1
|
Wang Z, He L, Fan Z, Luo Y. Patenting perspective of modulators of ClpP endopeptidase: 2019-present. Expert Opin Ther Pat 2024:1-12. [PMID: 39267345 DOI: 10.1080/13543776.2024.2404233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION ClpP is a highly conserved serine protease that plays a crucial role in maintaining protein homeostasis in both bacterial cells and human mitochondria. Several studies have demonstrated the potential of ClpP as a drug target, with ClpP modulators, including both inhibitors and activators, showing promise in treating a range of conditions such as drug-resistant bacteria, malignant cancers, and fatty liver disease. AREA COVERED This review provides an overview of patents related to ClpP modulators filed over the last five years, detailing their claims and therapeutic applications. The sources of patent information included databases of the European Patent Office, the China Patent Office and the U.S.A. patent Office, while relevant research articles were accessed through PubMed. EXPERT OPINION The number of patents concerning ClpP modulators is on the rise, reflecting advancements in related research. By summarizing and outlining relevant patents, we aim to stimulate further interest among researchers, ultimately leading to the development of effective drugs based on ClpP modulators. The broad spectrum of diseases associated with ClpP dysfunction underscores the potential for ClpP modulators to address a wide range of therapeutic needs.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Liqing He
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Ziheng Fan
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jackson ER, Persson ML, Fish CJ, Findlay IJ, Mueller S, Nazarian J, Hulleman E, van der Lugt J, Duchatel RJ, Dun MD. A review of current therapeutics targeting the mitochondrial protease ClpP in diffuse midline glioma, H3 K27-altered. Neuro Oncol 2024; 26:S136-S154. [PMID: 37589388 PMCID: PMC11066926 DOI: 10.1093/neuonc/noad144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein. In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic DMG, H3 K27-altered, showed a remarkable clinical and radiological response to dordaviprone (ONC201). This response in an H3 K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA identifying the mitochondrial protease "ClpP" as a biomarker of response, and discuss other ClpP agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP agonists, and their immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patient response.
Collapse
Affiliation(s)
- Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Cameron J Fish
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Sabine Mueller
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, UCSF, San Francisco, California, USA
| | - Javad Nazarian
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
3
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
4
|
Fan Y, Wang J, Fang Z, Pierce SR, West L, Staley A, Tucker K, Yin Y, Sun W, Kong W, Prabhu V, Allen JE, Zhou C, Bae-Jump VL. Anti-Tumor and Anti-Invasive Effects of ONC201 on Ovarian Cancer Cells and a Transgenic Mouse Model of Serous Ovarian Cancer. Front Oncol 2022; 12:789450. [PMID: 35372029 PMCID: PMC8970020 DOI: 10.3389/fonc.2022.789450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
ONC201 is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as activation of mitochondrial caseinolytic protease P (ClpP). The present study was to explore the anti-tumor potential effect of ONC201 in ovarian cancer cell lines and in a transgenic mouse model of high grade serous ovarian cancer under obese (high fat diet) and lean (low fat diet) conditions. ONC201 significantly suppressed cell proliferation, induced arrest in G1 phase, and increased cellular stress and apoptosis, accompanied by dual inhibition of the AKT/mTOR/S6 and MAPK pathways in OC cells. ONC201 also resulted in inhibition of adhesion and invasion via epithelial–mesenchymal transition and reduction of VEGF expression. Pre-treatment with the anti-oxidant, N-acetylcysteine (NAC), reversed the ONC201-induced oxidative stress response, and prevented ONC201-reduced VEGF and cell invasion by regulating epithelial–mesenchymal transition protein expression. Knockdown of ClpP in ovarian cancer cells reduced ONC201 mediated the anti-tumor activity and cellular stress. Diet-induced obesity accelerated ovarian tumor growth in the KpB mouse model. ONC201 significantly suppressed tumor growth, and decreased serum VEGF production in obese and lean mice, leading to a decrease in tumoral expression of Ki-67, VEGF and phosphorylation of p42/44 and S6 and an increase in ClpP and DRD5, as assessed by immunohistochemistry. These results suggest that ONC201 may be a promising therapeutic agent to be explored in future clinical trials in high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ziwei Fang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stuart R. Pierce
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsay West
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Allison Staley
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katherine Tucker
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Victoria L. Bae-Jump, ; Chunxiao Zhou,
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Victoria L. Bae-Jump, ; Chunxiao Zhou,
| |
Collapse
|
5
|
He L, Bhat K, Ioannidis A, Zhang L, Nguyen NT, Allen JE, Nghiemphu PL, Cloughesy TF, Liau LM, Kornblum HI, Pajonk F. Effects of the DRD2/3 antagonist ONC201 and radiation in glioblastoma. Radiother Oncol 2021; 161:140-147. [PMID: 34097975 PMCID: PMC8480533 DOI: 10.1016/j.radonc.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the deadliest of all brain cancers in adults. The current standard-of-care is surgery followed by radiotherapy and temozolomide, leading to a median survival time of only 15 months. GBM are organized hierarchically with a small number of glioma-initiating cells (GICs), responsible for therapy resistance and tumor recurrence, suggesting that targeting GICs could improve treatment response. ONC201 is a first-in-class anti-tumor agent with clinical efficacy in some forms of high-grade gliomas. Here we test its efficacy against GBM in combination with radiation. METHODS Using patient-derived GBM lines and mouse models of GBM we test the effects of radiation and ONC201 on GBM self-renewalin vitro and survivalin vivo.A possible resistance mechanism is investigated using RNA-Sequencing. RESULTS Treatment of GBM cells with ONC201 reduced self-renewal, clonogenicity and cell viabilityin vitro. ONC201 exhibited anti-tumor effects on radioresistant GBM cells indicated by reduced self-renewal in secondary and tertiary glioma spheres. Combined treatment of ONC201 and radiation prolonged survival in syngeneic and patient-derived orthotopic xenograft mouse models of GBM. Subsequent transcriptome analyses after combined treatment revealed shifts in gene expression signatures related to quiescent GBM populations, GBM plasticity, and GBM stem cells. CONCLUSIONS Our findings suggest that combined treatment with the DRD2/3 antagonist ONC201 and radiation improves the efficacy of radiation against GBMin vitroandin vivothrough suppression of GICs without increasing toxicity in mouse models of GBM. A clinical assessment of this novel combination therapy against GBM is further warranted.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Le Zhang
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Nhan T Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | | | - Phioanh Leia Nghiemphu
- Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurology at UCLA, United States
| | - Timothy F Cloughesy
- Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurology at UCLA, United States
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurosurgery at UCLA, United States
| | - Harley I Kornblum
- Jonsson Comprehensive Cancer Center at UCLA, United States; NPI-Semel Institute for Neuroscience & Human Behavior at UCLA, United States
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States; Jonsson Comprehensive Cancer Center at UCLA, United States.
| |
Collapse
|
6
|
Bonner ER, Waszak SM, Grotzer MA, Mueller S, Nazarian J. Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro Oncol 2021; 23:542-556. [PMID: 33336683 DOI: 10.1093/neuonc/noaa283] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ONC201 is the first member of the imipridone family of anticancer drugs to enter the clinic for the treatment of diverse solid and hematologic cancers. A subset of pediatric and adult patients with highly aggressive brain tumors has shown remarkable clinical responses to ONC201, and recently, the more potent derivative ONC206 entered clinical trials as a single agent for the treatment of central nervous system (CNS) cancers. Despite the emerging clinical interest in the utility of imipridones, their exact molecular mechanisms are not fully described. In fact, the existing literature points to multiple pathways (e.g. tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) signaling, dopamine receptor antagonism, and mitochondrial metabolism) as putative drug targets. We have performed a comprehensive literature review and highlighted mitochondrial metabolism as the major target of imipridones. In support of this, we performed a meta-analysis of an ONC201 screen across 539 human cancer cell lines and showed that the mitochondrial caseinolytic protease proteolytic subunit (ClpP) is the most significant predictive biomarker of response to treatment. Herein, we summarize the main findings on the anticancer mechanisms of this potent class of drugs, provide clarity on their role, and identify clinically relevant predictive biomarkers of response.
Collapse
Affiliation(s)
- Erin R Bonner
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sabine Mueller
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.,Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, California
| | - Javad Nazarian
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC.,Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Arrillaga-Romany I, Odia Y, Prabhu VV, Tarapore RS, Merdinger K, Stogniew M, Oster W, Allen JE, Mehta M, Batchelor TT, Wen PY. Biological activity of weekly ONC201 in adult recurrent glioblastoma patients. Neuro Oncol 2021; 22:94-102. [PMID: 31702782 DOI: 10.1093/neuonc/noz164] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ONC201 is a dopamine receptor D2 (DRD2) antagonist that penetrates the blood-brain barrier. ONC201 efficacy has been shown in glioblastoma animal models and is inversely correlated with dopamine receptor DRD5 expression. ONC201 is well tolerated in adult recurrent glioblastoma patients with dosing every 3 weeks and has achieved an objective radiographic response in a patient harboring the H3 K27M mutation. METHODS In a window-of-opportunity arm, 6 adult subjects initiated ONC201 prior to re-resection of recurrent glioblastoma with intratumoral concentrations as the primary endpoint. An additional 20 adults with recurrent glioblastoma received single agent weekly oral ONC201 at 625 mg, with progression-free survival at 6 months (PFS6) by Response Assessment in Neuro-Oncology (RANO) criteria as the primary endpoint. RESULTS The window-of-opportunity arm achieved its primary endpoint with intratumoral ONC201 concentrations at ~24 hours following the second weekly dose ranging from 600 nM to 9.3 µM. Intratumoral pharmacodynamics assessed by activating transcriptional factor 4, death receptor 5, and apoptosis induction relative to archival samples were observed with the strongest intensity and uniformity among patients with low DRD5 tumor expression. The primary endpoint of PFS6 by RANO was not achieved at 5% in this molecularly unselected cohort; however, 1 of 3 patients enrolled with the H3 K27M mutation had a complete regression of enhancing multifocal lesions that remained durable for >1.5 years. No treatment modifications or discontinuations due to toxicity were observed, including in those who underwent re-resection. CONCLUSIONS Weekly ONC201 is well tolerated, and meaningful intratumoral concentrations were achieved. ONC201 may be biologically active in a subset of adult patients with recurrent glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tracy T Batchelor
- Brigham and Women's Hospital, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
8
|
Pierce SR, Fang Z, Yin Y, West L, Asher M, Hao T, Zhang X, Tucker K, Staley A, Fan Y, Sun W, Moore DT, Xu C, Tsai YH, Parker J, Prabhu VV, Allen JE, Lee D, Zhou C, Bae-Jump V. Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:61. [PMID: 33557912 PMCID: PMC7869513 DOI: 10.1186/s13046-021-01842-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
Background ONC201 is a dopamine receptor D2 (DRD2) antagonist that inhibits tumor growth in preclinical models through ClpP activation to induce integrated stress response pathway and mitochondrial events related to inhibition of cell growth, which is being explored in clinical trials for solid tumors and hematological malignancies. In this study, we investigated the anti-tumorigenic effect of ONC201 in endometrial cancer cell lines and a genetically engineered mouse model of endometrial cancer. Methods Cell proliferation was assessed by MTT and colony formation assays. Cell cycle and apoptosis were evaluated by Cellometer. Invasion capacity was tested using adhesion, transwell and wound healing assays. LKB1fl/flp53fl/fl mouse model of endometrial cancer were fed a control low fat diet versus a high fat diet to mimic diet-induced obesity. Following tumor onset, mice were treated with placebo or ONC201. Metabolomics and lipidomics were used to identify the obesity-dependent effects of ONC201 in the mouse endometrial tumors. DRD2 expression was analyzed by immunohistochemistry in human endometrioid and serous carcinoma specimens. DRD2 mRNA expression from the Cancer Genome Atlas (TCGA) database was compared between the four molecular subtypes of endometrial cancer. Results Increasing DRD2 expression in endometrial cancer was significantly associated with grade, serous histology and stage, as well as worse progression free survival and overall survival. Higher expression of DRD2 mRNA was found for the Copy Number High (CNH) subtype when compared to the other subtypes. ONC201 inhibited cell proliferation, induced cell cycle G1 arrest, caused cellular stress and apoptosis and reduced invasion in endometrial cancer cells. Diet-induced obesity promoted endometrial tumor growth while ONC201 exhibited anti-tumorigenic efficacy in the obese and lean LKB1fl/fl/p53fl/fl mice. Metabolomic analysis demonstrated that ONC201 reversed the obesity-driven upregulation of lipid biosynthesis and reduced protein biosynthesis in obese and lean mice. Conclusion ONC201 has anti-tumorigenic effects in endometrial cancer cells and a transgenic mouse model of endometrial cancer, and DRD2 expression was documented in both human serous and endometrioid endometrial cancer. These studies support DRD2 antagonism via ONC201 as a promising therapeutic strategy for endometrial cancer that has already demonstrated pharmacodynamic activity and clinical benefit in both serous and endometrioid endometrial cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01842-9.
Collapse
Affiliation(s)
- Stuart R Pierce
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ziwei Fang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yajie Yin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lindsay West
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Majdouline Asher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianran Hao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xin Zhang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Katherine Tucker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Allison Staley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yali Fan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dominic T Moore
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chang Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Joel Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia 2020; 22:725-744. [PMID: 33142238 PMCID: PMC7588802 DOI: 10.1016/j.neo.2020.09.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.
Collapse
Key Words
- 5-fu, 5-fluorouracil
- a2a, adenosine 2a receptor
- alcl, anaplastic large cell lymphoma
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- ampk, amp kinase
- atrt, atypical teratoid rhabdoid tumor
- auc, area under the curve
- brd, bromodomain
- camp, cyclic amp
- cck18, caspase-cleaved cytokeratin 18
- ck18, cytokeratin 18
- cll, chronic lymphocytic leukemia
- clpp, caseinolytic protease p
- clpx, caseinolytic mitochondrial matrix peptidase chaperone subunit x
- cml, chronic myelogenous leukemia
- crc, colorectal cancer
- csc, cancer stem cell
- ctcl, cutaneous t-cell lymphoma
- dipg, diffuse intrinsic pontine glioma
- dlbcl, diffuse large b-cell lymphoma
- dna-pkcs, dna-activated protein kinase catalytic subunit
- dr5, death receptor 5
- drd1, dopamine receptor d1
- drd2, dopamine receptor d2
- drd3, dopamine receptor d3
- drd4, dopamine receptor d4
- drd5, dopamine receptor d5
- dsrct, desmoplastic small round cell tumor
- ec, endometrial cancer
- egfr, epidermal growth factor receptor
- flair, fluid-attenuated inversion recovery
- gbm, glioblastoma multiforme
- gdsc, genomics of drug sensitivity in cancer
- girk, g protein-coupled inwardly rectifying potassium channel
- gnrh, gonadotropin-releasing hormone receptor
- gpcr, g protein coupled receptor
- hcc, hepatocellular carcinoma
- ihc, immunohistochemistry
- hgg, high-grade glioma
- isr, integrated stress response
- mcl, mantle cell lymphoma
- mm, multiple myeloma
- mtd, maximum tolerated dose
- nhl, non-hodgkin’s lymphoma
- nk, natural killer
- noael, no-observed-adverse-event-level
- nsclc, non-small cell lung cancer
- os, overall survival
- oxphos, oxidative phosphorylation
- pc-pg, pheochromocytoma-paraganglioma
- pd, pharmacodynamic
- pdx, patient-derived xenograft
- pfs, progression-free survival
- pk, pharmacokinetic
- plc, phospholipase c
- rano, response assessment in neuro-oncology
- recist, response evaluation criteria in solid tumors
- rhtrail, recombinant human trail
- rp2d, recommended phase ii dose
- sar, structure–activity relationship
- sclc, small-cell lung cancer
- tic10, trail-inducing compound 10
- tmz, temozolomide
- tnbc, triple-negative breast cancer
- trail, tnf-associated apoptosis-inducing ligand
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- who, world health organization
Collapse
Affiliation(s)
- Varun Vijay Prabhu
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Sara Morrow
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | | | - Lanlan Zhou
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Marie Ralff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jocelyn Ray
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Aakash Jhaveri
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Isacco Ferrarini
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Young Lee
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Cassandra Parker
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Yiqun Zhang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Robyn Borsuk
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Wen-I Chang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Joshua N Honeyman
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Fabio Tavora
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Benedito Carneiro
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Alexander Raufi
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Kelsey Huntington
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Lindsey Carlsen
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Anna Louie
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Howard Safran
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Attila A Seyhan
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | | | - Lee Schalop
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Martin Stogniew
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Joshua E Allen
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA.
| | - Wolfgang Oster
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Zhang Y, Huang Y, Yin Y, Fan Y, Sun W, Zhao X, Tucker K, Staley A, Paraghamian S, Hawkins G, Prabhu V, Allen JE, Zhou C, Bae-Jump V. ONC206, an Imipridone Derivative, Induces Cell Death Through Activation of the Integrated Stress Response in Serous Endometrial Cancer In Vitro. Front Oncol 2020; 10:577141. [PMID: 33194693 PMCID: PMC7641618 DOI: 10.3389/fonc.2020.577141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022] Open
Abstract
ONC206 (Oncoceutics) is an imipiridone with nanomolar potency and analogue of ONC201, a selective dopamine receptor D2 (DRD2) antagonist currently being investigated in phase II clinical trials for serous endometrial cancer (SEC). This study investigated the anti-proliferative efficacy of ONC206 in SEC cell lines as well as its impact on cellular stress and adhesion/invasion. ONC206 inhibited cellular proliferation in a dose-dependent manner and was more potent than ONC201 in the ARK1 (IC50 = 0.33µM vs. IC50 = 1.59uM) and SPEC-2 (IC50 = 0.24uM vs. IC50 = 0.81uM) cell lines. Treatment with ONC206 resulted in induction of ROS production and reduction of mitochondrial membrane potential, accompanied by an increase in cleaved caspase-3 and caspase-9 activity (p < 0.01). ONC206 also significantly inhibited cellular adhesion and migration in both cell lines (p < 0.01). Pretreatment with the stress inhibitor N-acetylcysteine (NAC) significantly attenuated the efficacy of ONC206 on cell proliferation, ROS production and cellular invasion. ONC206 demonstrates nanomolar potency for the inhibition of proliferation in SEC cells. Specifically, ONC206 utilizes ISR activation as a significant pathway in the propagation of its anti-proliferative and anti-metastatic effects. Thus, ONC206 may be a promising agent in future SEC clinical trials as was its predecessor ONC201.
Collapse
Affiliation(s)
- Yingao Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yu Huang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaoling Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Katherine Tucker
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Allison Staley
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gabrielle Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Humeau J, Bezu L, Kepp O, Kroemer G. EIF2α phosphorylation: a hallmark of both autophagy and immunogenic cell death. Mol Cell Oncol 2020; 7:1776570. [PMID: 32944635 DOI: 10.1080/23723556.2020.1776570] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Different intrinsic and extrinsic stress pathways including endoplasmic reticulum (ER) stress converge on the phosphorylation of eukaryotic translation initiation factor 2A (EIF2A, best known as eIF2α), which characterizes the so-called "integrated stress response". This phosphorylation event is important for the induction of autophagy in response to multiple distinct stressors, as well as for the exposure of calreticulin (CALR) as an "eat me" signal on the surface of the plasma membrane of stressed cells. Both autophagy and CALR exposure are required for immunogenic cell death, a modality of cellular demise that ignites anticancer and antiviral immune responses. In several different cancer types, eIF2α phosphorylation indicates favorable prognosis, correlating with an enhanced antitumor immune response.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Département D'anesthésie-réanimation, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Pôle De Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Prabhu VV, Madhukar NS, Gilvary C, Kline CLB, Oster S, El-Deiry WS, Elemento O, Doherty F, VanEngelenburg A, Durrant J, Tarapore RS, Deacon S, Charter N, Jung J, Park DM, Gilbert MR, Rusert J, Wechsler-Reya R, Arrillaga-Romany I, Batchelor TT, Wen PY, Oster W, Allen JE. Dopamine Receptor D5 is a Modulator of Tumor Response to Dopamine Receptor D2 Antagonism. Clin Cancer Res 2018; 25:2305-2313. [PMID: 30559168 DOI: 10.1158/1078-0432.ccr-18-2572] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE Dopamine receptor D2 (DRD2) is a G protein-coupled receptor antagonized by ONC201, an anticancer small molecule in clinical trials for high-grade gliomas and other malignancies. DRD5 is a dopamine receptor family member that opposes DRD2 signaling. We investigated the expression of these dopamine receptors in cancer and their influence on tumor cell sensitivity to ONC201. EXPERIMENTAL DESIGN The Cancer Genome Atlas was used to determine DRD2/DRD5 expression broadly across human cancers. Cell viability assays were performed with ONC201 in >1,000 Genomic of Drug Sensitivity in Cancer and NCI60 cell lines. IHC staining of DRD2/DRD5 was performed on tissue microarrays and archival tumor tissues of glioblastoma patients treated with ONC201. Whole exome sequencing was performed in RKO cells with and without acquired ONC201 resistance. Wild-type and mutant DRD5 constructs were generated for overexpression studies. RESULTS DRD2 overexpression broadly occurs across tumor types and is associated with a poor prognosis. Whole exome sequencing of cancer cells with acquired resistance to ONC201 revealed a de novo Q366R mutation in the DRD5 gene. Expression of Q366R DRD5 was sufficient to induce tumor cell apoptosis, consistent with a gain-of-function. DRD5 overexpression in glioblastoma cells enhanced DRD2/DRD5 heterodimers and DRD5 expression was inversely correlated with innate tumor cell sensitivity to ONC201. Investigation of archival tumor samples from patients with recurrent glioblastoma treated with ONC201 revealed that low DRD5 expression was associated with relatively superior clinical outcomes. CONCLUSIONS These results implicate DRD5 as a negative regulator of DRD2 signaling and tumor sensitivity to ONC201 DRD2 antagonism.
Collapse
Affiliation(s)
| | | | | | | | - Sophie Oster
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | - Sean Deacon
- Eurofins DiscoverX Corporation, Fremont, California
| | - Neil Charter
- Eurofins DiscoverX Corporation, Fremont, California
| | - Jinkyu Jung
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Jessica Rusert
- Sanford Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|