oral combination regimens which are efficacious for long-term management of standard and high-risk MM. Novel pan-PIs, such as marizomib, hold the promise of superior clinical activity due to irreversible targeting of all multicatalytic proteinase complex subunits. Development of clinically validated biomarkers of PI sensitivity/resistance is required to inform utilization of the most optimal and effective, rationally targeted PI treatments for all MM patients.
Collapse
Affiliation(s)
- Muhamed Baljevic
- The University of Nebraska Medical Center, Division of Hematology and Oncology, Omaha, NE, USA
| | - Robert Z. Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Heckmann MB, Doroudgar S, Katus HA, Lehmann LH. Cardiovascular adverse events in multiple myeloma patients. J Thorac Dis 2018; 10:S4296-S4305. [PMID: 30701098 PMCID: PMC6328391 DOI: 10.21037/jtd.2018.09.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is a malignant disease, caused by an uncontrolled clonal proliferation of a specific group of white blood cells, the plasma cells. Clinical manifestations include bone pain due to osteolysis, hypercalcemia, anemia, and renal insufficiency. Proteasome inhibitors have substantially improved survival of patients suffering from multiple myeloma, providing an efficient treatment option mainly for relapsed and refractory multiple myeloma. Although constituting one substance class, bortezomib, carfilzomib, and ixazomib differ greatly regarding their non-hematologic side effects. This article reviews the clinical and preclinical data on approved proteasome inhibitors in an attempt to decipher the underlying pathomechanisms related to cardiovascular adverse events seen in clinical trials.
Collapse
Affiliation(s)
- Markus B. Heckmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Guerrero-Garcia TA, Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Mitsiades C, Anderson KC, Richardson PG. The power of proteasome inhibition in multiple myeloma. Expert Rev Proteomics 2018; 15:1033-1052. [PMID: 30427223 DOI: 10.1080/14789450.2018.1543595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Proteasome inhibitors (PIs) are therapeutic backbones of multiple myeloma treatment, with PI-based therapies being standards of care throughout the treatment algorithm. Proteasome inhibition affects multiple critical signaling pathways in myeloma cells and interacts synergistically with mechanisms of action of other conventional and novel agents, resulting in substantial anti-myeloma activity and at least additive effects. Areas covered: This review summarizes the biologic effects of proteasome inhibition in myeloma and provides an overview of the importance of proteasome inhibition to the current treatment algorithm. It reviews key clinical data on three PIs, specifically bortezomib, carfilzomib, and ixazomib; assesses ongoing phase 3 trials with these agents; and looks ahead to the increasingly broad role of both approved PIs and PIs under investigation in the frontline and relapsed settings. Expert commentary: Progress to date with PIs in multiple myeloma has been impressive, but there remain unmet needs and challenges, as well as increasing opportunities to optimize the use of these agents. Understanding discrepancies between PIs in terms of efficacy and safety profile is a key goal of ongoing research, along with proteomics-based efforts to identify potential biomarkers of sensitivity and resistance, thereby enabling increasingly personalized treatment approaches in the future.
Collapse
Affiliation(s)
| | - Sara Gandolfi
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Jacob P Laubach
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Teru Hideshima
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | | | | | | | - Paul G Richardson
- b Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
46
|
|
47
|
Ancheeva E, Daletos G, Proksch P. Lead Compounds from Mangrove-Associated Microorganisms. Mar Drugs 2018; 16:md16090319. [PMID: 30205507 PMCID: PMC6165052 DOI: 10.3390/md16090319] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 01/30/2023] Open
Abstract
The mangrove ecosystem is considered as an attractive biodiversity hotspot that is intensively studied in the hope of discovering new useful chemical scaffolds, including those with potential medicinal application. In the past two decades, mangrove-derived microorganisms, along with mangrove plants, proved to be rich sources of bioactive secondary metabolites as exemplified by the constant rise in the number of publications, which suggests the great potential of this important ecological niche. The present review summarizes selected examples of bioactive compounds either from mangrove endophytes or from soil-derived mangrove fungi and bacteria, covering the literature from 2014 to March 2018. Accordingly, 163 natural products are described in this review, possessing a wide range of potent bioactivities, such as cytotoxic, antibacterial, antifungal, α-glucosidase inhibitory, protein tyrosine phosphatase B inhibitory, and antiviral activities, among others.
Collapse
Affiliation(s)
- Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Düsseldorf, Germany.
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Düsseldorf, Germany.
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
48
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
49
|
Park JE, Miller Z, Jun Y, Lee W, Kim KB. Next-generation proteasome inhibitors for cancer therapy. Transl Res 2018; 198:1-16. [PMID: 29654740 PMCID: PMC6151281 DOI: 10.1016/j.trsl.2018.03.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/06/2023]
Abstract
Over 2 decades ago, the proteasome was considered a risky or even untenable therapeutic target. Today, proteasome inhibitors are a mainstay in the treatment of multiple myeloma (MM) and have sales in excess of 3 billion US dollars annually. More importantly, the availability of proteasome inhibitors has greatly improved the survival and quality of life for patients with MM. Despite the remarkable success of proteasome inhibitor therapies to date, the potential for improvement remains, and the development and optimal use of proteasome inhibitors as anticancer agents continues to be an active area of research. In this review, we briefly discuss the features and limitations of the 3 proteasome inhibitor drugs currently used in the clinic and provide an update on current efforts to develop next-generation proteasome inhibitors with the potential to overcome the limitations of existing proteasome inhibitor drugs.
Collapse
Affiliation(s)
- Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
50
|
Bruserud Ø, Hansen BA, Vetti N, Johansen S, Reikvam H. Successful eradication of leptomeningeal plasma cell disease. Oxf Med Case Reports 2018; 2018:omy038. [PMID: 29992033 PMCID: PMC6031028 DOI: 10.1093/omcr/omy038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 11/23/2022] Open
Abstract
Plasma cell leukaemia (PCL) is a rare and aggressive form of malignant monoclonal gammopathy characterized by the presence of high levels of plasma cells in peripheral blood. Central nervous system involvement of PCL has no established treatment and an extremely poor prognosis. We here present a 59-year-old male patient diagnosed with PCL, initially treated with induction chemotherapy followed by autologous peripheral blood hematopoietic stem cell transplantation. After achieving a partial response, he relapsed and presented with leptomeningeal disease. He was then successfully treated with dexamethasone, pomalidomide, and an intrathecal combination of methotrexate, methylprednisolone and cytarabine. This cleared his cerebrospinal fluid from plasma cells achieving a durable partial response.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Section for Endocrinology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Nils Vetti
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Silje Johansen
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Section for Haematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|