1
|
Chu Y, Gardenswartz A, Diorio C, Marks LJ, Lowe E, Teachey DT, Cairo MS. Cellular and humoral immunotherapy in children, adolescents and young adults with non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101442. [PMID: 36907635 DOI: 10.1016/j.beha.2023.101442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The prognosis is dismal (2-year overall survival less than 25%) for childhood, adolescent, and young adult (CAYA) with relapsed and/or refractory (R/R) non-Hodgkin lymphoma (NHL). Novel targeted therapies are desperately needed for this poor-risk population. CD19, CD20, CD22, CD79a, CD38, CD30, LMP1 and LMP2 are attractive targets for immunotherapy in CAYA patients with R/R NHL. Novel anti-CD20 monoclonal antibodies, anti-CD38 monoclonal antibody, antibody drug conjugates and T and natural killer (NK)-cell bispecific and trispecific engagers are being investigated in the R/R setting and are changing the landscape of NHL therapy. A variety of cellular immunotherapies such as viral activated cytotoxic T-lymphocyte, chimeric antigen receptor (CAR) T-cells, NK and CAR NK-cells have been investigated and provide alternative options for CAYA patients with R/R NHL. Here, we provide an update and clinical practice guidance of utilizing these cellular and humoral immunotherapies in CAYA patients with R/R NHL.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Caroline Diorio
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lianna J Marks
- Division of Pediatric Hematology and Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric Lowe
- Division of Pediatric Hematology-Oncology, Children's Hospital of the Kings Daughter, Norfolk, VA, USA
| | - David T Teachey
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA; Department of Epidemiology and Community Health, New York Medical College, Valhalla, NY, USA; Department of Medicine, New York Medical College, Valhalla, NY, USA; Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Cell Biology, New York Medical College, Valhalla, NY, USA; Department of Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Gardenswartz A, Mehta B, El-Mallawany NK, van de Ven C, Hochberg J, Flower A, Morris E, Harrison L, Chu Y, Basso J, Gerard P, Islam H, Ayello J, Baxter-Lowe LA, Cairo MS. Safety and efficacy of combinatorial therapy utilizing myeloablative conditioning and autologous stem cell transplantation, targeted immunotherapy, and reduced intensity conditioning and allogeneic stem cell transplantation in children, adolescents, and young adults with relapsed/refractory mature B-cell non-Hodgkin lymphoma. Leuk Lymphoma 2023; 64:234-237. [PMID: 36260003 DOI: 10.1080/10428194.2022.2133542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Brinda Mehta
- Department of Pediatrics, St. Jude Children's Research Hospital, Peoria, IL, USA
| | | | | | - Jessica Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Allyson Flower
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Lauren Harrison
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jaclyn Basso
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Perry Gerard
- Department of Radiology, New York Medical College, Valhalla, NY, USA
| | - Humayun Islam
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Lee Ann Baxter-Lowe
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology and Anatomy, Hematology and Stem Cell Transplantation, Valhalla, NY, USA
| |
Collapse
|
3
|
The New Treatment Methods for Non-Hodgkin Lymphoma in Pediatric Patients. Cancers (Basel) 2022; 14:cancers14061569. [PMID: 35326719 PMCID: PMC8945992 DOI: 10.3390/cancers14061569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most common cancer malignancies is non-Hodgkin lymphoma, whose incidence is nearly 3% of all 36 cancers combined. It is the fourth highest cancer occurrence in children and accounts for 7% of cancers in patients under 20 years of age. Today, the survivability of individuals diagnosed with non-Hodgkin lymphoma varies by about 70%. Chemotherapy, radiation, stem cell transplantation, and immunotherapy have been the main methods of treatment, which have improved outcomes for many oncological patients. However, there is still the need for creation of novel medications for those who are treatment resistant. Additionally, more effective drugs are necessary. This review gathers the latest findings on non-Hodgkin lymphoma treatment options for pediatric patients. Attention will be focused on the most prominent therapies such as monoclonal antibodies, antibody–drug conjugates, chimeric antigen receptor T cell therapy and others.
Collapse
|
4
|
The Future of Natural Killer Cell Immunotherapy for B Cell Non-Hodgkin Lymphoma (B Cell NHL). Curr Treat Options Oncol 2022; 23:381-403. [PMID: 35258793 PMCID: PMC8930876 DOI: 10.1007/s11864-021-00932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells have played a critical—if largely unrecognized or ignored—role in the treatment of B cell non-Hodgkin lymphoma (NHL) since the introduction of CD20-directed immunotherapy with rituximab as a cornerstone of therapy over 25 years ago. Engagement with NK cells leading to lysis of NHL targets through antibody-dependent cellular cytotoxicity (ADCC) is a critical component of rituximab’s mechanism of action. Despite this important role, the only aspect of B cell NHL therapy that has been adopted as standard therapy that even indirectly augments or restores NK cell function is the introduction of obinutuzumab, a CD20 antibody with enhanced ability to engage with NK cells. However, over the last 5 years, adoptive immunotherapy with effector lymphocytes of B cell NHL has experienced tremendous growth, with five different CAR T cell products now licensed by the FDA, four of which target CD19 and have approved indications for some subtype of B cell NHL—axicabtagene ciloleucel, brexucabtagene autoleucel, lisocabtagene maraleucel, and tisagenlecleucel. These T cell-based immunotherapies essentially mimic the recognition, activation pathway, and cytotoxic machinery of a CD19 antibody engaging NK cells and lymphoma targets. Despite their efficacy, these T cell-based immunotherapies have been difficult to implement because they require 4–6 weeks of manufacture, are costly, and have significant toxicities. This renewed interest in the potential of cellular immunity—and the manufacturing, supply chain, and administration logistics that have been addressed with these new agents—have ignited a new wave of enthusiasm for NK cell-directed therapies in NHL. With high safety profiles and proven anti-lymphoma efficacy, one or more new NK cell-directed modalities are certain to be introduced into the standard toolbox of NHL therapy within the next few years, be it function-enhancing cytokine muteins, multi-domain NK cell engagers, or adoptive therapy with expanded or genetically modified NK cells.
Collapse
|
5
|
Chu Y, Nayyar G, Jiang S, Rosenblum JM, Soon-Shiong P, Safrit JT, Lee DA, Cairo MS. Combinatorial immunotherapy of N-803 (IL-15 superagonist) and dinutuximab with ex vivo expanded natural killer cells significantly enhances in vitro cytotoxicity against GD2 + pediatric solid tumors and in vivo survival of xenografted immunodeficient NSG mice. J Immunother Cancer 2021; 9:jitc-2020-002267. [PMID: 34244307 PMCID: PMC8268924 DOI: 10.1136/jitc-2020-002267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background Children with recurrent and/or metastatic osteosarcoma (OS), neuroblastoma (NB) and
glioblastoma multiforme (GBM) have a dismal event-free survival (<25%).
The majority of these solid tumors highly express GD2. Dinutuximab, an anti-GD2
monoclonal antibody, significantly improved event-free survival in children with
GD2+ NB post autologous stem cell transplantation and enhanced natural
killer (NK) cell-mediated antibody-dependent cell cytotoxicity. Thus, approaches to
increase NK cell number and activity, improve persistence and trafficking, and enhance
tumor targeting may further improve the clinical benefit of dinutuximab. N-803 is a
superagonist of an interleukin-15 (IL-15) variant bound to an IL-15 receptor alpha Su-Fc
fusion with enhanced biological activity. Methods The anti-tumor combinatorial effects of N-803, dinutuximab and ex vivo expanded
peripheral blood NK cells (exPBNK) were performed in vitro using cytoxicity assays
against GD2+ OS, NB and GBM cells. Perforin and interferon (IFN)-γ
levels were measured by ELISA assays. Multiple cytokines/chemokines/growth factors
released were measured by multiplex assays. Human OS, GBM or NB xenografted
NOD/SCID/IL2rγnull (NSG) mice were used to investigate the anti-tumor
combinatorial effects in vivo. Results N-803 increased the viability and proliferation of exPBNK. The increased viability and
proliferation are associated with increased phosphorylation of Stat3, Stat5, AKT,
p38MAPK and the expression of NK activating receptors. The combination of dinutuximab
and N-803 significantly enhanced in vitro cytotoxicity of exPBNK with enhanced perforin
and IFN-γ release against OS, GBM and NB. The combination of
exPBNK+N-803+dinutuximab significantly reduced the secretion of tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL), platelet-derived growth factor-BB
(PDGF-BB), and stem cell growth factor beta (SCGF-β) from OS or GBM tumor cells.
Furthermore, OS or GBM significantly inhibited the secretion of regulated on activation,
normal T cell expressed and presumably secreted (RANTES) and stromal cell-derived
factor-1 alpha (SDF-1α) from exPBNK cells (p<0.001) but significantly
enhanced monokine induced by gamma interferon (MIG) secretion from exPBNK cells
(p<0.001). N-803 combined with dinutuximab and exPBNK cells significantly
extended the survival of OS, GBM or NB xenografted NSG mice. Conclusions Our results provide the rationale for the development of a clinical trial of N-803 in
combination with dinutuximab and ex vivo exPBNK cells in patients with recurrent or
metastatic GD2+ solid tumors.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Susiyan Jiang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | | | - Dean A Lee
- Department of Hem/Onc/BMT, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA .,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
6
|
Csizmar CM, Ansell SM. Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma. Int J Mol Sci 2021; 22:3302. [PMID: 33804869 PMCID: PMC8038124 DOI: 10.3390/ijms22073302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate and leads to more durable outcomes in Hodgkin lymphomas compared to non-Hodgkin lymphomas. These observations, combined with a growing understanding of tumor biology, have implicated the tumor microenvironment as a major determinant of treatment response and prognosis. Interactions between lymphoma cells and their microenvironment facilitate several mechanisms that impair the antitumor immune response, including loss of major histocompatibility complexes, expression of immunosuppressive ligands, secretion of immunosuppressive cytokines, and the recruitment, expansion, and skewing of suppressive cell populations. Accordingly, treatments to overcome these barriers are being rapidly developed and translated into clinical trials. This review will discuss the mechanisms of immune evasion, current avenues for optimizing the antitumor immune response, clinical successes and failures of lymphoma immunotherapy, and outstanding hurdles that remain to be addressed.
Collapse
Affiliation(s)
| | - Stephen M. Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Genetic Variants of the NKG2C/HLA-E Receptor-Ligand Axis Are Determinants of Progression-Free Survival and Therapy Outcome in Aggressive B-Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12113429. [PMID: 33218185 PMCID: PMC7699209 DOI: 10.3390/cancers12113429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary NKG2C and its ligand HLA-E represent key molecules for NK cell-mediated immune responsiveness. However, the impact of genetic variants in NKG2C and HLA-E on clinical outcomes of aggressive B-cell non-Hodgkin lymphoma patients (B-NHL) has not been clarified. In this study, we analyzed the distribution of NKG2C deletion status and HLA-E variants in 441 patients and 192 healthy individuals. Homozygous deletion of NKG2C (NKG2C−/−) was more often found in high-risk patients compared to patients with a lower risk and consequently was associated with reduced 2-year progression-free survival. The HLA-E*01:01 allele frequency was increased in B-NHL patients and was strongly related with complete remission. Our results show that absence of NKG2C and HLA-E allelic variations is predictive for B-NHL outcome; while carriers of HLA-E*01:01 are characterized by high, complete remission rates, NKG2C−/− was rare, but associated with poorer outcome. Prospective validation of our results identifies patients that may benefit from risk-adapted therapy. Abstract Aggressive B-cell lymphomas account for the majority of non-Hodgkin lymphomas (B-NHL). NK cells govern the responses to anti-CD20 monoclonal antibodies and have emerged as attractive targets for immunotherapy in subtypes of B-NHL. NKG2C and its cognate ligand HLA-E represent key molecules for fine-tuning of NK cell-mediated immune responses. Here, we investigated the impact of genetic variants of NKG2C and HLA-E on clinical outcomes of 441 B-NHL patients. Homozygous deletion of NKG2C (NKG2C−/−) was three-fold increased in patients compared to 192 healthy controls. Among studied patients, NKG2C−/− was more abundant in International Prognostic Index (IPI) high-risk patients compared to patients with a lower IPI (p = 0.013). Strikingly, NKG2C−/− was associated with a significantly reduced 2-year PFS (progression-free survival) (p = 0.0062) and represented an independent risk factor for 2-year PFS in multivariate analysis (p = 0.005). For HLA-E, the cognate ligand of NKG2C, the HLA-E*01:01 allele frequency was increased in B-NHL patients compared to controls (p = 0.033) and was associated with complete remission in univariate (p = 0.034) and multivariate (p = 0.018) analysis. Our data suggest that NKG2C and HLA-E genotyping is a promising tool for both defining risk groups of aggressive B-NHL and predicting response to immune therapeutic approaches.
Collapse
|
8
|
Chu Y, Nayyar G, Kham Su N, Rosenblum JM, Soon-Shiong P, Lee J, Safrit JT, Barth M, Lee D, Cairo MS. Novel cytokine-antibody fusion protein, N-820, to enhance the functions of ex vivo expanded natural killer cells against Burkitt lymphoma. J Immunother Cancer 2020; 8:jitc-2020-001238. [PMID: 33109629 PMCID: PMC7592258 DOI: 10.1136/jitc-2020-001238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prognosis of patients with relapsed or progressive B cell (CD20+) non-Hodgkin's lymphoma (B-NHL), including Burkitt lymphoma (BL), is dismal due to chemoradiotherapy resistance. Novel therapeutic strategies are urgently needed. N-820 is a fusion protein of N-803 (formerly known as ALT-803) to four single-chains of rituximab. This agent has tri-specific binding activity to CD20 and enhanced antibody-dependent cell-mediated cytotoxicity. METHODS We investigated the anti-tumor combinatorial effects of N-820 with ex vivo expanded peripheral blood natural killer (exPBNK) cells against rituximab-sensitive and rituximab-resistant CD20+ BL in vitro using cytoxicity assays and in vivo using human BL xenografted NOD/SCID/IL2rγnull (NSG) mice. We also investigated the cytokines/chemokines/growth factors released using ELISA and multiplex assay. Gene expression changes were examined using real-time PCR arrays. RESULTS N-820 significantly enhanced the expression of NK activating receptors (p<0.001) and the proliferation of exPBNK cells with enhanced Ki67 expression and Stat5 phosphorylation (p<0.001). N-820 significantly enhanced the secretion of cytokines, chemokines, and growth factors including GM-CSF, RANTES, MIP-1B (p<0.001) from exPBNK cells as compared with the combination of rituximab+N-803. Importantly, N-820 significantly enhanced in vitro cytotoxicity (p<0.001) of exPBNK with enhanced granzyme B and IFN-γ release (p<0.001) against BL. Gene expression profiles in exPBNK stimulated by N-820+Raji-2R showed enhanced transcription of CXCL9, CXCL1, CSF2, CSF3, GZMB, and IFNG. Moreover, N-820 combined with exPBNK significantly inhibited rituximab-resistant BL growth (p<0.05) and extended the survival (p<0.05) of BL xenografted NSG mice. CONCLUSIONS Our results provide the rationale for the development of a clinical trial of N-820 alone or in combination with endogenous or ex vivo expanded NK cells in patients with CD20+ B-NHL failing prior rituximab containing chemoimmunotherapy regimens.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Nang Kham Su
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - John Lee
- ImmunityBio, Inc, Culver City, California, USA
| | | | - Matthew Barth
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Dean Lee
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA .,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
9
|
Gardenswartz A, Cairo MS. Hematopoietic Progenitor Cell Transplantation in Children, Adolescents, and Young Adults With Relapsed Mature B-Cell NHL. J Natl Compr Canc Netw 2020; 18:1135-1142. [PMID: 32755988 DOI: 10.6004/jnccn.2020.7617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022]
Abstract
Although children, adolescents, and young adults with newly diagnosed B-cell non-Hodgkin's lymphoma enjoy excellent overall survival with current chemoimmunotherapy, those with relapsed and/or refractory disease have a dismal prognosis. Although most clinicians would agree that hematopoietic progenitor cell transplantation after reinduction therapy is frontline therapy for these patients, there is no consensus as to what type of hematopoietic progenitor cell transplantation promises the best event-free and overall survival. This review outlines the disparate types of stem cell therapy that have been used in this difficult-to-treat population as well as the role of maintenance and CAR T-cell therapy in conjunction with stem cell therapy.
Collapse
Affiliation(s)
| | - Mitchell S Cairo
- Departments of Pediatrics.,Pathology.,Medicine.,Microbiology and Immunology, and.,Cell Biology and Anatomy, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, New York
| |
Collapse
|
10
|
Baleydier F, Bernard F, Ansari M. The Possibilities of Immunotherapy for Children with Primary Immunodeficiencies Associated with Cancers. Biomolecules 2020; 10:biom10081112. [PMID: 32731356 PMCID: PMC7464796 DOI: 10.3390/biom10081112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Many primary immunodeficiencies (PIDs) are recognised as being associated with malignancies, particularly lymphoid malignancies, which represent the highest proportion of cancers occurring in conjunction with this underlying condition. When patients present with genetic errors of immunity, clinicians must often reflect on whether to manage antitumoral treatment conventionally or to take a more personalised approach, considering possible existing comorbidities and the underlying status of immunodeficiency. Recent advances in antitumoral immunotherapies, such as monoclonal antibodies, antigen-specific adoptive cell therapies or compounds with targeted effects, potentially offer significant opportunities for optimising treatment for those patients, especially with lymphoid malignancies. In cases involving PIDs, variable oncogenic mechanisms exist, and opportunities for antitumoral immunotherapies can be considered accordingly. In cases involving a DNA repair defect or genetic instability, monoclonal antibodies can be proposed instead of chemotherapy to avoid severe toxicity. Malignancies secondary to uncontrolled virus-driven proliferation or the loss of antitumoral immunosurveillance may benefit from antivirus cell therapies or allogeneic stem cell transplantation in order to restore the immune antitumoral caretaker function. A subset of PIDs is caused by gene defects affecting targetable signalling pathways directly involved in the oncogenic process, such as the constitutive activation of phosphoinositol 3-kinase/protein kinase B (PI3K/AKT) in activated phosphoinositide 3-kinase delta syndrome (APDS), which can be settled with PI3K/AKT inhibitors. Therefore, immunotherapy provides clinicians with interesting antitumoral therapeutic weapons to treat malignancies when there is an underlying PID.
Collapse
Affiliation(s)
- Frederic Baleydier
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-79-55-34-221; Fax: +41-22-37-24-720
| | - Fanette Bernard
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
| | - Marc Ansari
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
11
|
Moleti ML, Testi AM, Foà R. Treatment of relapsed/refractory paediatric aggressive B-cell non-Hodgkin lymphoma. Br J Haematol 2020; 189:826-843. [PMID: 32141616 DOI: 10.1111/bjh.16461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Aggressive B-cell non-Hodgkin lymphoma (B-NHL) accounts for ≈60% of NHL in children/adolescents. In newly diagnosed Burkitt lymphoma and diffuse large B-cell lymphoma, short intensive multiagent chemotherapy is associated with a five-year event-free survival of around 90%. Very few children/adolescents with aggressive B-NHL show a relapsed/refractory (r/r) disease. The outcome is poor, with cure rates <30%, and there is no standard of care. Rituximab-containing salvage regimens may provide a complete/partial response in 60-70% of cases. However, long-term survival is <10% for non-transplanted patients. Autologous or allogeneic haematopoietic stem cell transplant is, nowadays, the best option for responding patients, with survival rates around 50%. The benefit of autologous versus allogeneic HSCT is not clear. Numerous novel therapies for r/r B-NHL are currently being tested in adults, including next-generation monoclonal antibodies, novel cellular therapy strategies and therapies directed against new targets. Some are under investigation also in children/adolescents, with promising preliminary results.
Collapse
Affiliation(s)
- Maria L Moleti
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Anna M Testi
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| |
Collapse
|
12
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|
13
|
Cairo MS. Rituximab in the treatment of childhood mature B-cell lymphoma: "Where do we go from here". Br J Haematol 2019; 185:1017-1020. [PMID: 31115041 DOI: 10.1111/bjh.15940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitchell S Cairo
- Pediatric Hematology, Oncology & Stem Cell Transplantation, New York Medical College, Valhalla, NY, USA
| |
Collapse
|